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Entropy on Riemann surfaces and the Jacobians of finite covers
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Abstract. This paper characterizes those pseudo-Anosov mappings whose entropy can be
detected homologically by taking a limit over finite covers. The proof is via complex-analytic
methods. The same methods show the natural map Mg — [] oA, which sends a Riemann
surface to the Jacobians of all of its finite covers, is a contraction in most directions.
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1. Introduction

Let f: § — § beapseudo-Anosov mapping on a surface of genus g with n punctures.
It is well-known that the topological entropy A( f) is bounded below in terms of the
spectral radius of f*: H(S,C) — H'(S.C); we have

logp(f*) = h(f).

If we lift f toamap f : § — S ona finite cover of S, then its entropy stays the same
but the spectral radius of the action on homology can increase. We say the entropy
of f can be detected homologically if

h(f) = suplog p(f*: H'(§) - H'(S)),

where the supremum is taken over all finite covers to which f lifts.
In this paper we will show:

Theorem 1.1. The entropy of a pseudo-Anosov mapping | can be detected homo-
logically if and only if the invariant foliations of f have no odd-order singularities
in the interior of S.

The proof is via complex analysis. Hodge theory provides a natural embedding
Mg — Ay from the moduli space of Riemann surfaces into the moduli space of
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Abelian varieties, sending X to its Jacobian. Any characteristic covering map from a
surface of genus 4 to a surface of genus g, branched over n points, provides a similar
map

Mg n = My — Ap. (1.1)

Itis known that the hyperbolic metric on a Riemann surface X canbe reconstructed
using the metrics induced from the Jacobians of its finite covers ([Kaz]; see the
Appendix). Similarly, it is natural to ask if the Teichmiiller metric on M, ,, can be
recovered from the Kobayashi metric on +4, by taking the limit over all characteristic
covers Cg . We will show such a construction is impossible.

Theorem 1.2. The natural map Mg, — Ht’gn Ay is not an isometry for the
Kobayashi metric, unless dim Mg, = 1.

It is an open problem to determine if the Kobayashi and Carathéodory metrics
on moduli space coincide when dim Mg , > 1 (see e.g. [FM], Problem 5.1). An
equivalent problem is to determine if Teichmiller space embeds holomorphically
and isometrically into a (possibly infinite) product of bounded symmetric domains.
Theorem 1.2 provides some support for a negative answer to this question.

Here 1s a more precise version of Theorem 1.2, stated in terms of the lifted map
— 9‘7, i) .‘E)h

o
Jen

from Teichmiiller space to Siegel space determined by a finite cover.

Theorem 1.3. Suppose the Teichmiiller mapping between a pair of distinct points
XY € T, comes from a quadratic differential with an odd order zero. Then

sup d(J(X), J()) < d(X.Y),
where the supremum is taken over all compatible finite covers of X and Y.

Conversely, if the Teichmtiller map from X to Y has only even order singularities,
then there is a double cover such that 4(J(X), J(¥)) = d(X,Y) (cf. [Kra]). In
particular, the complex geodesics generated by squares of holomorphic 1-forms map
isometrically into .. The only directions contracted by the map M, — [] A, are
those identified by Theorem 1.3.

Theorem 1.1 follows from Theorem 1.3 by taking X and Y to be points on the
Teichmiiller geodesic stabilized by the mapping-class f. It would be interesting to
find a direct topological proof of Theorem 1.1.

As asample application, let § € B, be a pseudo-Anosov braid whose monodromy
map f:§ — S (on the n-times punctured plane) has an odd order singularity. Then
Theorem 1.1 implies the image of § under the Burau representation satisfies

10g|8}1p1 p(B(g)) < h(f).
=
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Indeed, p(B(g)) at any d-th root of unit is bounded by p( f *yonaZ/d cover §
[Mc2]. This improves aresultin [BB]. Similar statements hold for other homological
representations of the mapping—class group.

