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On Locally Symmetric Spaces of Non-negative Curvature
and certain other Locally Homogeneous Spaces

by Joseph A. Wolf1, Princeton (N. J.)
To Professor Georges de Rham on his sixtieth birthday

1. Introduction and summary

This paper is a study of the global structure of the complète connected

locally symmetric RiEMANNian manifolds N in which every sectional curvature

is non-negative. Our main resuit is that the fundamental group ^(N)
is a finite 2-group if the Euler-Poincaré characteristic (singular theory)
^ (N) ^ 0. In fact, that resuit is proved under slightly weaker conditions on N.

The first principle resuit (Theorem 3.1) states that there is a real analytic
covering Nf -> N of finite multiplicity and a real analytic déformation
retraction of N onto a compact totally géodésie submanifold, such that
Nf E X T X M' where E is a EucLiDEan space, T is a torus, Mr is a

compact simply connected RiEMAKNian symmetric space, and the déformation
retraction of N lifts to a déformation retraction of Nf onto T X M'. In
particular, the betti numbers (singular theory) of N are finite and the
EuLER-PorNCARÉ characteristic %{N) is defined. Theorem 3.1 then states
that ^(^)^0, and that the fundamental group Tt^N) is a finite 2-group
if %{N)^0.

The second principle resuit (Theorem 3.2) gives a gênerai method of con-
structing ail manifolds N with %{N) ^ 0. Application of this method is a

combinatorial problem which requires a classification (up to global isometry)
of the space forms of the irreducible compact simply connected RiEMANNian

symmetric manifolds 8 with % (S) ^ 0. That classification problem is solved
in § 5. We first prove (Theorem 5.1) that S is equal to any of its space forms
unless S is a Grassmaetn" manifold, 8O(2n)/\]{n), Sp(w)/U(w), E7/^7 or
E7/i?6 • T1. We hâve already classified the space forms of Grassmann manifolds

of nonzero characteristic [13]; the resuit is recalled as Theorem 5.3.
We then (Theorems 5.4 — 5.7) classify the space forms of the other possibilités
of S. From thèse classification theorems we are able (Theorem 6.2) to give
a necessary and sufficient condition on the set of factors of a product M'

x) The author thanks the National Science Foundation for fellowship support during the period
of préparation of this paper. His présent address is : Department of Mathematics, University of
Califoraia, Berkeley 4, California.
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of manifolds 8, that every space form of M' hâve abelian fondamental group.
If M' is irreducible, the condition is automatically fulfilled. Finally, in § 6.5,
we give a good description of the possibilities for a manifold N with % (N) ^ 0

when, in the universal RiEMANNian covering manifold Mo X M' (Mo EuCLiDean
and M' compact; this is the M' which occurs in N'), M1 satisfies the commu-
tativity conditions of Theorem 6.2.

Some parts of Theorem 3.1 do not fully use the hypothèses on N. This
leads us to define a RiEMANNian nilmanifold to be a RiEMANNian manifold
which admits a transitive nilpotent group of isometries. We prove (Theorem
4.2) that a connected RiEMANNian nilmanifold is isometric to a connected

nilpotent Lie group in a left invariant RiEMANNian metric, that the nilradical
of its connected group of isometries is the only connected transitive nilpotent
group of isometries, and that its full group of isometries is the semidirect
product of this nilradical with an isotropy group. Now let N be a RiEMANNian
manifold with universal RiEMANNian covering manifold of the form M0 X M'
where Mo is a RiEMANNian nilmanifold and M' is a compact RiEMANNian
homogeneous manifold. Theorem 4.1 provides a real analytic covering

N' E x N" X M1 -> N

of some finite multiplicity r > 0, where E is a EucLiDean space and N" is a
compact nilmanifold. While I am unfortunately unable to retract JV onto a

compact submanifold unless Mo is a EuCLiDean space (and so cannot prove
the betti numbers of N to be finite, and so cannot assert that %(N) is defined)

it is shown (Proposition 4.4) that %*(N) — %{N') is atopologicalinvariant

of N. Theorem 4.1 then states that %*(N) is an integer, that %*{N) ^ 0,
that %*{N) %(N) if Mo is a EuCLiDean space, that n^N) is finite if
X*(N) ^ 0, and that jz^N) is a finite 2-group if x*(N) ^ ° and M> is
RiEMANNian symmetric.

The "rational Euleb-Poincaré characteristic" ^* was invented by C.T.C.
Wall [10] in another context. D.B.A.Epstein suggested that I use it hère,
and gave valuable suggestions for adapting it to noncompact spaces and then
proving it well defined.

By Theorem 3.1, we mean the theorem in § 3.1. Similarly, Theorem 3.9
is the theorem in § 3.9, etc.

Added in proof : By différent methods, J. C. Sanwal has obtained the fiât
case of the fouith corollary of §4.2 and has shown that the fundamental

group of a complète flat RiEMANNian manifold is isomorphic to that of a

compact flat RiEMANNian manifold, spécial case of our Theorem 3.1.
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2. Preliminaries and notation

We will assume familiarity with Lie groups and discrète subgroups, Rie-
manifolds, and covering spaces.

2.1. Lie groups and algebras. If G is a Lie group, then Go will dénote its
identity component, © will dénote its Lie algebra, exp : © ->- Go will be the
exponential mapping, and adjoint représentation of G on © will be denoted by
"ad". If H is a Lie subgroup of G, then § is viewed as a subalgebra of ©.
If § is a subalgebra of ©, then the corresponding analytic subgroup of G is
the analytic connected Lie) subgroup gênerated by the image of § under
the exponential mapping of G.

If G and H are Lie groups and /? : H -> Aut (6?) is a continuous homomor-
phism of H into the group of automorphisms of G, then the semidirect product
G • pH (denoted G • H when there is no possibility of confusion) is the manifold
G X H with group structure (gly hx) (g2, h2) (g1 • ^(h1)g2, hjt^) G- H is
a Lie group, G and H are closed subgroups under identifications g-> (g, 1)

and h-> (1, h) (we always use 1 to dénote the group identity), and G is a
normal subgroup. The two extrême cases are when f} is trivial, so G • H is
the direct product G x H, and when (î is faithful (trivial kernel), so H may
be viewed as a group of automorphisms of G if fi (H) is closed in Aut (G).

The compact classical groups are the orthogonal groups 0(n) in n real
variables, the identity components, SO (n), the spécial déterminant 1) orthogonal

groups, the unitary groups U(n) in n complex variables and the spécial
unitary groups SU(n), the symplectic groups Sf(n) which are the unitary
groups in n quaternion variables, and the universai covering groups Spin(w)
of SO(w). Tm will dénote an m-torus. An9 Bn, Gn, Dn, G2, F^ EQ, E1 and Es
will refer both to the Cartan classification types and to compact connected

groups of those types. In boldface, thèse letters will dénote the compact
simply connected groups. For example, An SU(w + 1), Bw Spin(2^+1),
Cn Sp(n), Dn Spin(2n), and F4 is the group of isometries of the Cayley
elliptic plane.

2. 2. Discrète groups. A subgroup F of a topological group G is called
discrète if it is a discrète subset, i.e., if there is a neighborhood U of 1 e G such
that F<^ U {!}. F is called uniform in G if (F dénotes the topological
closure) GjT is compact.

Let F be a topological group and let X be a topological space. An action of
F on X is a homomorphism of F into the group of homeomorphisms of X such
that the associated map F X X-+X is continuous. We write y(x) for the
image of (y, x). The action is effective if 1 ^ y e F implies y(x) ^ x for
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some élément x c X ; the action is free if 1 =fi y e F implies y(x) ^ x for
every élément x eX; the action is properly discontinuons if every x €X has

a neighborhood which meets its transforms by only a finite number of
éléments of F.

Let F and K be subgroups of G, K closed in G. Then there is a natural
action y.gK-^ygK of F on the coset space GjK. If G is a Lie group,
or even locally compact with only finitely many components, and if K is

compact, then the action is properly discontinuous if and only if F is discrète
in G. In any case, the action is free if and only if 1 is the only élément of F
conjugate (in G) to an élément of K, and the identification space of G/K under
F is the double coset space F\G/K.

2. 3. Isometries and product structure. An isometry of a RiEMANNian mani-
fold is an automorphism of the RiEMANNian structure. If M is a RiEMANNian
manifold, then its full group of group of ail) isometries is a Lie group denoted

I(M); the connectée, group of isometries is the identity component I(M)0;
following tradition, we write J0(M) for I(M)0. M is homogeneous if \{M)
is transitive on the points of M. If M is homogeneous and connected, and if
x e M, then g -> g(x) induces difïerentiable homeomorphisms of M with the
coset spaces l(M)/K and Io(Jf)/(Io(ilf)^ K) where K {g eI(M):g(x) x}
is the isotropy subgroup of I(M) at x ; K is compact. If s el(M) has square 1

and has x e M as an isolated fixed point, then s is a symmetry to M at x; if
M is connected, s is unique because it induces — / (/ identity) on the
tangentspace Mx. M is symmetrie if it has a symmetry at each of its points.
If M is connected and symmetrie, then any two points x and y can be joined
by a broken géodésie, and the product of the symmetries to M at the midpoints
of the géodésie segments will send x to y; thus M is homogeneous.

Let M be complète and simply connected. Then [7] M is isometric to a

product Mo x M± x X Mt where Mois a EucLiDean space (the E ucLwean
factor of M) and the other Miy the irreducible factors of M, are irreducible,
i.e., are non-EucLiDean and not locally products of lower dimensional mani-
folds. This de Beam décomposition is unique up to the order of the factors.
M is homogeneous (resp. symmetrie) if and only if each of the M{ is

homogeneous (resp. symmetrie). Identifying M with Mo X X Mt and letting
I(Jfî) act on M by acting on Mt in the usual way and by acting trivially on
the other Mj9I(M) is generated by the I(il^) and by ail permutations on
sets of mutually isometric factors M^ In particular, Io (M) Io (Jf0) x

x xlo(Jf«).

