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1 Introduction

By a graph G := (V, E)y we mean a simple graph with a Vertex set V and an edge set E.
Thus, G does not have any loops or double edges. A surface will always mean a compact,
connected two-dimensional orientable manifold without a boundary. A map on a surface
S is an embedding of a graph G with a finite number of vertices such that the components,
which are calledfaces of S \ G, are topological 2-cells. Hence, the closure of a component
in S \ G is a p—gonal disk, i.e., a 2-disk whose boundary is a p—gon for some integer

p > 3. We call G the edge graph of the map and the vertices and edges of G are called the
vertices and edges of the map.

A map is called {p, q}-equivelar, p,q > 3, if each face of the map is a p-gonal 2-disk
and each vertex is incident with exactly q faces. If p 3, the map is called a g-equivelar

Triangulationen von geschlossenen Flächen sind nicht nur aus der Sicht der Numerik
interessant. Indem man solche Triangulationen in geeigneter Weise als Graphen
betrachtet, spiegeln sie topologische, analytische und kombinatorische Eigenschaften der
Fäche wieder. 1972 zeigte Altshuler, dass in gewissen Triangulationen eines Torus stets

ein Hamilton-Kreis zu finden ist. Diese Beobachtung zum Ausgangspunkt nehmend,
werden in der vorliegenden Arbeit reguläre Graphen untersucht, die als Triangulationen

von allgemeinen geschlossenen Flächen auftreten. Ein Hamilton-Kreis einer
solchen Triangulierung, der eine topologische Kreisscheibe berandet, heisst kontrahierbar.
Es gelingt dem Autor eine notwendige und hinreichende Bedingung für die Existenz
eines kontrahierbaren Hamilton-Kreises anzugeben. Dabei spielt ein Baumgraph in der
dualen Triangulierung eine entscheidende Rolle.



24 A K Upadhyay

tnangulation or a degree-regular tnangulation of type q. Please see [14] for details about

graphs on surfaces and [5] for related termmology m graph theory.

In this article, we are mterested m studymg cycles, especially Hamiltonian cycles, which
are m the edge graphs of equivelar triangulations of surfaces. Such cycles have been exten-
sively studied m the plane. For example, m [20], Tutte showed that every 4-connected pla-
nar graph has a Hamiltonian cycle. In 1970, Grunbaum conjectured that every 4-connected

graph that admits an embeddmg m the torus has a Hamiltonian cycle, (see [9] and [10]).
In particular, this conjecture mcludes the 4-connected graphs whose embeddmg gives nse
to equivelar maps on the torus. It is well known that there are exactly three distmct types
of equivelar maps on the torus, namely, {3, 6}, {4, 4} and {6, 3}, where the last one is the
dual of the {3, 6} map, (see [7] and [8]).

A. Altshuler studied Hamiltonian cycles and paths m the edge graphs of equivelar maps
on the torus, that is, m the maps that are equivelar and of types {3, 6} or {4, 4} (see [1],
[2]). He showed that, m the graph consistmg of vertices and edges of equivelar maps of
the above types there exists a Hamiltonian cycle. He also showed that a Hamiltonian cycle
exists m every 6-connected graph on the torus.

By definition the faces m a tnangulated surface are contractible m the topological sense.

A collection H of these faces is called a contractible sub-complex of the tnangulation lf
the union of the elements of H is contractible. A cycle m the edge graph of a tnangulation
will be called contractible lf the union of tnangles that is bounded by it on one side is
a contractible sub-complex, (see [19]). There are other definitions of contractible sub-

complexes, see, e.g., [18], p. 744. Nevertheless, we will follow the above definition m this

paper.

In [4], Barnette showed that any 3-connected graph other than K4 or Ks contams either a

contractible cycle or a simple configuration as a subgraph. The definition of contractibil-

lty m article [4] asserts that, after contraction, the Connectivity of the graph remains un-
changed (please see [6], p. 111 for the definition of edge-contraction).