Notes and references. For C*° diffeomorphisms of a compact smooth manifold,
one has A(f) > logsup; p( f*|H'(X)) [Ym], and equality holds for holomorphic
maps on Kihler manifolds [Gr]. The lower bound i( f) > log p{ f*|H (X)) also
holds for homeomorphisms [Mn]. For more on pseudo-Anosov mappings, see €.g.
[FLP], [Bers] and [Th].

A proof that the inclusion of 7, ;, into universal Teichmiiller space is a contraction,
based on related ideas, appears in [Mc1].

2. Odd order zeros

We begin with an analytic result, which describes how well a monomial z* of odd
order can be approximated by the square of an analytic function.

Theorem 2.1. Let k = 1 be odd, and let f(z) be a holomorphic function on the unit
disk A such that [ |f(z)|* = 1. Then

forer()

Here the integral is taken with respect to Lebesgue measure on the unit disk.

_Vk+1VE+3

1.
k42

< Ck

Proof. Consider the orthonormal basis ¢, (z) = anz™.n > 0,a, = /n + 1//7, for
the Bergman space 1.2 (A) of analytic functions on the disk with || /|13 = [ | f(2)|? <
oc. With respect to this basis, the nonzero entries in the matrix of the symmetric
bilinear form Z(f,g) = [ f(z)g(z)fk/|z|k are given by

2dn + 1k —n+1
k+2

Z(ens ek—n) == anak—n/ |Z|k =
A

In particular, Z{e;,e;) = 0 for all i (since k is odd), and Z{e;,e;) = 0 for all
i,j >k

Note that the ratio above is less than one, by the inequality between the arithmetic
and geometric means, and itis maximized whenn < k/2 < n+1. Thus the maximum
of |Z(f, I/ f 1 over L2(A) is achieved when f = e, + e¢p41,n = (k — 1)/2,
at which point it is given by Cj. 0
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3. Siegel space

In this section we describe the Siegel space of Hodge structures on a surface §, and
its Kobayashi metric.

Hodge structures. Let .S be a closed, smooth, oriented surface of genus g. Then
H'(S) = H(S, C) carries a natural involution C(«) = & fixing H1(S,R), and a

natural Hermitian form
1 _
@)= [ and
S

of signature (g, g). A Hodge structure on H'(S) is given by an orthogonal splitting
Hl(S) — VI,O D VO,I

such that V10 is positive-definite and V91 = C(V'1-9). We have a natural norm on
V10 given by |la||? = (o, a).

The set of all possible Hodge structures forms the Siegel space $(S). To describe
this complex symmetric space in more detail, fix a splitting 71(S) = W10 Wwo1.
Then for any other Hodge structure V1% @ V791, there is a unique operator

Z: W0 - wo!

such that V19 = (I + Z)(W!?). This means V' !-? coincides with the graph of Z
in W0 g Wwo!,
The operator Z is determined uniquely by the associated bilinear form

Z(a,p) = (o, CZ(B))

on W19 and the condition that V19 ¢ V%1 g a Hodge structure translates into the
conditions

Za,p) =Z(P.a) and |Z(a,o)| < lif|a| = 1. (3.1)

Since the second inequality above is an open condition, the tangent space at the base
point p ~ W19 @ W01 is given by

T,$(S) = {symmetric bilinear maps Z: W% x W® — C}.
Comparison maps. Any Hodge structure on - '(S) determines an isomorphism
V0~ (S, R) (3.2)

sending o to R (x) = (@ + C(w))/2. Thus H (S, R) inherits a norm and a complex
structure from V'1-9,



Vol. 88 (2013) Entropy on Riemann surfaces and the Jacobians of finite covers 957

Put differently, (3.2) gives a marking of V-9 by H1(S,R). By composing one
marking with the inverse of another, we obtain the real-linear comparison map

T=(UI+Z)I+CZ)y l:wto 5 Lo (3.3)

between any pair of Hodge structures. It is characterized by M (w) = R(T («)).

Symmetric matrices. The classical Siegel domain is given by
Bg={ZM(C) : Zjj=Zj;and I — ZZ > 0}

(cf. [Sat], Chapter IL.7). It is a convex, bounded symmetric domain in C N N =
g(g + 1)/2. The choice of an orthonormal basis for W!? gives an isomorphism
Z +— Z(w;,w;) between $(.S) and H,, sending the basepoint p to zero.