2. 4. Curvature, characteristic and submanifolds. If S is a two dimensional

subspace of a tangentspace Mx to a RiEMANisrian manifold M, then in a neigh-
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borhood of x the geodesics of M through x tangent to 8 form a surface; the
sectional curvature of M at (S, x) is the Gaussian curvature of that surface
at ai. In a EucuDean space, every sectional curvature is zéro. In a compact
RiEMANNian symmetric space, every sectional curvature is ^0. In a non-
compact irreducible RiEMANNian symmetric space, every sectional curvature
is 5j 0 and some are < 0. In particular, if M is a complète simply con-
nected RiEMANNian symmetric space, then M has every sectional curvature
^ 0 if and only if every irreducible factor of M is compact.

A submanifold of M is totally géodésie if and only if every géodésie of the
submanifold is a géodésie of M, i.e., if and only if the submanifold contains

every géodésie of M to which it is tangent. If X is a totally géodésie submanifold

of M, x e X and S is a two dimensional subspace of Xx, then it is clear
that M and X hâve the same sectional curvature at (S, x). In particular,
the sectional curvatures of X satisfy any bounds satisfied by those of M.

The rank of a compact Lie group is the common dimension of its maximal
toral subgroups. If K is a closed subgroup of a compact Lie group G, then [8]
the Euler-Poincabé characteristic (in any homology or cohomology theory)
%{GjK) ^ 0, and %{GjK) > 0 if and only if rank. G rank. K.

2. 5. RiEMANNian coverings and locally symmetric spaces. A
covering is a covering n\ M -> N of connectée RiEMANNian manifolds where n
is a local isometry. It is then easily seen that the group Foîdeck transformations
of n (homeomorphisms y : M -> M with n — n • y) is a discrète subgroup
of \(M) acting freely and properly discontinuously on M. If M is simply
connected, then F is identified with the fondamental group nx (N) and N is
identified with the quotient space M/F. Conversely, if M is a connected
RiEMANNian manifold and F is a subgroup of I (M) acting freely and properly
discontinuously, then M/F admits a unique RiEMANNian structure such that
the projection M -> M/F is a RiEMANNian covering.

A RiEMANNian manifold M is locally symmetric if every x e M has an open
neighborhood which, in the induced RiEMANNian structure, admits a symmetry
at x, This is the case if M is symmetric, if M is a RiEMANNian covering manifold

of a locally symmetric RiEMANNian manifold, or if M admits a
RiEMANNian covering by a locally symmetric RiEMANNian manifold. M is

complète, connected and locally symmetric, if and only if its universal RiEMANNian

covering manifold is symmetric. In particular, M is a complète connected

locally symmetric RiEMANNian manifold with every sectional curvature ^ 0,
if and only if the universal RiEMANNian covering manifold of M is the product
of a EucuDean space and a compact simply connected RiEMANNian symmetric
space. This is the sort of manifold with which we shall concern ourselves hère.
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3. The structure theorems for locally symmetric spaces

Our main results on the structure of locally symmetric spaces of non-
negative curvature are:

3.1. Topological Structure Theorem. Let N be a complète connectée locally
symmetric RiEMANNian manifold with every sectional curvature ^ 0. Then :

1. There is a real analytic covering Nr -> N of finite multiplicity where Nr
is the product of a EucLinean space, a torus, and a compact simply connected
RiEMANNian symmetric space. This covering need not be RiEMANNian. In par-
ticular, the fundamental group nx (N) has a free abelian subgroup of finite index.

2. There is a real analytic déformation retraction of N onto a compact totally
géodésie submanifold which lifts to a déformation retraction of Nf onto the product
of its toral and compact simply connected factors. In particular the betti numbers
of N are finite for singular homology and cohomology, and the Euler-Poincaré
characteristic %(N), alternating sum of the betti numbers, is a well defined
integer. We hâve % (N) ^ 0.

3. // %(N) ^ 0, then n^N) is a finite 2-group (finite of some order 2a).

Given the first and second statements above, it is easily seen that ^(N)
must be finite when % (N) ¥=" 0, but it is a bit surprising that nx (N) must be

a 2-group. This cornes from an examination of the universal covering of N
and the form of the éléments of ^(N), and from É.Cabtan's détermination
[4] of the full groups of isometries of symmetric spaces :

3. 2. Géométrie Structure Theorem. Let M Mo x M1 x x Mt where

MQ is a EucLwean space and each Mx (i > 0) is a compact connected simply
connected irreducible RiEMANNian symmetric space with %(Mt) > 0. Let E be

a group of isometries acting freely on Mx x X Mt, let f bea homomorphism
of S into the orthogonal group of Mo, and let F be the group of isometries of M
consisting of ail y f(a) X a. Then F is isomorphic to E and is a finite 2-group,
and M/F is a complète connected locally symmetric RiEMANNian manifold with
every sectional curvature ^ 0 and Euler-Poincaré characteristic % (M/F) > 0.

// an élément of E has order 2M+1, then it induces a transformation

te,. xm) -» (rxm, x^..., xm_x)

on a product of m distinct mutually isometric factors Mi of M, where either

m 2U and r is a fixed point free involutive isometry, or m 2U~1 and (for
some n^2) each of thèse Mt is isometric to the orientedrealGrassmannmanifold
SO(4n)/8O(2n) X S0(2w), and r2 is a fixed point free involutive isometry.

Conversely, every complète connected locally symmetric RiEMANNian manifold,
with ail curvatures ^ 0 and nonzero characteristic, is isometric to a manifold
M/F described above.
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3. 3. Outline of proof. The remainder of § 3 is devoted to proving Theorems
3.1 and 3.2.

We identify nx (N) with the group F of deck transformations of the uni-
versal RiEMANNian covering M -> N. To obtain the fînite covering and the
retraction of N, we find a free abelian subgroup A of fînite index in F and sub-
mit M, A and F to various déformations. The existence of A (§3.4) is due
to L.Atjslander. The déformations of A (§3.5) are done in sufficient gene-
rality for their applications in § 4 as well as in § 3. It is then (§3.8) proved
that, if %(iV) ^0, then %(N) > 0, n^N) is fînite, and the converse of
Theorem 3.2 holds; this is done by combining the retraction and the fînite
covering. It then suffices to prove that S is a 2-group whose éléments induce
the transformations given; this is done in §§3.10 — 3.11, and is based on a
theorem (§ 3.9) that t4 has a fixed point if r is an isometry of an Mt.

3. 4. The free abelian subgroup of fînite index in n^N) will be exhibited
as a conséquence of a resuit of L.Auslakder ([2], Th. 3) which requires some
interprétation. The précise statement, slightly sharpened, is:

Proposition (L.Auslakder ([2], Th. 3)). Let D be a discrète subgroup of a semi-
direct product H ' C, where H is a connected simply connected nilpotent Lie group
acted upon (by automorphisms, but not necessarily effectively) by a compact
Lie group C Then Z>* D ^ (DH)0 is a subgroup of finite index in D, and
D* ~ A X B where A is a finite abelian group and B is isomorphic to a
discrète subgroup with compact quotient in some connected subgroup H* of H.

Proof. The fîrst two paragraphs of L. Auslander's proof ([2], pp. 279-280)
show that, after conjugation by an élément of H, D* c W ' T where W
is a connected subgroup of H and T is a torus in C which centralizes W.
For the sharpening, we replace the third paragraph of a slight variant. D*
is fînitely generated because it is discrète in the connected solvable group
WT ([5], Th. 1'), so JD*/[JD*, D*] is a fînitely generated abelian group. Thus
Z)*/[D*, D*] A' X B' where A1 is the torsion subgroup. [D*, D*] c W
because T is abelian and centralizes W ; thus the projection

/ : D* -> D*f[D*9 D*] maps A D ^ T

isomorphically onto A' \ it foliows that D A X B where B f-x(B!).
Now let g : W • T -> W be the projection and defîne H* to be the smallest
analytic subgroup of W which contains g (B). g maps B isomorphically onto
g(B),g(B) is discrète in H* because T is compact, and it is standard that
H*/g(B) is compact. Q.E.D.

3. 5. The déformation of the free abelian subgroup and the corresponding
quotient manifold is given by:
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Déformation Theorem. Let G S • C be a semidirect product of Lie groups,
let D be a torsion free subgroup of G with generating set {d1,.. dn} such that,
given d € D, there is a unique set {u^ of integers such that d d^d^2... d^n ;

suppose that D acts freely and properly discontinuously on GjC by d: gG-^dgC,
and assume that the projection of D into G lies in a torus A which centralizes

D. Write dt sta% with s% e S and ate A, choose éléments Xt in the Lie
algebra of A such that at exp(Xt), define d[® — dt • exp (— tXt)

st • exp ((1 — t)Xt) and let D{t) be the group generated by {d[f)}. Then
1. D(o) D and D™ c S.
2. If K is a closed subgroup of C, so P GjK is an analytic manifold on

which G acts by g : hK->ghK, theneach D(t) acts freely and properly
discontinuously on P\ in particular, the projections P -> PjD(t) are coverings of
analytic manifolds.

3. The maps d(p~>d(^ define isomorphisms (the "déformation isomorphisms")
of D{r) onto D{s), and thèse isomorphisms induce analytic homeomorphisms of
P/D<r> onto PjDM.