It is also well known that triangulations of surfaces are 3-connected. Because we are
motivated by works of Grunbaum, Altshuler and Barnette, we combme these two concepts:
Hamiltonicity and the contractibility of a cycle. Furthermore we ask ourselves whether we
can always find a contractible Hamiltonian cycle m a given equivelar tnangulation of a

surface.

In this article, we present a necessary and sufficient condition for the existence of such a

cycle m the edge graph of a given equivelar tnangulation of surfaces (Theorem 1). We have

strong reasons [12] to believe that the result given m this article will lead to an algorithm
that can be used to find contractible Hamiltonian cycles m general triangulations and maps
of surfaces. In addition, the existence of Hamiltonian cycles and, m particular, contractible
Hamiltonian cycles assumes significance m light of the followmg two examples.

In a tnangulation, two tnangles with a common edge form a quadnlateral with one diagonal.

By replacmg the existmg diagonal with the other one, one obtams a different
tnangulation on the same surface. This process is called a diagonal flip. In [16] it is shown

that, lf n > 5, then any two n Vertex triangulations on the sphere that has a Hamiltonian
cycle can be transformed mto each other by at most 4n — 20 diagonal flips. In addition
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lt is shown that these flips preserve the existence of Hamilton cycles. Moreover, m [15]
the authors used contractible Hamiltonian cycles m triangulations of a projective plane to

prove that any two triangulations on a projective plane with n vertices can be transformed
mto each other by at most 8n — 26 diagonal flips. The techniques can be further explored
to obtam or improve a bound on the number of diagonal flips required to transform an
n-vertex triangulation of a fixed surface S mto another n-Vertex triangulation of S.

Given an equivelar triangulation of a surface S that contams a contractible Hamiltonian
cycle, we show that there exists a certam type of tree m the edge graph of the dual map of
the given triangulation. Conversely lf such a tree exists m the dual map of a triangulation,
we show that the given triangulation has a Hamiltonian cycle which bounds a tnangulated
2-disk. If the equivelar triangulation of a surface has n vertices, then this disk has exactly
n — 2 triangles and all of lts n vertices he on the boundary cycle. We begm with some
definitions.

2 Definitions and Preliminaries

In this section we present some definitions that will be needed m the course of the proof
of Theorem 1. For more details on these definitions, please refer to [13] and [17]. A
map is called a Simplicial Complex if each of lts faces is a Simplex. Thus a triangulation
is a Simplicial Complex. For a simplicial complex K, the graph consistmg of lts edges
and vertices is called the edge-graph of K and is denoted by EG(K). If v is a vertex
of K, then the number of edges that are mcident with v is called the degree of v and is
denoted by deg(u). If every vertex of K has same degree q then we define degree of K
as degree of v and we denote lt by deg(W) q. In the literature, vertices, edges and
faces of K are frequently termed as 0, 1 and 2 faces (or simplices) respectively. If the
number of i-simplices of a simplicial complex K is f(K) where 0 < i < 2, then the
number x(K) fo(K) — fi(K) + f2(K) is called the Euler characteristic of K. The
Euler characteristic of a map is defined similarly.

Let K be a simplicial complex. An edge r of a 2-face o m K is said to be a free 1-face

of o if r is not contamed m any other 2-face m K. The process of removmg a 2-face with
a free 1-face m a simplicial complex K is called an elementary collapse on K. Applymg
a sequence of elementary collapses to K results m another simplicial complex K\ and K
is said to collapse to K'. If K collapses to a pomt, then we say that K is a collapsible
simplicial complex. It is a fact that topologically collapsible simplicial complexes are
contractible: see, e.g., [11], p. 32.

If K denotes a map on a surface 5, then the dual map M,of K is defined to be the map on
S that has for lts vertices the set of faces of K such that two vertices u\ and U2 of M are

jomed by an edge m M if the correspondmg faces m K are adj acent. The well-known maps
of type {3, 6} and {6, 3} on the surface of a torus are mutually dual maps: see Example 1

below.

