
Complete constant mean curvature surfaces in
homogeneous spaces

Autor(en): Espinar, José M. / Rosenberg, Harold

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 86 (2011)

Persistenter Link: https://doi.org/10.5169/seals-283464

PDF erstellt am: 01.06.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-283464


Comment. Math. Helv. 86 2011), 659–674
DOI 10.4171/CMH/237

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Complete constant mean curvature surfaces in homogeneous
spaces

José M. Espinar and Harold Rosenberg

Abstract. In this paper we classify completesurfaces of constant mean curvature whose Gaussian

curvature does not change sign in a simply connected homogeneous manifold with a 4-
dimensional isometry group.
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1. Introduction

In 1966, T. Klotz and R. Ossermann showed the following:

Theorem ([KO]). A complete H-surface in R3 whose Gaussian curvature K does

not change sign is either a sphere, a minimal surface, or a right circular cylinder.

The above result was extended to S3 by D. Hoffman [H], and toH3 by R. Tribuzy
[T] with an extra hypothesis ifK is non-positive. The additional hypothesis says that,
when K 0, one has H2 K 1 > 0.

In recent years, the study of H-surfaces in product spaces and, more generally, in
a homogeneous three-manifold with a 4-dimensional isometry group is quite active
see [AR], [AR2], [CoR], [ER], [FM], [FM2], [DH] and references therein).

The aim of this paper is to extend the above theorem to homogeneous spaces with
a 4-dimensional isometry group. These homogeneous spaces are denoted by E. ; /
where and are constant and 4 2 ¤ 0. They can be classified as M2. / R
if D 0, with M2. / D S2. / if > 0 S2. / the sphere of curvature and

M2. / D H2. / if < 0 H2. / the hyperbolic plane of curvature If is not
equal to zero, E. ; / is a Berger sphere if > 0, a Heisenberg space if D 0 of

The author is partially supported by Spanish MEC-FEDER Grant MTM2007-65249, and Regional J.
Andalucia Grants P06-FQM-01642 and FQM325.
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bundle curvature and the universal cover of PSL.2; R/ if < 0. Henceforth we

will suppose is plus or minus one or zero.
The paper is organized as follows. In Section 2, we establish the definitions and

necessary equations foranH-surface. We also statehere two classification results for
H-surfaces. We prove them in Section 5 and Section 6 for the sake of completeness.

Section 3 isdevoted to theclassification ofH-surfaces withnon-negativeGaussian
curvature,

Theorem 3.1. Let † E. ; / be a complete H-surface with K 0. Then, †
is either a rotational sphere in particular, 4H2 C > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H onM2. /

In Section 4 we continue with the classification of H-surfaces with non-positive
Gaussian curvature.

Theorem 4.1. Let † E. ; / be a complete H-surface with K 0 and H2 C2 j 4 2j > 0. Then, † is a complete vertical cylinder over a complete curve
of geodesic curvature 2H onM2. /

The above theorem is not true without the inequality; for example, any complete
minimal surface in H2 R that is not a vertical cylinder.

In the Appendix, we give a result, which we think is of independent interest,
concerning differential operators on a Riemannian surface † of the form C g,
acting on C2.†/-functions, where is the Laplacian with respect to the Riemannian
metric on † and g 2 C0.†/.

2. The geometry of surfaces in homogeneous spaces

Henceforth E. ; / denotes a complete simply connected homogeneous three-manifold

with 4-dimensional isometry group. Such a three-manifold can be classified
in terms of a pair of real numbers ; / satisfying 4 2 ¤ 0. In fact, these
manifolds are Riemannian submersions over a complete simply-connected surface

M2. / of constant curvature
W E. ; / M2. / and translations along the

fibers are isometries, therefore they generate a Killing field called the vertical field.
Moreover, is the real number such that xrX D X ^ for all vector fields X on the
manifold. Here, xr is the Levi-Civita connection of the manifold and ^ is the cross

product.
Let † be a complete H-surface immersed in E. ; / By passing to a 2-sheeted

covering space of †, we can assume † is orientable. Let N be a unit normal to †.
In terms of a conformal parameter z of †, the first, h ; i, and second, II, fundamental
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forms are given by

h ; i D jdzj
2

II D p dz2 C H jdzj
2
C Np d Nz2;

2.1)

where p dz2 D h r@zN;@zidz2 is the Hopf differential of †.
Set D hN; i and T D N, i.e., is the normal component of the vertical

field called the angle function, and T is the tangent component of the vertical field.
First we state the following necessary equations on † which were obtained in

[FM].

Lemma 2.1. Given an immersed surface † E. ; / the following equations are
satisfied:

K D Ke C
2

C 4 2/ 2; 2.2)

pNz D Hz
2 C 4 2/ A/; 2.3)

ANz D 2
H C i / ; 2.4)

z D H i / A
2

p AN; 2.5)

jAj
2

D
1

4
.1 2/; 2.6)

Az D
z A C p ; 2.7)

where A D h ; @zi, Ke the extrinsic curvature and K the Gauss curvature of †.