4. PjD is analytically homeomorphic to (S/D{1)) X (C/K).

Proof. The first statement is obvious. If CR. is a group relation and

.!*(«!,..., «w)= 1, then STlfa,..., dn) eA

because A is abelian, A contains the al, and A centralizes the st. But

Dr, A Œ Dr,C {1}

because D acts freely on GjC ; thus Sy?(d±,..., dn) 1 This shows that the
dt satisfy every relation satisfîed by the st ; it follows that d^ -> d% induces
a homomorphism of D{t) onto D. Every élément of D{t) has some expression
(d^)™1 (d^f"*... (d^))Un because the st satisfy every relation satisfîed by the
dt, and every élément of D has unique expression d^} d%2... d^n ; it follows
that the epimorphism D(t) -> D is an isomorphism. This gives the
déformation isomorphisms.

For the second statement, we note that D{f) c G acts freely and properly
discontinuously on G/G, if and only if D{t) c S • A acts freely and properly
discontinuously on (S • A)jA. As A is compact, and as D{t) is discrète (because
jD(1) is discrète in S, conséquence of proper discontinuity of D on GjC) and
torsionfree (because it is isomorphic to the torsionfree group D), D{t) must
be free and properly discontmuous on (S • A)/A. This proves the second

statement; the third follows because the déformations are along analytic arcs.
For the last statement, view P/D{t) as the double coset space D{t)\G/K.

Writing ^ for analytic homeomorphism, we then hâve

P/D ç* PfDM ^ (DM\8) • (GjK)

18CMHvol 37
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Now observe that (s, c) -> «se induces S X C ^0 ^ 8 • C and s-+ s-1

induces Z^XS ^ tf/D*1* ; it follows that P/D ^ (tf/D*1*) X (C/K). Ç. jE7.Z>.

3. 6. The finite covering. Identify n^N) with the group T of deck transformations

of the universal RiEMANNian covering M -» N. M Mo X If'
where -M0 is a EuciiDean space and M'is a product of irreducible RiEMANNian

symmetric spaces, for N is complète, connected and locally symmetric. As N
has every sectional curvature ^ 0, the same is true for M' ; it follows that
M' is compact because a noncompact irreducible RiEMANïrian symmetric
space has a négative sectional curvature. In particular, the iull group of iso-
metries l(M') is compact.

I(MQ) is the ordinary EucuDean group on n dim. Mo variables, and

may be viewed as a semidirect product Rn • 0 (n) where Rn is the vector
group and 0(n) is the orthogonal group. This allows us to view \{M)

I(Jf0) X I(if') as a semidirect product Rw • G where C 0(n) X I(M').
As F is a discrète subgroup of I (if), Proposition 3.4 gives a finitely generated
free abelian subgroup A of finite index in F corresponding to the group B there.

By construction, the projection of A into C lies in a torus. The condition
of Theorem 3.5 for expression of éléments in terms of generators is obvious
for finitely generated free abelian groups. A acts freely and properly discon-

tinuously on \{M)jC because C is compact and A is discrète and torsion free.
Now Theorem 3.5 shows that MjA is real analytically homeomorphic to
(MJA ' X M ' where A ' is a discrète group ofpure translations ofMo which is iso-

morphic to A Define Nf (M0/Af) X M' and recall that MjA -> M/F N
is a finite RiEMANNian covering. This proves the first statement of Theorem 3.1.

3. 7. The déformation retraction of N onto a compact submanifold is accom-
plished by a déformation of F onto another group F', followed by a /"-equi-
variant déformation retraction of M. We retain the notation F, M, M1', MQ

and A from §3.6, except that we may replace A by the intersection of its
conjugates in F, and thus assume A normal in F.

Every y c F isoftheform y0 X y' where yo€l(Jfo) and y! eI(Mr). For
a choice of origin in MQ, y0 is further decomposed into (yt, yr) where yt e Mo
indicates a translation and yr is a rotation. By construction of A, we may
choose the origin so that ôr : ôt -> ôt for every ô c A. The origin so chosen,

Mo is identified with the vectorspace Rw, and we hâve an orthogonal direct
sum décomposition Mo U + F where F is the subspace spanned by the
dt. Every yr préserves F, and thus préserves U, because A is normal in F.

Given y € F, we hâve yt yu + yv with yu e U and yy € F. If s is

a real number, define y{8) (syu + yv, yr) X y' and let F8 be the subgroup
ofï(M) generated by the yi8). It is easily checked that y->y{8) defines an
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isomorphism of F onto F8. F8 is discrète in I(M) because it contains A as a
subgroup of finite index; thus F8 acts properly discontinuously on M. Now if
y{8) has a fixed point, it must hâve finite order, whence y has finite order; it
foliows that either y 1 or y' has no fixed point; y{8) 1 because the
latter would prevent yi$) from having a fixed point. Thus F8 acts freely on M.
We now hâve a one parameter family of manifolds N8 MjF8 which are
analytically homeomorphic to N Nt. It will be clear that this isotopy of
the metric of N is the identity on a compact totally géodésie submanifold
onto which JV0 is retracted. For the proof of Theorem 3.1, then, we may
replace JV by JV0. In other words, we may assume each yt e F.

We hâve if as a RiEMANNian product U X F X M' where U and F are
EucLiDean spaces with vectorspace structure, and every y e F is of the form
yx X y2 X y' where yx is a rotation of U, y2 is an isometry of F, and yr
is an isometry of M'. Define f8: M -> M by fa(u, v, m') (su, v, m1) ; f8 is
F-equivariant because each yx is a linear transformation. Thus f8 induces a

map g8: JV -> N. This gives a déformation retraction of N g1 (N) onto
go(N). But go(N) /0(Jf)/r= (F X M')/F admits a covering by (F X
X M')/A, and, as in § 3. 7., Theorem 3.5 shows that (F X M')jA is

homeomorphic to (V/Af) X M' where A' is the group of translations consisting of
the ôt. VjAf is a torus, compact by définition of F; thus ^0(^) is compact.

We hâve now exhibited a déformation retraction of N onto a compact
submanifold. As singular homology and cohomology satisfy the homotopy
axiom, the betti numbers of N are finite, and the Euler-Poincaré charac-
teristic %{N) is a well defined integer, in those théories.

Observe that the déformation of F did not move any points of g0 (N). It is

now clear that go(N) is totally géodésie in JV, for it is the image of a totally
géodésie submanifold V X M1 of M.

3. 8. Finiteness of the fondamental group. We hâve seen that the
déformation retraction <70(^) admits a covering of some finite multiplicity r by
T x M', where T is a torus with nx(T) isomorphic to the subgroup A of
finite index in F. As go(N), T and M1 are compact manifolds, we hâve

Now suppose x(N) ^ °- Then x(T) ¥" 0 =£ %(M'). %(T) ^ 0 means that

T is a single point, so #(JV) — %{M') and A {1}. As J has finite index

in F9F=n1(N) must be finite. Now %(M') ^0 implies %(M!)>0 because

M' is a quotient space of a compact Lie group \(Mr) by a closed subgroup
[8]; thus %(N)>0.
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The second statement, and the finiteness assertion of the third statement,
of Theorem 3.1 are now proved.

Suppose again that #(JV) 7^ 0. As F is finite, the y0 of § 3.7 form a finite
group; it is classical that some point of Mo must be fixed under every y0.
Changing the origin in M0, F is the group of isometries of M consisting of ail
/(<r) X a, as a runs through a finite group Z of isometries acting freely on
M', where / is a homomorphism y' -> y0 of Z into the orthogonal group of
Mo. Now %(M')^0, so x(Mi) ^0(i>0) where M' Mx x X Mt
is the décomposition of M1 into irreducible factors. It foliows that x(^t) > 0

[8] and every group of isometries acting freely on M'is finite [11]. This proves
the converse and finiteness condition of Theorem 3.2, and that the manifold
MjF there is a complète connected locally symmetric RiEMANNlan manifold
with every sectional curvature ^ 0 and % (M/F) > 0.

To complète the proofs of Theorems 3.1 and 3.2, now, we need only prove
that every élément of the group Z of Theorem 3.2 has some order 2U+1 and
induces a transformation of the type exhibited there.

3. 9. In order to study the éléments of Z, we need some information on
fixed points :

Fixed Point Theorem. Let x be an isometry of a compact connected simply
connected irreducible RiEMANNian symmetric space 8 with #($) ^ 0. // t2
has no fixed point, then S is isometric to a real Grassmann manifold
SO(4Jfc)/SO(2fc) X S0(2&), &^2, andr4" has a fixed point.

Proof. Let K be an isotropy subgroup of G I (S). The identity component
KQ contains a maximal torus of Go because #(6ro/iTo) — %(S) ^ 0, by Sa-
melson's theorem [8], so every élément of Go is conjugate to an élément of Ko.
In other words, every élément of Go has a fixed point. Let t be the image of

t in G/Go ; rm has a fixed point if tm 1.

Suppose that t2 has no fixed point. Then G/Go has an élément of order
greater than 2. It follows from Cartan's construction of I (S) [4] that

S S0(4&)/S0(2fc) x
where k ^ 2; if, further, G/Go has an élément u with vï ^ 1, then k 2

and u has order 3. But if tz 1, then r3 e Iq (8) Go, so t3 is homotopic
to the identity. It is known that r must be fixed point in this case ([14],
§§ 5.5.9 —5.5.10), so r2 has a fixed point. This contradicts tB 1. The only
other possibility is that tf4 1 and t4 has a fixed point. Q.E.D.

3.10. 2-groups. We will see that F and 27 are 2-groups.

If g is an isometry of M' Jfj_ X X -3f<, then we hâve décompositions
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M' X1 x x Xu, g g± x X gu

where gt is an isometry of Xt which cyclically permutes its irredueible factors.
Thus, under appropriate isometric identifications, we hâve Xt St X X 8t
(v% factors) with 8t irreducible, and

9t : K> • • • > **)-*(*.«„> *i> • • • > svt-i)

gives the action of gt on Xt, for some isometry rt of St. Now if g has order m,
then each vx must divide m, say m vtmt; gVt induces the transformation
x% X X rt on Xt, and r™* 1.