Example 1. {3,5}- and {3, 6}-equivelar maps are respectively shown on the Icosahedron

(Fig. 1) and the flat torus (Fig. 2). The dual map of the {3, 6} map on the flat torus is also

shown. The dashed lines show a proper tree and the darkened lines constitute a contractible
Hamiltonian cycle on these two surfaces.
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Figure 2

A path P in a graph G is a subgraph P : [uiü2 vn] of G, such that the Vertex set of P
is V(P) {v\, ü2, • • •, vn} c V(G) and are edges in P for 1 < i < n — l.A path
P : [ni, ü2, • • •, vn] in G is said to be a cycle ifvnvi is also an edge in P. A graph without

any cycles or loops is called a tree. The main object of study of this paper is a tree that is

defined as follows:

Definition 1. Let M denote a map on a surface S such that M is the dual map of an n-
vertex equivelar triangulation K of the surface. Then M is a {q, 3}-equivelar map for some

q deg(X). Let T denote a tree on n — 2 vertices of M (i.e., in the edge graph of M).
We say that T is a proper tree if the following two conditions hold:

1. whenever two vertices u\ and U2 of T belong to a face F in M, a path P[u\U2\
joining u\ and U2 in the boundary of F belongs to T;

2. if there exists a path P in T that also lies in a face F of M, then the length of P is at

most q — 2, where q deg(X).

In the following section, we present some facts and properties of a proper tree and prove
the main result of this article.
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3 Results

Let S be a surface with triangulation K and let the correspondmg dual map be M. Let
v e V(T) be a Vertex m a proper tree T m M. Then, deg(u) < 3.

Lemma 3.1. Let T be a proper tree and let m be the number ofvertices ofdegree three in
T. Then, the number ofvertices ofdegree one in T is m + 2.

Proof We prove this lemma by mduction on the number e of edges of T. If e 1, then

clearly, the number of vertices of degree one is 2 and there is no Vertex of degree 3. Thus,
the result is true for e 1. Assume the result to be true for a positive integer k > 1.

Let T be a proper tree with e k + 1 edges, which are denoted by e\, e^, e&+i.
Let T' be a subtree of T with k edges. Without loss of generality, we may assume that
T' consists of the edges e\, e^, eu and their vertices. Therefore, the subtree satisfies

the mduction hypothesis. Because the degree of each vertex m T cannot be greater than
3, the addition of e^+i to Tf either results m a new vertex of degree three or a new vertex
of degree two. In both of these cases, the Statement of the lemma holds. Thus, the proof
follows by mduction.

Lemma 3.2. Let T be an (n — 2)-vertexproper tree in a polyhedral map M oftype {q, 3}
on a surface S. Then, T intersects every face ofM.

Proof Let e denote the number of vertices of degree one m T. By the definition of a

proper tree, lt is clear that M is the dual map of an n-vertex g-equivelar triangulation of
S. Hence, T has n — 2 vertices and n — 3 edges. We claim that the n — 3 edges of T he

withm exactly n — e faces of M.
To prove this claim, we enumerate the number of faces of M with which the edges of T
are mcident. We construct sets E and F as follows: let E be a smgleton set that contams

an edge e\ of T and let E\ and be the adjacent faces of e\. Let F {F\, F2}. Add an

adjacent edge e^ of e\ to F. Then, there is exactly one face L3 that is distmct from F\ and

F2 such that e2 lies m L3. Add this face to the set F to obtam F {F\, F2, F3}. In this

way, we successively add edges to the set E that are adjacent to edges m E tili we exhaust
all of the edges of T. Each additional edge that is added to E contnbutes exactly one face

to the set F unless lt is adjacent to two edges m the set E. Thus, the number of faces m F
is the number of edges of T minus the number of vertices of degree three +1. In a 3-tree,
the number of vertices of degree 3 is two less than the number of end pomts. Therefore,
the number of elements m F is n — 3 — (e — 2) + 1. That is, F has n — e elements.