The Kobayashi metric. Let A C C denote the unit disk, equipped with the metric
|dz|/(1—|z|?) of constant curvature —4. The Kobayashi metric on $(S) is the largest
metric such that every holomorphic map f: A — $(S) satisfies | Df(0)| < 1. It
determines both a norm on the tangent bundle and a distance function on pairs of
points [Ko].

Proposition 3.1. The Kobayashi norm on T,9(S) is given by
1Zlx = suptZ(a, )] : [le]| =1},
and the Kobayashi distance is given in terms of the comparison map (3.3) by
dV ", W) = log T
Proof. Choosing a suitable orthonormal basis for W1, we can assume that
Z(w;, wj) = A; 8

with Ay > Ay > --- Ay = 0. Since $, is a convex symmetric domain, the Kobayashi
norm at the origin and the Kobayashi distance satisfy

1 1
|Zlxk =7 and d(0,Z) == log
2 1—r

wherer = inf{s > 0: Z € s§,} (see[Ku]). Clearlyr = Ay = sup |Z(a, a)|/ |||,
and by (3.3), we have

2_1"‘)\.1
1= Ay]

A1
TI? = |T(V=1 2=H il
ITI = 1T Ton P = |24+ 22

which gives the expressions above. L
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4. Teichmiiller space

This section gives a functorial description of the derivative of the map from Teich-
miiller space to Siegel space.

Markings. Let S be a compact oriented surface of genus g, and let S C S be a
subsurface obtained by removing 7 points.

Let Teich(S) = 7, 5, denote the Teichmiiller space of Riemann surfaces marked
by S. A pointinTeich(S) is specified by ahomeomorphism f: S — X toaRiemann
surface of finite type. This means there is a compact Riemann surface X > X and
an extension of f to a homeomorphism f: § — X.

Metrics. Let O(X) denote the space of holomorphic quadratic differentials on X

such that
lqlix =f gl < oo.
X

There is a natural pairing (¢, u) — [y qu between the space Q(X) and the space
M(X) of L°°-measurable Beltrami differentials p. The tangent and cotangent spaces
to Teichmiiller space at X are isomorphic to M(X)/Q(X)* and Q(X) respectively.

The Teichmiiller and Kobayashi metrics on Teich(S) coincide [Royl], [Hub],
Chapter 6. They are given by the norm

lullr = sop{| [ qu| : llglx =1}
on the tangent space at X ; the corresponding distance function
1
d(X,Y) = inf 5 log K(¢)
measures the minimal dilatation K{¢) of a quasiconformal map ¢: X — Y respect-

ing their markings.

Hodge structure. The periods of holomorphic 1-forms on X serve as classical moduli
for X. From a modern perspective, these periods give a map

J: Teich(S) — &(S) = H,,
sending X to the Hodge structure
HY(S)=H' (X) = HY(X)® H*'(X).

Here the first isomorphism is provided by the marking f: § — X. We also have a
natural isomorphism between H °(X ) and the space of holomorphic 1-forms Q(X).
The image J(X) encodes the complex analytic structure of the Jacobian variety
Jac(X) = Q(X)*/H (X, 7). (It is does not depend on the location of the punctures
of X))
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Proposition 4.1. The derivative of the period map sends jp € M (X)) to the quadratic
Jorm Z = DJ(u) on Q(X) given by

Z(a. ) = [X b,

This is a basis-free reformulation of Ahlfors’ variational formula [Ah], §5; see
also [Ra], [Roy2] and Proposition 1 of [Kra]. Note that aff € Q(X).

5. Contraction

This section brings finite covers into play, and establishes a uniform estimate for
contraction of the mapping 7y, — 7, — 9.

Jacobians of finite covers. A finite connected covering space S1 — Sp determines
a natural map
P Teich(Sy) — Teich(Sy)

sending each Riemann surface to the corresponding covering space X; — Xy. By
taking the Jacobian of X1, we obtain a map J o P: Teich(Sp) — $(S51).