Suppose now that <7 has odd order m, and retain the notation above. Each

rt must hâve odd order, so rt is a power of %\. As ^(iW7) 7^ 0, we hâve
X(St) ^ 0, and Theorem 3.9 shows that each rt has a fîxed point st€ St.
Define xt (s4, 5t, st) e Xt ; then gt(xt) xt It follows that

n r X (X-l, X2, • • Xu)
is a nxed point ior g.

If F is not a 2-group, then it has an élément y of odd order m > 1. y
f(a) X er where cr has order mini The considérations above show that a

has a fîxed point, contradicting the hypothesis that S act freely on M'.
This proves that F and Z are 2-groups.

3.11. The form oî the group éléments now cornes easily Let 1 =£ </ eT.
Then <7 has some order m 2W+1 t& ^ 0. Retain the notation of § 3.10 for
the décompositions of M' and g. Then m% 2ai and vt 26i where
a% -f 6^ u + 1

• As <72W has no fixed point, some gf1 has no fîxed point.
For this index i, it is easily seen that bt^u, say u bt + w, whence

gf Tf X X Tf1". It follows that r* has a fîxed point on 8, if and only
if k is a multiple of 2W+1; by Theorem 3.9, w 0 or 1, and 8t is isometric
to S0(4?i)/S0(27i) x S0(2w) (n^ 2) in case w 1.

This complètes the proof of Theorems 3.1 and 3.2. Q.E.D.

4. RiEMANNian nilmanifolds
and a structure theorem for locally homogeneous spaces

The proof of some parts of Theorem 3.1 do not make full use of the
hypothèses. We will prove the foliowing extension to locally homogeneous spaces.

4. 1. Theorem. Let M -> N be a universal RiEMANNian covering where

M Mo x M', a nilpotent Lie group acts transitively by isometries on Mo,
and M' is a compact RiEMANNian homogeneous manifold. Then there is a real

analytic covering N' -> N of some finite multiplicity r > 0 where N'
E X N" X M', N" is a compact coset space of a nilpotent Lie group by a
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discrète subgroup, and E is diffeomorphic to a EucLwean space ; if Mo is iso-
metric to a EucMDean space, ihen N" is a torus and there is a real analytic
déformation retraction of N onto a compact totally géodésie submanifold which
lifts to one of the déformation retractions of N' onto N" x M'. In particular,
the Euler-Poincaré characteristic %(N') of singular theory is a well defined

integer; now %*(N) — ^(iV7), the so called rational Euler-Poincaré

characteristic of N, is a well defined non-negative integer, and x*(N) x(N) if Mo is
EucLwean.If %*(N) ^0, thenthefundamentalgroup ^(N) isfinite. If %*(N) ^0
and M' is RiEMANNian symmetric, then 7tt(N) is a finite 2-group.

I am indebted to David B. A. Epstein for drawing my attention to C.T.C.
Wall's rational Exiler characteristic [10] and for suggesting a way of adapting
it to this context. § 4.4 is based on conversations with him.

4. 2. RiEMANNian nilmanifolds are defined to be RiEMANNian manifolds
which admit a transitive nilpotent group of isometries. The structure of Mo
is clarified by:

Theorem. Let B be a positive definite bilinear form on the Lie algebra Q of
a connected nilpotent Lie group S, let K be the group of ail automorphisms of
S which préserve B, and let X be S with the left invariant RiEMANNian
metric derived from B. Then X is a connected RiEMANNian nilmanifold, I (X)
is the semidirect product S • K acting by (s, k) : x -> s • h (x), S is the nilradical
(maximal connected normal nilpotent subgroup) of Iq(X), S is a maximal
connected nilpotent subgroup of I0(-2l), and S is the orily transitive connected nil-
potent subgroup of 1{X). Conversely, every connected RiEMANNian nilmanifold
is isometric to one of the manifolds X described above.

Corollary. // X is a connected RiEMANNian nilmanifold and x € X, then
the RiEMANNian structure on X defines a unique structure of nilpotent Lie
group in which x 1.

Corollary. Let n: Y->X be a RiEMANNian covering where X is a
RiEMANNian nilmanifold, and let y € Y, Then Y is a RiEMANNian nilmanifold.
Endow Y (resp. X) with its canonical nilpotent Lie group structure for which

y l (resp. n(y) 1). Then n is an epimorphism of Lie groups, and the deck

transformations of n are left translations by the éléments of the kernel of n.

Corollary. Let F be the group of deck transformations of a universal
RiEMANNian covering X -> Y where X is a RiEMANNian nilmanifold. Then thèse

are équivalent :

1. Y is a RiEMANNian nilmanifold.
2. Y is a RiEMANNian homogeneous manifold.
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3. F consisté of isometries of constant displacement.
4. F consists of isometries of bounded displacement.

Corollary. Let n : X -> Z be a RiEMANNian covering where Z is compact and
X is a RiEMANNian nilmanifold. Then n factors into RiEMANNian coverings

<x:X-+ Y and (i: Y-+Z where Y is a compact nilmanifold and (} is of
finite multiplicity; Y is a RiEMANNian nilmanifold if and only if it is isometric
to a flat torus.

We complète § 4.2 by deriving the Corollaries from the Theorem; the Theo-
rem will be proved in § 4.3, and we will then go on to the proof of Theorem 4.1.

The first Corollary is clear because S c I(X) is unique and acts simply
transitively on X in the Theorem. For the second, we give X its Lie structure
with 7i (y) 1, let Sa I(X) dénote the left translations, and lift the action
of 8 to Y after backing ofif to the universal covering group of S.

The third Corollary is a little more complicated. It is clear that (1) implies (2)
and that (3) implies (4), and it is known [12] that (2) implies (3); thus we need

only prove that (4) implies (1). Choose x e X and give X the nilpotent Lie
group structure 8 in which x 1. In the notation of the Theorem, we must
prove every élément of F to be central in S ; then S induces a transitive
nilpotent group of isometries of Y, and (1) is proved.

Let g el(X) be an isometry of bounded displacement, g (s,k) with
s e 8 and k e K in the notation of the Theorem. As K is compact, there is

a compact set C c 1(X) with hgh^tC for every hel(X); h (t*1, 1)

gives (t*1 - s • k(t), k) e C, and it follows that S has a compact set which
contains t'1 • k (t) for every t e S. The exponential map exp :<5->8 is a

homeomorphism and k is linear on © ; it follows that k 1 because the linear
isotropy représentation of K is faithful. Now g (s, 1). Every (tst"1, 1) € C,
so the closure of the conjugacy class of s in 8 is compact. Let T be the centralizer
of s in S; now 8/T is compact. Let P e S with exp(P) s, and suppose
Q e S ; it is easily seen that [P, Q] 0 if and only if s commutes with exp (Q) ;

thus T is connected. It follows that S/T is homeomorphic to a EucLiDean space.
As SjT is compact, we must hâve 8 T; thus s is central in 8. This
complètes the proof of the third Corollary.

For the fourth Corollary, let Z be the group of deck transformations of the
universal RiEMANNian covering jj, : W -> Z and let A be the deck
transformations of v: W-+X. L.Auslandeb, has proved [1] that F Srs 8w
has finite index in Z; as A a E and we hâve just seen A c 8w (for A is
central in 8w), we hâve A c: F. Now define Y W/F, and the existence
of oc and (I is clear. If F is a RiEMANNian nilmanifold, then Y 8w/F is a

group, and so Sw/F is a torus. This proves the fourth Corollary.
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4. 3. Prooî oî Theorem 4. 2. Let W be a connected RiEMAKisrian nilmani-
fold. There is a transitive nilpotent group of isometries of W ; its identity
component T is transitive. î7* will dénote the closure of T in 1(W) ; T* is

nilpotent and transitive. Write W as a coset space T*jZ where Z is the isotropy
subgroup of î7* at w e W. 2 is compact because î7* is closed in I(W) ; thus
Z is contained in a maximal compact subgroup Z* of î7*. Z* is connected
because î7* is connected, and a compact connected subgroup of a nilpotent
Lie group can be seen to lie in the center by looking at the universal covering
group and its exponential mapping; thus Z is central in î7*. T* acts effectively
on W; it foliows that Z {1} and T* is simply transitive. As T c T*
and î7 is transitive, this proves that T is closed in Ï(TF) and simply transitive
on W; it also proves that T is maximal among the connected nilpotent sub-

groups of Iq(W).
Suppose that we can prove T to be contained in the nilradical N of Iq W).

Then T N, so T is normal in I(TF). If H is the isotropy subgroup at
w e W, then j?^ T {1} because T7 is simply transitive, so I(TF) is a semi-
direct product TH. The représentation of Jï on the Lie algebra % is
équivalent to the linear isotropy représentation of H on the tangentspace Ww,
and is thus faithful; now H may be viewed as a group of automorphisms of î7.

Identify T with W, viewing î7 as a Lie group with left invariant RiEMANNian
metric specified by some positive definite bilinear form A on %. Then H
préserves A, and must contain every automorphism of T which préserves A
because it contains every isometry of W which fixes w. Writing \{W) T H,
now, the action on T is necessarily (t, h) : v -> t • h (v). As the manifold X
of Theorem 4.2 is a RiEMANNian nilmanifold under the group S there, this will
prove Theorem 4.2.

We now need only prove T a N where N is the nilradical of Iq{W). Let
n : W -> W be the universal RiEMANNian covering; we can lift the action of
T on W to the action ofa covering group T'of î7 on W1, and î7'will be transitive
on W. Let F be the group of deck transformations of the covering, let N'
be the nilradical of Io W), and let P be the normalizer of F in I W!). n induces

a homomorphism n* of P onto I(TF) with kernel F, and T' c: P by construction.