Let F(M) denote the set of all faces of M and let G F(M) \ F. Then, G has e elements.
We claim that an end vertex of T lies on exactly one face F that is contamed m G. Observe
that each vertex u of T is mcident with exactly three distmct faces F\, F2 and F3 of M.
The edge of T that is mcident with u lies withm two of these faces, say, F\ and F2 '. i.e., F\
and F2 are m F. Because, u is an end vertex, there is no edge of T that is mcident with L3,
for otherwise the definition of T would be violated. Thus, u is mcident with exactly one
face F3 of M such that F3 is contamed m G. As u is an arbitrary end pomt, this hypothesis
holds for all of the end vertices. If lt so happens that, for some end vertices u\ and U2 of
r, the correspondmg equal faces W\ and W2 lie m G, then we would have u\ and U2 lying
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on the same face of M, but no path on Wi that joms u\ and U2 lies m T. This occurrence
would contradict the definition of T. As a result G has exactly e distmct elements, which

proves the lemma.

Lemma 3.3. Let K be an n-Vertex equivelar triangulation ofa surface S. Let M denote
the dual map corresponding to K and let T be an (n — 2)-Vertex proper tree in M. Let D
denote the sub-complex of K which is dual to T. Then, D is a triangulated 2-disk and the

boundary of D, bd(D), is a Hamiltonian cycle in K.

Proof By the definition of a dual, D consists of n — 2 tnangles that correspond to the n — 2

vertices of T. Two tnangles m D have an edge m common lf the corresponding vertices
are adjacent m T. It is easy to see that D is a collapsible simplicial complex, and hence, lt
is a triangulated 2-disk.

Moreover, as T has vertices of degree one, bd(D) is non-empty. As bd(D) is boundary
complex of a 2-disk it is a connected cycle. Observe that the number of edges m n — 2

tnangles is 3(n — 2) and that for each edge of 7, exactly 2 edges are identified. Hence,
the number of edges that remam unidentified (i.e., the number of free edges) m D is
3 (n — 2) — 2(n — 3) n. These edges are precisely those that belong to bd(D). A
similar argument shows that the number of vertices m bd(D) is also n. Now, we want to
show that all of the n vertices are distmct. For this purpose, assume that there are vertices

v\ and ü2 m bd(D) such that v\ ü2 and v\ and ü2 lie on a path of positive length < n

m bd(D). This assumption would imply that there are faces F\ and F2 m D such that v\
is m F\, v>2 is m F2, F\ is distmct from F2 and F\ is not adj acent to F2. Thus, there exists
a face F' m D such that the Vertex u y< m T that corresponds to F' does not belong to
the face F(p\) that corresponds to vertex v\. However, this conclusion contradicts the fact
that T is a proper tree. Therefore, the cycle bd(D) contams exactly n distmct vertices. As
the number of vertices V(K) m K is n, bd(D) is a Hamiltonian cycle m K.

Theorem 3.4. Let S denote a surface that has an equivelar triangulation K. The edge

graph EG(K) ofK has a contractible Hamiltonian cycle ifand only ifthe edge graph of
the corresponding dual map M of K has a proper tree.

Proof The above lemma, Lemma 3.3 proves one half of this theorem. To prove the other
half, let K denote an equivelar triangulation and let H (v\, 02, r>3, vn) denote a

contractible Hamiltonian cycle m EG(K). Let z\, 12, rm denote the faces of a

triangulated disk D whose boundary is H. We claim that all of the tnangles that triangulate the
disc have their vertices on the boundary of the disk, i.e., on H. To prove the claim assume
otherwise. Then, there will be identifications on the surface, as all of the vertices of K will
also be on H. Now, if v denotes the number of tnangles m this disk, then the Euler charac-

tenstic relation gives us 1 n — [ -\-n] +x. Thus, x n — 2. As a result the number
of tnangles that triangulate the disc m n — 2. Now, m the edge graph of the dual map M
of K, consider the graph corresponding to this disk whose vertices correspond to the faces

H 72, rm. It is easy to check that this graph is a tree that is also a proper tree.

Remark. Because we started with the results of Altshuler, m the present article, we have
confined ourselves to degree-regular tnangulations. In [12], we have been able to show
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that the result also holds for triangulations of surfaces where the degree of each vertex is
at least 4. Moreover, for some class of maps on surfaces, we have been able to show a

similar result with a slight modification m the definition of a proper tree.
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