Let gg € O(Xy) be a holomorphic quadratic differential with a zero of odd order
k,say at p € Xo. Let u = go/|q0| € M(Xo); then ||p||7 = 1. Let w: X1 — Xo
denote the natural covering map, and let g; = 7*(gy).

We will show that J(X) cannot change too rapidly under the unit deformation p
of Xy. Indeed, if J(X1) were to move at nearly unit speed, then 7* (1) = g,/ |q1|
would pair efficiently with & for some unit-norm & € Q(X), which is impossible
because of the many odd-order zeros of g;.

To make a quantitative estimate, choose a holomorphic chart ¢ : (A,0) — (X, p)
such that ¢* () = z¥/|z|¥ dz/dz. Let U = ¢(A), and let

mU) = inf{{l¢llv : ¢ € Q(Xo), llgllx = L}
(Here |lg|lv = [y 1gl.) Since Q(Xp) is finite-dimensional, we have m(U) > 0.
Theorem 5.1. The image Z of the vector || under the derivative of J o P satisfies
1Zlx =8 <1 =lulr,

where § = max(1/2,1 — (1 — Cp)m(U)/2) does not depend on the finite cover
Sl —> So.

Proof. The derivative of P sends i to 7™ (). By Proposition 3.1, to show | Z||x < 4§
it suffices to show that

| Z (o, )| = ‘f oa’r*pl <8
X1
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forall @ € Q(X;) with ||a?|x, = 1. Setting ¢ = m4(«?), we also have

= llgllxo,

| Z(a, 00)| = UX q i

so the proof is complete if ||¢||x, =< 1/2. Thus we may assume that
le®llv = llgllo = m@)lgllx, = mU)/2,

where V = 7~ (U) = U‘f V; is a finite union of disjoint disks. Using the coordinate
charts V; = I/ = A and Theorem 2.1, we find that on each of these disks we have

k
f 0527?*(#)‘ = 05(2)2(| |) < Celle?|lv;.
v;
Summing these bounds and using the fact that ||e?||(x,—v) + [l@?|lv = 1, we obtain
(1 — Cp)m(U)
[ @] <lettonon + Gty <1 - S <5 g
1

6. Conclusion

It is now straightforward to establish the results stated in the Introduction.

Proof of Theorem 1.3. Assume the Beltrami coelficient of the Teichmiller mapping
between X, Y € T, , has the form p = kg/q, where ¢ € Q(X) has an odd order
zero. Then the same is true for the tangent vectors to the Teichmiiller geodesic y
joining X to Y. Theorem 5.1 then implies that D(J o P)|, is contracting by a factor
6 < | independent of P, and therefore

d(J o P(X),J o P(Y)) = d(J(X), J(Y)) <§-d(X,Y). O

Proof of Theorem 1.2. The contraction of Mg, — l_[*e Ap in some directions is
immediate from the uniformity of the bound in Theorem 1. 3, using the fact that the
Kobayashi metric on a product is the sup of the Kobayashi metrics on each term, and
that there existg € Q(X ) with simple zeros whenever X € M, , anddim Mg, > 1.

O

Proof of Theorem 1.1. Let f: Sy — Sp be a pseudo-Anosov mapping. If f has
only even order singularities, then its expanding foliation is locally orientable, and
hence there is a double cover § — § such that log p( f )= h(f).

Now suppose f has an odd-order singularity. Let Xy € Teich(Sp) be a point on
the Teichmiiller geodesic stabilized by the action of f on Teich(Sp). Then A(f) =
d(f - Xy, Xp) > 0 (see e.g. [FLP] and [Bers]).
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Let f: S1 — 81 be alift of f to afinite covering of Sy, and let X1 = P(Xy) €
Teich(S). Using the marking of X and the isomorphism H (X, R) = H0(X)),
we obtain a commutative diagram