If T1 c Nr, then T' c P ^ Nr, and the latter lies in the nilradical
N" of P. It is clear that jz*(N") N and tc*(î7/) î7; it will follow that
T a N.

Now we assume W simply connected, and need only prove T c N. Let
I£ be the radical (maximal connected normal solvable subgroup) of I0(TF).
Then Iq(W) 8 • R where 8 is a maximal connected semisimple subgroup.
Let p : Io( W) -> ad (8) be the composition of taking quotient by R with the
adjoint représentation of 8/8 ^ R. Every élément g eI(W) has unique and
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continuous décomposition g th, t eT and h e H — isotropy at w\ thus
I0(W)/T is compact; it follows that a,d(S)lp(T) is compact. As p{T) is nil-
potent and ad (S) is a product of centerless simple Lie groups, ad($) must
be compact. This proves that S is compact.

The identity component Ho is an isotropy subgroup and a maximal compact
subgroup of Iq(W) ; thus Ho S • Hf where H1 (H ^ R)o is the identity
component ofthecenterof i/0. Let/S:I0(Tf )->lQ(W)/N= U. Nr^H is a compact
subgroup of N and is thus in a maximal compact subgroup of N ; this maximal
one is central in N, thus unique, and thus central in Iq(W); it follows that
Nr,H {l} so U SRr where Rf RIN. R' is abelian because [R, R]
is nilpotent and normal and thus in N ; it follows that R' ~ H1 X F where F
is a vector group stable under S. Let M f5~x F). ikf is a closed normal
subgroup of Iq(W) such that \{W)jM is compact and Io(W) is semidirect product
MH0. Thus dim. M dim.I0(TT) - dim. Ho dim. T. Let

oc:I0(W)->I0(W)/M.

TM is closed in Iq(TF) because î7 and M are closed and ikf is normal. Thus
<x(T) (TM)jM T/î7^ Jf is a torus. On the other hand, T ^ M is con-
nected because it is an analytic subgroup of T. As T is connected, simply
connected and nilpotent, it follows that oc (T) T/T r\ M is homeomorphic
to a EucLiDean space. Thus oc(T) — {!}. This proves T c M. As they are
connected groups of the same dimension, they must be equal. In particular,
T is normal in Iq(W) This proves T c N, completing the proof of Theorem
4.2. Q.E.D.

Remark. Theorem 4.2 shows that the notion of RiEMANisrian nilmanifold
is but a mild generalization of the notion of RiEMANNian homogeneous mani-
fold of constant curvature zéro. The essential part of the proof was exhibiting
of F above. This was essentially done by reducing to the case of constant zéro
curvature.

Remark. One might define a RiEMANNian solvmanifold to be a RiEMANNian
manifold which admits a transitive solvable group of isometries, but the
Iwasawa décomposition shows that this notion is not very restrictive. For
example, a RiEMANsrian symmetric space with every sectional curvature <£ 0

is a RiEMAKNian solvmanifold.

4. 4. Rational Euler-Poincaré characteristic. Ail spaces are connected,

locally arcwise connected, locally simply connected, and with a basepoint
which will generally not be mentioned. Let G be the family of finite G W

complexes, the family of spaces homotopy équivalent (respecting basepoints)
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to an élément of <?, and G* the family of spaces which admit a finite covering
by an élément of G'. Given X € G, we hâve the Euleb-Poincaré charac-
teristic (of singular theory) % (X) % Y) where X ~ Y e G.

Proposition. // Z e G*, so Z admits a covering of some finite multiplicity

r > 0 by some X e Cr, ihen %* {Z) — %(X) is a well defined rational number,

which we wïll call the rational Euler-Poincaré characteristic of Z. If Zx and

Z2eG*, then x*(ziX Z2) X*(Zi)X*(Z2)- If ZxeG* admits a t-fold
covering by a space Z2, then Z2e(?* and %*{Z2) t%*(Z^).

The main step in the proof is :

Lemma. Given a finite covering g : (U, u)^- (X, x) and a homotopy
équivalence h : (X, x) -> Y, y) of spaces with basepoint, let a : (F, v) -> Y, y) be

the covering with anx( V, v) hgnx{JJ,u). Then there is a homotopy équivalence
b: (U, u) -> (V, v) which covers h.

To prove the Lemma, one defines 6 by b(u) v and by defining 6 to cover
h along any arc starting at u which is the lift of an arc starting at x ; 6 is well
defined because of the condition on fundamental groups. Let h' : Y, y) -> (X, x
be a homotopy inverse to h, and let bf : (F, v)-> (U,u) be the map covering
h', defined from h' as b was defined from h ; it is easily seen that b' is a homotopy

inverse to b.

Proof of Proposition, To see that #* (Z) is well defined, choose z *Z and rrfold

coverings /t- : (X{, a^) -> (Z, z), Xt- € G* ; we must prove — x (%i) ^ — X (%*) •

S{ ftTiiiXi, x^ is a subgroup of finite index rt in nx{Z, z) ; thus S 8^82
is a subgroup of some finite index sxrx s2r2 in nx{Z, z). This gives srfold
coverings gi : (i7t-, ^)-> (Xif xx) with /t^t^i(ï7t-, u{) S. We hâve homotopy

équivalences h{ : (Xt., x{) -> yf, i/J with Y^ e (?; if a^ : Ft, vî)->( Ft-, y{) are
the 5t-fold coverings with a^ Ft-, vt) A,-^^ Î7t-, %), then it is obvious that
F,, c and the Lemma gives homotopy équivalences bt- : (?7t, u{) ~> (Fi? vt).
Thus U^G' and ^(I/J «,*(-£,). Now f^: (Ui}u€)-> (Z,z) are
coverings with figiTt^Ui, Ui) S; thus ^ is homeomorphic to Î72; it foliows

that *x^(Zx) =s2%(X2). Dividing by r^ r2s2, we hâve — x(Xt) — ^(X2),
i 2

and %*(-Z) is well defined. The other statements follow easily from the cor-
responding statements in G, but we must use the Lemma to prove Z2 c G*
in the last statement. Q. E. D.

4. 6. Prool of Theorem 4.1. Let F be the group of deck transformations
of the universal RiEMANNian covering M MQ X M' -> N of Theorem 4.1.
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Mq is a connected simply connectée! RiEMANisrian nilmanifold ; the same state-
ment foliows for each of its irreducible factors, so thèse irreducible factors are
homeomorphic to EuCLiDean spaces by Theorem 4.2. As M1 is compact, none
of its irreducible factors can be isometric to an irreducible factor of Mq Thus
1{M) =I(M0) X I(M'). Theorem 4.2 shows that I(M0) is a semidirect pro-
duct 8 - K where 8 is a connected simply connected nilpotent Lie group
and K is compact. This allows us to view I{M) as a semidirect product 8 • G

where C K X I(Mr) is compact. Proposition 3.4 now provides a torsionfree
subgroup A of fînite index in F, an analytic subgroup 8f c S, and a toral
subgroup T c C which centralizes S', such that A c Sf • T and 8'jA' is

compact where A' is the projection of A on 8'.
We now need

Lemma. Let D be a discrète subgroup of a connected simply connected

nilpotent Lie group U with UjD compact. Then D is torsionfree and has a
generating set {dx,..., dn} such that, given d e D, there is a unique set {v%}

of integers with d dji d^... dvn^.

Proof of Lemma. D is torsionfree because U is torsionfree. Let r be the length
of the lower central séries of U; let Z be the center of U. D ^ Z is the center
of D because an automorphism of U is trivial if and only if it is trivial on D.
As D is discrète, it foliows that DZ is closed, so the image ofZ in U/D is closed,
whence Z/(D <~s Z) is compact. Let {rf1?. da} generate the free abelian

group D r> Z. By induction on r, we hâve a generating set {d'a+ly d'n)

of the requisite sort for the group Dj(D ^ Z) in U/Z. Let da+t be any
élément of D mapping onto dra+l. Q. E. D.

The Lemma shows that A, being isomorphic to A' under the projection of
Sr • T onto S', satisfies the conditions on generators of the discrète group
of Theorem 3.5. The projection of A on C lies in the torus T, and the action
of A is free and properly discontinuous on (S • G)\C because A is discrète and
torsionfree while C is compact. Thus MjA is analytically homeomorphic to
MjA ' by Theorem 3.5 .This provides the finite real analytic covering

Nf MIA'-+Mir=N
N' (S/A') X M', and SIA' is homeomorphic to E X {S'/Af) where E
is homeomorphic to a EucLiDean space. Let N" Sf/Af, and the décomposition

N E X N" X M1 is exhibited.
Let r be the multiplicity of the covering Nr -> N. If F is infinité, then Ar

is nontrivial and [6] %{N") 0. Thus X*{N) j%{N') ~x(N")x(Mf) 0.

If F is finite, then the projection of F on l(M0) must hâve a stationary point
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because the maximal compact subgroups of I(M0) are isotropy subgroups;
thus F projects isomorphically onto a subgroup E oîl(M!) which acts freely
on M'. If t is the common order of F and 27, then M1 -> M'JE is a covering

of multiplicity t. We hâve %(M'JE) —-%(M') because M' is compact,

whence t divides %{M'). Now X*(N) jWj (ikf)(Jf7)
is an integer ^ 0.

We hâve proved that x*ffl) is an integer ^0 and that %*(JV) ^ 0

implies finiteness of ^(iV). If %*(iVr) ^ 0 and M'is RiEMANNian symmetric,
then nx(N) is a finite 2-group as in § 3.10. Similarly, the retraction of N
when Mo is EucuDean is exhibited as in § 3. This complètes the proof of
Theorem4.1. Q.E.D.

5. Classification in the irreducible case

We will classify (up to global isometry) the complète connected locally
irreducible locally symmetric RiEMANNian manifolds of nonzero characteristic
and ail curvatures ^ 0. This is the first step in implementing Theorems 3.1,
3.2 and 4.1.

5.1. The candidates for considération are not numerous:

Theorem. Let 8 be a compact connected simply connected irreducible Rie-
MANNian symmetric manifold wiih %{S) ^ 0, and suppose that S has a fixed
point free isometry. Then S is a Grassmann manifold, 8O(2n)l\J(n) with

n>2, Sp(n)/U(^) with n>l, E7/47, or

Remark, Hère A7 is a subgroup SU(8)/{=1= 1} in the compact simply
connected exceptional group E7, and E6-T1= (E6 X T1)/^, z, z2} where
T1 is a circle group and z (z!, z"), each component of order 3 and zr central
in E6. Grassmann manifold means real, complex or quaternion Grassmann
manifold, and we use oriented subspaces for real Grassmann manifolds.

Proof. Let K be an isotropy subgroup of G 1(8). Both groups are
compact, and rank. K rank. G because #($) ^ 0. In particular, every élément
of Go has a fixed point on S. Thus we need only examine the cases where
G =£ Go. According to Cartan [4], thèse are, besides the ones mentioned in
the statement of the Theorem, only E6/{SU(6) X SU(2)/discrete} and
E6/{SO(10) x SO(2)/discrete}. We will check that, for both of thèse spaces,

every isometry has a fixed point. Theorem 5.1 will then be proven.

5.2. Let if be a symmetric space E6/{SU(6) x SU(2)/discrete} or
E6/{S0(10) X SO(2)/discrete}, and let K be an isotropy subgroup of G=I(M).



On locally symmetric spaces of non-négative curvature 285

Then K Ko^ocKo and G Go ^ ocGQ where conjugation by oc induces
outer automorphisms both on Ko and GQ. For conjugation by oc is outer on Ko
by construction of I(M) [4]. Now let n : E6-> Go be the projection; the kernel
D of n is the center of E6) cyclic of order 3, and n~x(K^ is the centralizer of
an élément s e E6 with s2 e D. As D has odd order, we may assume s2 1.

It follows that Ko is its own normalizer in Go. If conjugation by oc were inner
on GG, it would be inner on Ko ; this it not the case.

Now let A and B be the centralizers of oc in Go and if0, respectively. Checking
both cases, we see that both A and B hâve rank 4. It follows that B contains
a maximal torus T of A.

Let </ c G. If (7 e Go, then we know that <7 has a fixed point because rank.K=
=rank. G. If g $ Go, then geocGo. Then, if F is a maximal torus of ^4,

hgh'1 eocV for some Ae60 ([9], Th. on p. 57). Let V be the maximal torus
T above. Then F c Zo, so hgh'1 eocK. This shows that g has a fîxed point,
proving Theorem 5.1. Q.E.D.

5. 3. Space forms of Grassmann manifolds. Theorem 5.1 tells us which
spaces should be studied in order to fînd the groups A of isometries acting
freely on a compact irreducible simply connected symmetric space S with
%(S) =£ 0. Classification of thèse groups A up to conjugacy in 1(8) is the same
as classification of the space forms 8/A of S up to isometry. In [13] we solved
the complicated case—the case where S is a Grassmann manifold. For the
convenience of the reader, we will recall the results.

Let F be a field R (real), C (complex) or H (quaternion), and let Fn dénote
a left positive definite hermitian vectorspace of dimension n over F. If 0<q<n,
then the unitary group XJ(n9 F) of Fn acts transitively on the set Gqn(F)
of g-dimensional subspaces (oriented if F R) of F*. We exclude Glj2(B.)
and G24(R); then Gg>n(F) has a unique (up to a scalar multiple) U(%, F)-
invariant RiEMAKNian metrie, and is always envisaged with that metrie;
it is simply connected and RiEMANisrian symmetric, and has topological
dimension q(n — q)r where r is the dimension of F over R. The characteristic
%(GQfn(Fj) ^ 0 except when F R and q(n — q) is odd.

Io(G<?}n(F)) is tne group of motions induced by \J(n, F)o (which is S0(n),
U (n) or Sp (n)) If q n — q, we hâve an isometry f} given by orthogonal
complémentation (and consistent with orientation if F R). In any case,

we use fi to assume q even if q(n — q) is even and F R. If F C, we hâve

an isometry oc induced by conjugation of C over R. If F R, we hâve an
isometry co given by reversai of orientation. Let gv(0 ^ v ^ n) be the

isometry induced by I "~~v j\ e U(n, F). If n 2m, let & be the isometry
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be theby (_ ™\ €ÏJ(n, F). If F C, let hv(0^v^

isometry induced by I n~v
J €\](ny(j) where a exp(7iV' — Ijri). Let

Zim dénote the cyclic group of order m. Now the space forms of Geassmann
manifolds of nonzero characteristic are classified ([13], Theorems 1, 2, 3) by:

Theorem. Let A be a group of isometries acting freely on G^n(F), where

q(n — q) is even (so we may apply fi and assume q even)if F R. // A ^ {1},
then A is conjugale in I(Gff>w(F)) to one of the groups:

F

H

C

C

C

R

R

R

R

R

group

{1, ock}

{l,œ}

{l,a>k}

{!,/«

{ï./S&ï-i,*», <»/fy2t,-i}

isomorphic to

z2

z2

z2

z2

z2

z2

z2

Z2 x Z2

z4

conditions

2q n,O^v <q
q and w—q odd

2q=n, 0^2v<q
2q=n, l<^2v-l<q

none

n even

2gr=n, 0^2v<q

2q=n, 0^2v<q

2q=n, l^2v—l<q

Each of thèse groups acts freely on 6a W(F), and any two distinct ones are not
conjugate in I(6ff>w(F)).

6. 4. The space forms of S0(4w)/U(2?i) are given by:
Theorem. Let M be the RiBMANNian symmetric manifold S0(47i)/U(2n),

n > 1, and let gv and kt c 1^ (M) be the respective isometries induced by the

éléments (£-*_JJ and diag. {(J J),..., (_J J) ; (J "J)} o/ S0(4»).

Tfe Aai?e I(itf) ^(M) ^ x • Io(^) wAere r w central, t2 1 amZ r (^(If).
l/e£ Zl 6e a nontrivial group of isometries acting freely on M. Then A is conjugate
in l(M) to one of the n groups {l,Tjru}, 0 ^ u<n, or to {l.rJ^}. Con-

versely, thèse groups act freely on M and are mutually non-conjugate in I (M).

Proof. Let O I(M). We hâve a point p € M at which the symmetry
is given by «s ± diag. {(_} J),...,(_? J)}. Let Z be the isotropy subgroup
of G at p. Then <?0 80(én)/{± /}, Zo U(2»)/{± /}, G OQ^a'G0



On locally symmetric spaces of non-négative curvature 287

and K Ko ^ oc • Ko where conjugation of 00 by oc is the same as conjugation
by a ± diag. {1, — 1 ; ; 1, — 1}. Observe that aeG0, define r oca,
and note that the first statement is proved.

Let h € O0. Then rh has a fixed point on M if and only if urhu~x ock

for some ueG0 and keK0. As urhw1 ruhvr1 ocauhvr1, this is

équivalent to auhu-1 le, i.e., to h being <?0-eonjugate to an élément of
a^T0. If primes dénote representing matrices, we observe that af anticommutes
with s' and that U(2%) is the full centralizer of s' in S0(4%). Thus rh has a
fixed point if and only if some SO (4%)-conjugate of h' anticommutes with sr.

Suppose further that h2 1. Then h' has square ± / • Suppose first that
h'2 I; then h' is conjugate to some g'v, and we may assume v 5j n because
h' may be replaced by its négative. Il rh has a fixed point, then sr must
exchange the eigenspaces of +1 and of — 1 for some conjugate of h', and it
foliows that v 2n. On the other hand, if v 2n, then h' is conjugate
to a1 and it follows that rh has a fixed point.

Now suppose h'2 — /. Thus h1 is S0(4n)-conjugate to &{ or to s'.
Observe that &i and s' are not conjugate in S0(4w), even though they are
conjugate in 0(4%). If rh has a fixed point, then we may conjugate and assume
that h' anticommutes with s'. Now s' and h1 generate a quaternion algebra,
and it is easily seen that they are S0(4?i)-eonjugate. On the other hand, if h'
is conjugate to sf, then we may assume that they generate a quaternion
algebra; this done, they anticommute and rh has a fixed point. Thus rh is
fixed point free if and only if h' is S0(4w)-conjugate to h[.

A has at most one élément in each component ofl(M). As A ^ {1}, it
follows that A {1, rh} where (rh)2 rhrh r2h2 h2 1, h € Go. The
Theorem now follows. Q. E. D.

5. 5. The space forms of S0(4w + 2)/XJ(2n + 1) are given by:

Theorem. Let M be the RiEMANNian symmetric manifold

Then I(M) 0(4% + 2)/{± /} and we hâve isometries hv= ± /^4w+2-»^ ° \

of M. Every nontrivial group of isometries acting freely on M is conjugate in
I (if) to one of the n groups {1, A2w+1}, 0 ^ u < n. Conversely, thèse groups act

freely on M and are mutually non-conjugate in \(M).

Proof. M has a point p at which the symmetry is given by

»=±diag.{(_ïJ),..., (_ÎJ)};

let K be the isotropy subgroup of G l(M) at p. Then Go S0(2m)/{±/}
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and Ko U(m)/{± /} where we define m — 2n + 1. G -= Go ^ oc • (?0 and
K Ko ^ oc • Ko where conjugation of Go by a is the same as conjugation by
a ± diag.{l, —• 1; ; 1, — 1}. As this conjugation is an outer auto-
morphism of Go (because m is odd) we may identify oc with a, viewing G as

0(2m)/{±I} and K as {U(m) ^ a • U(m)}/{± /}. This proves the first
statement.