H'(S1.R) — H'(51,R)

| |

HY(Xy) —— (%)

where T is the comparison map between J(X ) and J( f - X1) (see equation (3.3)).
Then Theorem 1.3 and Proposition 3.1 yield the bound

logp(f*) < log |T| = d(J(X1), f - J(X1)) = 8d(Xo, f - Xo) = Sh(f),

where § < 1 does not dependent on the finite covering §1 — Sp. Consequently,
suplog p(f™) < k(). L

Appendix. The hyperbolic metric via Jacobians of finite covers

Let X = A/T be a compact Riemann surface, presented as a quotient of the unit
disk by a Fuchsian group I'. Let ¥;, — X be an ascending sequence of finite Galois
covers which converge to the universal cover, in the sense that

Y, =A/T,, T>T1>T,>T5---, and ﬂr,:{e}. (A.1)

The Bergman metric on Y, (defined below) is invariant under automorphisms, so it
descends to a metric B, on X. This appendix gives a short proot of:

Theorem A.1 (Kazhdan). The Bergman metrics inherited from the finite Galois covers
Y, — X converge to a multiple of the hyperbolic metric; more precisely, we have

By — =X
W

uniformly on X.

The argument below is based on [Kaz], §3; for another, somewhat more technical
approach, see [Rh].

Metrics. We begin with some definitions. Let 2(X) denote the Hilbert space of
holomorphic 1-forms on a Riemann surface X such that

]2 = f ] < oo.
X
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The area form of the Bergman metric on X is given by

Bz =) _loil, (A2)

where (w;) is any orthonormal basis of Q2(X). Equivalently, the Bergman length of
a tangent vector v € TX 1s given by

(Bx,v) = sup 12,
ot Tllx

(A.3)

This formula shows that inclusions are contracting: if Y is a subdomain of X, then
By > Bx.

Now suppose X is a compact surface of genus g > 0. Then (A.2) shows its
Bergman area is given by

[ Bz =dimQ(X) =g. (A.4)
X

In this case By is also the pullback, via the Abel-Jacobi map, of the natural Kéihler
metric on the Jacobian of X.

Finally suppose X = A/T'. Then the hyperbolic metric of constant curvature
- 2|dz|
L= |z[*
descends to give the hyperbolic metric Ax on X. Using the fact that ||dz||a = 7, it
is easy to check that 473 = A%.

A:

Proof of Theorem A.1. We will regard the Bergman metric §,, on Y, as a [',-invariant
metric on A. It suffices to show that 8, /8 — 1 uniformly on A.

Let g and g, denote the genus of X and Y, respectively, and let d,, denote the
degree of ¥,/ X; then g, — 1 = d,(g — 1). By (A.1), the injectivity radius of ¥,
tends to infinity. In particular, there is a sequence r, — 1 such that y(r,A) injects
into Y, for any y € I'. Since inclusions are contracting, this shows

Brn = (1 +€,)Ba (A.5)

where ¢,, — 0.
Next, note that both §,, and Sa are T'-invariant, so they determine metrics on X .
By (A4), we have

[B=g ] B=5oc-n=[n
(since fX )@( = 2w (2g — 2) by Gauss—Bonnet). Together with (A.5), this implies

fX 1Bn — Bal> — 0. (A.6)
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To show B, — B uniformly, consider any sequence p, € A and let x € [0, 1]
be a limit point of (8, /8A)(pn). It suffices to show x = 1.

Passing to a subsequence and using compactness of X, we can assume that p, —
p € A and that 8,(p,) — xBa(p). By changing coordinates on A, we can also
assume p = 0. By (A.6) we can find g, — 0 such that 8,(g,) — Ba(0). Then
by (A.3), there exist T';-invariant holomorphic 1-forms w,(z)dz on A such that
Jy, lon]? = 1 and

|dz|
lwn (Gn)| = Bnlgn) — Ba(0) = —

Since w,, is holomorphic and [ N |? < 1, the equation above easily implies that
|wy,| — |dz|/7 uniformly on compact subsets of A. But we also have

Bn(pn) = lwn(pn)| — Ba(0),
and thus $,(pn) — Ba(0) and hence x = 1. O
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