Given <7 cl (M), g' will dénote one of the two matrices in 0(2m) repre-
senting g. If hv (v odd) has a fixed point on M, then hfv is conjugate in
0(2ra) to an élément h" a/kl for some &'€U(m), whence s'h"s'-1 — h".
This shows that s' exchanges the eigenspaces of + 1 and of — 1 for A", proving
that v m. It foliows that the groups {1, h2u+1} (0 g u < n) act freely on
M. As they are obviously mutually nonconjugate, the converse of the second
statement is proven.

Let A be a nontrivial group of isometries acting freely on M. As every
élément of GQ has a fixed point, A {1, g} with det. g' — 1. ^2 1

implies g'2 ± /, whence <7'2 + / because det. gr' —- 1, so gr is
conjugate to some A,, (t; odd). We may take v^m because hv is conjugate to
h2m_v, and then v < m because g is not conjugate to a. The second statement
follows. Q. E. D.

5. 6. The space forms of Sp(w)/U(?i) are given by:
Theorem. Let M be the RiEMANNian symmetricmanifoid Sp(n)/\J(n),n> 1,

let Sp(n) be viewed as the group of ail gelJ(2n) suchthat gJtg J= I f n|

and let gv cMJf) &e ^e isometry induced by diag. {/„_„, — Iv, In-V, ~Iv}e8j)(n).
We hâve 1(M) \{M) ^ x • \(M) where x is central, x2 1 and x $ Iq(M)
Let A be a nontrivial group of isometries acting freely on M. Then A is conjugate

fn -4- il n—-— groups {l,r<7v}, 0^v<—. Conversely, thèse

groups act freely on M and are mutually non-conjugate in I (.M).

Proof, Let G=I(M). Then Go Sp(n)/{±/} and

o

is the symmetry at some p e M. Let ^ be the isotropy subgroup of G &t p.

Then iT0 U(n)/{±/} where U(w) consists of ail I t,A for which b is

a,n n X n unitary matrix, K K0^>oc- Ko and G GQ^oc Go, where

conjugation of GQ by # is the same as conjugation by ± J • As ± J € Go, the
first statement is proved by setting x oc • ± «/") •
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Let he Go. As in § 5.4, rh has a fixed point on M if and only if h is Go-

conjugate to an élément of (± J) • KQ. Suppose that h2 1, and let primes
dénote representing matrices. If h'2 — /, then h' is Sp(w)-conjugate to J,
whence rA has a fixed point. Now suppose h'2 /. Then A is conjugate

to some gv. If g'v is conjugate to Jk\ kf I then / (J&')2

A J shows *6 —6, whence Jkr I ^1. This
\ 0 — 6 • fo~7 \ — 6 0 /

last is conjugate by I n ,A e \J(2n) to I I ; it follows that v ~ by

counting eigenvalues. On the other hand, if v ==~, then it is not difficult to

see, using the Weyl group, that h is 6?0-conjugate to (± J) • i for every

k c Ko such that &' I „ __,_ J and *6 — 6.

The Theorem now follows. Q. E. D.

5. 7. The space forms of E7/(A7 or E6 • 771) can be described, as in §§ 5.4
— 5.6, in terms of the éléments of square 1 in the group ad(E7) E7/<7 where
G is the center of E7. Thèse éléments are known :

Lemma (É.Caktan [3]). The group ad(E7) has éléments 1 —sEl, sAl,
8EQ x t1 an^ 8Da x a< °f square 1 where the centralizer of sH in ad(E7) is of
Gartan classification type H ; thèse four éléments are mutually non-conjugate in
ad(E7) and any élément of square 1 in ad(E7) is conjugate to one of them.

Complément to Lemma. Let n : E7->ad(E7) be the projection and let
s'H e n~1(sH). Recall that G Ker. n {1 z} cyclic order two. Then (srErj)2

(46 X Alf - 1 and {srAlf (46 x Ti)2 z.

Proof. The Lemma is Cartan's classification of RiEMANNian symmetric
spaces M with 1^{M) ad(E7).

Let Z be the identify component of the centralizer of sH in ad (E7), observe
that Zr n""1(Z) is connected because Z contains a maximal torus; let 8
and S' be the respective centers of Z and Zf, and note that n: S' -> S is
2—to— 1 sending z to 1 and s'H to sH.

If H E7 then 8' has order two, so (^)2 1.

If H — D6 X At, then the universal covering group of Z' is Spin(12) x
X SU (2). That group has center isomorphic to Z2 X Z2 X Z8, and S' is a

quotient of its center. Thus (s'H)2 1.

In the other cases, we look at the linear isotropy représentation on the
RïEMAKNian symmetric space ad(E7)/Z. As this space is irreducible, it follows

19 CMH vol. 37
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that 8 {1, sH} if H A1 and S is a circle group if H E6 X T1. Looking
at n : S' -> /S, it is easily seen that (^ )2 2.

Let H E6 x T1 and let Z" be the group E6 X T1. Z" has center £"
isomorphic to Z3 X î71 ; we represent the éléments of 8" by pairs (ua, #)
where u générâtes the center of E6 and v is a unimodular complex number.

We hâve coverings Zn -+Z' -*Z9 and 8 n(ï(S") is a circle group. Thus
Ker. (nfi) Lx X L2 where L2 is a finite cyclic subgroup of T1 and 2^ is

cyclic order 3 with a generator (u, w) where v? 1. Now Ker. fi Lx X Lz
where L3 has index 2 in L2 ; thus we may choose /? such that Ker. ft Lx and
jL2 is generated by (1, — 1). It follows that z /5((1 — 1)) and sH jt/5

((1, l/^~ï)) This shows srH to be /3((1, ± V^î)) whence (%)2 ». G.JEf. jD.

We can now enumerate the space forms of E7/^47 and of E7/^6 • T1 :

Theorem. Let M be one of the RiEMANNian symmetric manifolds E7/^47 or
E7/jE6 T1. We hâve l(M) \{M) ^r • Iq{M) where x is central, t2 1 and

r £ Io Jf .Le£ zl be a nontrivial group of isometries acting freely on M. Then
either A {l,r} or A is conjugale in I(M) to {l9t8D xA}. Thèse two

groups act freely on M and are not conjugate in I (if).
Proof. The first statement is known [4], r being central because E7 admits

no outer automorphism. Let K be an isotropy subgroup of G 1(M). Then
O0 ad(E7), K KQ ^ oc • Ko and G O0 ^ oc • Go where oc2 1 and con-
jugation by oc is the same as conjugation by a € Go; r oc a. Altering a by
an élément of KQ if necessary, we may assume that a is conjugate to sAf?.

As before, let C {1, z} be the kernel of the projection n : E7 -> ad(E7)
and let primes dénote representing éléments in E7. Let A be the centralizer
of a' in E7 ; A ^ STJ(8)/{± /} as seen in the proof of the complément to the

Lemma, z is represented by ± "V — 1 * /g »
an(i a' is represented by

Let h cGQ, h'2 z. Replacing A by a conjugate, h1 e A and h' is repre-

/exp{2nVllS)Ip \sented by ± v
> where p + g 8.* \ 0 exp (2 w 1/^1 5/8)/,/ * *

That matrix must hâve déterminant + 1 ; it follows that p and q are even,

p 2u and g 2v. Again replacing A by a conjugate, h1 c A is represented

by ±diag {c/u, e5/v, e/u, eBIv} where e exp(2jr V~^~l /8).
Let ^ be the symmetry to If at the point at which K is isotropy subgroup of

G. Although s commutes with a because it commutes with oc, s' cannot
commute with ar because conjugation by a induces an outer automorphism of
Ko. Thus the commutator (V, af] z. It follows that sf normalizes A and
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that conjugation of A by sf is an involutive outer automorphism. Thus we

may assume [3] s'g s'-1 *g-1 g for every g c A, or that s'gs'"1 JgJ~l

(j=( 04jj for every geA. It follows that s1'hfs'-1 h1'z. Now let

h1 ft'V. As s'a'ê'-1 a'z, h" must commute with s'. This implies rc(A") e iT0
because ^(J^) is connectée! and is the centralizer of s' in E7.

We hâve now proved, given h eGo with h'2 z, that uhvr1 ak for some
Je e Ko, U€G0. Thisgives auhu~1== k, Le., ocauhw1 ock, i.e., ruhu^eocK^,
Le., rA conjugate to an élément of ocKo. Thus tA has a fixed point on M.

Now let h e 6?0, A72 1. We will see that rh has no fixed point on M.
For if it had a fixed point, we would hâve urhu"1 ock with u e O0 and
k € Ko. Then A would be conjugate to ak e aK0. Replacing h by that
conjugate, h' a'k1 with k' in the centralizer K' ot~1(Z'o) of 5' in E7. Now
B ~ A r> Kf is both the centralizer of s' in A and the centralizer of a' in jBl '.
Every élément of a1 K' is conjugate to an élément of a' B. For Ko^ aKQ is the
centralizer of s in ad(E7); if T is a maximal torus of the centralizer of a injfo,
then a resuit of deSiebenthal ([9], Th. on p. 57) shows that every élément of
aK0 is i£0-conjugate to an élément of aT ; thus every élément of a' K' is
conjugate to an élément of a' • tz~~1(T) c a'B. Now we conjugate h and assume
h1 a' k' where k' commutes with both s' and a'. Thus we hâve kr c A.
Let double primes dénote éléments of SU (8) representing éléments of
A=8V(8)I{±I}. h" a"k" is conjugate (by s") to Wz" ; thus -I h"2,
and it is conjugate in SU(8) to {h"z"f h"*z"* (-/)(-/) /. This
being impossible, rh cannot hâve a fixed point.

Ourgroup A {1,tA} where 1 (rh)2 r2h2 h2. Thus, by the Lemma,
h is conjugate to 1, sD x A sAl or 8E& x Ti. But A'2 1, as we hâve just
seen, because rh has no fixed point; the Complément to the Lemma now
shows h conjugate to 1 or ^ xi On the other hand, the Complément
and the preceding paragraph show that {1,t} and {1, rsD^xA } act freely
on M.

5. 8. Combining Theorems 5.1, 5.3, 5.4, 5.5, 5.6 and 5.7, one has a global
classification for the space forms of compact connected simply connected irre-
ducible RiEMANNian symmetrie manifolds of nonzero characteristic.

6. ReduciMlity and commutativity

6.1. Order. Let N be an irreducible compact connected simply connected
RiEMANKian symmetrie manifold of nonzero characteristic. We hâve just seen

that a group of isometries acting freely on JV^ must be of order 1, 2 or 4. We
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now define the order of N, written order. iV, to be the maximal of the orders
of the groups of isometries acting freely on N. This concept is useful for :

6. 2. Commutativity Theorem. Let M' be a compact connectée simply con~
nected RiEMANNian symmetric manifold of nonzero characteristic. Then thèse are
équivalent :

1. A group of isometries acting freely on M1 is necessarily abelian.
2. Any growp of isometries acting freely on M1 is a direct product of some

number m ^ 0 of groups Z2, or is cyclic of order 4.
3. // one of the irreducible factors of M' has order 4, then ail the others hâve

order 1. // M1 has two isometric irreducible factors of order 2, then ail the others
hâve order 1.

Complément to the Commutativity Theorem. Let N be an irreducible compact

connected RiEMANNian symmetric manifold of nonzero characteristic.
1. Thèse are équivalent:
(a) N has order 2.

(b) Z2 acts freely by isometries on N, but Z4 does not.
(c) Z2 acts freely by isometries on N, but Z2 X Z2 does not.
(d) N is isometric to 6ffw(R) where n ^ 2q and q(n — q) is even, or to

Gg,n(C) whereeither 2q n or q(n — q) isodd.orto 6ff>2<?(H), orto 8O(2n)l\](n)
where n>2, orto Sf(n)l\J(n) where n^l, orto E7/u47, orto Et/Eq-T1.

2. Thèse are équivalent:
(a) N has order 4.

(b) Z4 acts freely by isometries on N.
(c) Z2 x Z2 acts freely by isometries on N.
(d) N is isometric to G2nj4n(K>) where n>l.
Hère Zw dénotes the cyclic group of order m.
The Complément foliows trivially from the results of § 5. The remainder

of § 6 is devoted to the proof of the Commutativity Theorem. As (2) obviously
implies (1) there, we need only prove that (3) implies (2) and that (1) implies (3).

6. 3. The proof that (3) implies (2) is based on Theorem 3.2 and on

Lemma. Let A be a nontrivial group of isometries acting freely on N x N
where N is a complète connected simply connected irreducible RiEMANNian
symmetric manifold of nonzero characteristic and order 2. Then A is isomorphic to

Z2, Z2 X Z2 or Z4.

Proof. A rs {I(N) X I(N)} has order <g 4 and has index ^2 in A, by
Theorem 3.2; it suffiées to prove that A is not a nonabelian group of order 8.

Suppose A nonabelian of order 8. Then A is generated by an élément y of
order 4 and an élément d of order 2 or 4, where ôy ô~x y"1. By Theorem 3.2,
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we may assume y to be given by (x, y) -> (ry, x) where t is a fixed point free
isometry of order 2 on N. If ô2 1, then (5 (a;,?/) (<5x#, ô2y) where ô( is

an isometry of square 1 on N. Then ôyô y~x implies ôx rô2; it follows
that yô(x, y) {ôxy, dxx)\ thus (x,ôxx) is a fixed point for y(5. This
proves ô2 # 1.

Now <5 must hâve order 4, and is thus given by {x,y)-> (ôxy, ô2x) where
ô{ are isometries of N. Thus a ôy is given by (x, t/)-> (oi#, or2y) where
(Tt. are isometries of iV. By Theorem 3.2 we hâve a2 1. But a2 ^ 1 because
A is the quaternion group. The Lemma follows. Q.E.D.

We will prove that (3) implies (2) in Theorem 6.2. Assume (3) and let F
be a group of isometries acting freely on M'. If y € F, then y4 1 by
Theorem 3.2. If F has no élément of order 4, it must be a product of groups
Z2, and we are done. Now suppose that F has an élément of order 4. By our
assumption (3) and by Theorem 3.2, there is a RiEMANNian product
décomposition M' S X X where X is a product of irreducible manifolds of order 1

and either 8 is irreducible with order. 8 4 or 8 S± x 82, 8X isometric
to 82, with order. Si 2. Let A be the restriction of F to 8. The restriction
jT-> A is an isomorphism; thus it suffices to prove A isomorphic to Z4.

Observe that A acts freely on S. If 8 is irreducible of order 4, then A ^ Z4

by the Complément, by Theorem 5.3, and because it contains an élément of
order 4. If 8 is reducible, then A ^ Z4 by the Lemma above.

6. 4. To prove that (1) implies (3) it suffices to exhibit a noncommutative
group of isometries acting freely on a direct factor of M1, in case the conditions
of (3) do not hold. For this noncommutative group will then act freely by
isometries on M'. Thus we need only take compact connected simply con-
nected irreducible RiEMANNian symmetric manifolds N and L, order. L > 1,
and prove :

// order. N 4, then there is a noncommutative group of isometries acting
freely on N X L. If order. N 2, then there is a noncommutative group of
isometries acting freely on N X N X L.

We will construct examples of such groups which are dihedral groups of
order 8.

Suppose that N has order 4. Then N G2n,4W(R)5 n ^ 2, and (Theorem
5.3) j8<72t>-i v générâtes a cyclic group of order 4 of isometries acting freely
on N. Let y v X l€l(iV X L). Choose a fixed point free isometry x of
order 2on£ and define à g2v^ X r. Then y has order 4, S has order 2,

and ôyô y1 because 9W_i/ty2i7_i (ofi. Now

r={hy,y\f; ô,ôy9ôf,ôf}
is the (dihedral) group generated by y and ô. The powers of y act freely on the
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iV-component, and the last four éléments move every i-coordinate. Thus F
is a noncommutative group of isometries acting freely on N X L.

Suppose that N has order 2. Let v and r be involutive fixed point free
isometries of N and L, respectively. We define éléments y and ô of I(N x N X L)
by 7(», y, z) (vy, x, z) and ô(x,y,z) (vx,y,Tz). y has order 4 and
its powers act freely. ô has order 2 and any ôya moves the i-coordinate.
Syô y~1 is easily cheeked. Thus the group F generated by y and ô is a
noneommutative group acting freely by isometries on N x N x L.

Theorem 6.2 is now proven.

Remark. The other noneommutative group of order 8, the quaternion group,
can act freely by isometries on N x N x N X N where N is as above with
order. N > 1.

6. 5. Corollary. Let M -> N be the universal RiEMANNian covering of a
complète connected locally symmetric RiEMANNian manifold N with every
sectional curvature ^ 0 and characteristic %(iV) ^ 0. Suppose, if one of the

compact irreducible factors of M has order 4, that ail the others hâve order 1 ;

suppose, if M has a pair of isometric compact irreducible factors of order 2,

that ail the others hâve order 1. Then the fundamental group tz1 (N) is a finite
direct product of groups Z2, or is cy'die of order 4.

This foliows immediately from Theorems 3.2 and 6.2.
We can give a good description of the manifold N of the Corollary. One has

M Mo x M! x X M t

where Mo is a EucLiDean space Rm and each Mt (i > 0) is compact and
irreducible with %{Mi) > 0. If 7tt(N) ^ Z4, there are two sorts of possibilités:
some M{ has order 4 or two isometric Mt hâve order 2. We permute the Mi
and obtain M Mo X S X X where 8 is irreducible of order 4 or the
product of two isometric irreducible manifolds S{ of order 2. N M/F where
F is generated by an élément y y0 X ys X yx, yt 1

> 7x 1, and ys
is given by: If S is irreducible, S 62w,4n(I'') w^h n ^ 2, then ys is conju-
gate to an isometry ^g^v-i oï S. In the other case, ys is conjugate to an iso-

metry (slf s2) -> (rs2, sx) of S S1 X 82 where r is a fixed point free
involutive isometry of 81 $2.

Suppose 7ti(N) t^ Z4; then n^N) is a product of some number k^O
of groups Z8, and N M/F for a group JT isomorphie to n^N) and given as

foliows. F has generators {yly yh}. Suppose first that some M{ (say 8)
is of order 4, or that two isometric Mt (say 8X and 82', let 8 8t X 82) are
of order two. Then M MQ X 8 X X, where X is a product of irreducible
manifolds of order 1, k^> 2, and each yt yiQ x yitS X yitx\ Yi-*yits
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is an isomorphism of F onto a group S of isometries acting freely on S and
each ylS préserves each 8 if Sf is a product, so the possibilités for E are
given m § 5; the yt 0 commute and hâve square 1, as do the yl)X. We now con-
sider the other possibility—the case where no Mt has order 4 and no two Mt
of order 2 are îsometnc. Re-ordering the M%, we may assume that Mli Mk
each has order 2 and is preserved by each y0, and that y9 induces a fixed
point free mvolutive isometry of M,. Then M Mo X Mx X X Mk X X,
7j 7/,o X X yJ)k X y7fZ, y,->y,,8 (e 0, 1, k, X) is a homo-
morphism of F, and yjtJ has no fixed point.
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