For an immersed H-surface † E. ; / there is a globally defined quadratic
differential, called the Abresch–Rosenberg differential, which in these coordinates is
given by see [AR2]):

Qdz2
D .2.H C i / p 4 2/A2/ dz2;

following the notation above.
It is not hard to verify this quadratic differential is holomorphic on an H-surface

using 2.3) and 2.4),

Theorem 2.1 ([AR], [AR2]). Qdz2 is a holomorphic quadratic differential on any

H-surface in E. ; /
Associated to the Abresch–Rosenberg differential we define the smooth function

q W † OE0;C1/ given by

q D
4jQj

2

2
:
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By means of Theorem 2.1, q either has isolated zeroes or vanishes identically. Note
that q does not depend on the conformal parameter z, hence q is globally defined
on †.

We continue this section establishing some formulae relating the angle function,
q and the Gaussian curvature.

Lemma 2.2. Let † be an H-surface immersed in E. ; / Then the following equations

are satisfied:

kr k
2

D
4H2 C 4 2/ 2

4. 4 2/
.4.H2 Ke/

C 4 2/.1 2//
q

4 2 ;
2.8)

D 4H 2
C 2 2

C 4 2/.1 2/ 2Ke : 2.9)

Moreover, away from the isolated zeroes of q, we have

lnq D 4K: 2.10)

Proof. From 2.5)

j zj
2

D
4 jpj

2
jAj

2

2 C H 2
C

2/ jAj
2

C
2 H C i /

pAN
2
C

2 H i /
pNA

2;

and taking into account that

jQj
2

D 4 H2
C

2/ jpj
2

C 4 2/2
jAj

4 4 2/.2 H C i /pAN2

C 2 H i /pNA
2/;

we obtain, using also 2.6), that

j zj
2

D H2
C

2/jAj
2

C H2 Ke/jAj
2

C 4 2/ jAj
4

C 4
H2 C

2

4 2
jpj2 jQj

2

4 2/

where we have used that 4jpj
2

D 2.H2 Ke/ and 4 2
¤ 0. Thus

kr k
2

D
4
j zj

2
D .2H2 Ke C

2/.1 2/ C
4 2

4
.1 2/2

C 4
H2 C

2

4 2 H2 Ke/
q
4 2;

and finally, re-ordering in terms of H2 Ke, we obtain the first expression.
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Next, by differentiating 2.5) with respect to
Nz

and using 2.7), 2.4) and 2.3),
one gets

z Nz D 4 2/ jAj
2 2

jpj
2 H2 C

2

2
:

Then, from 2.6),

z Nz D 4
4 2/.1 2/ C

8 jpj2
2 C 2 H2

C
2/ ;

thus

D
4

z Nz D 4 2/.1 2/ C 2.H 2 Ke/ C 2 H 2
C

2/ :

Finally,

ln q D ln 4jQj
2

2 D 2 ln D 4K;

where we have used that Qdz2 is holomorphic and the expression of the Gaussian
curvature in terms of a conformal parameter.

Remark 2.1. Note that 2.9) is nothing but the Jacobi equation for the Jacobi field

Next, we recall a definition in these homogeneous spaces.

Definition 2.1. We say that † E. ; / is a vertical cylinder over if † D 1. /
where is a curve onM2. /

It is not hard to verify that if is a complete curve of geodesic curvature 2H on

M2. / then† D 1. / is completeandhas constant mean curvatureH. Moreover,
these cylinders are characterized by 0.

We now state two results about the classification of H-surfaces. They will be
used in Sections 3 and 4, but we prove them in Section 5 and Section 6 for the sake of
clarity. The first one concerns H-surfaces for which the angle function is constant.
However, we need to introduce a family of surfaces that appear in the classification.

Definition 2.2. Denote by ; a family of complete H-surfaces in E. ; / < 0,
satisfying for any † 2 ; :

4H2 C < 0.

q vanishes identically on† 2 ; i.e., † is invariant by a one parameter family
of isometries.

0 < 2 < 1 is constant along †.
Ke D

2 and K D 4 2/ 2 < 0 are constants along †.
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An anonymous referee indicated to us the preprint “Hypersurfaces with a parallel
higher fundamental form” by S. Verpoort who observed that we mistakenly omitted
the surfaces ; in a first draft of this paper.

Theorem 2.2. Let † E. ; / be a complete H-surface with constant angle function.

Then † is either a vertical cylinder over a complete curve of curvature 2H on

M2. / a slice in H2 R or S2 R, or † 2 ; with < 0.

Remark 2.2. Theorem 2.2 improves Lemma 2.3 in [ER] for surfaces in H2 R.

Of special interest for us are those H-surfaces for which the Abresch–Rosenberg
differential is constant.

Theorem 2.3. Let † E. ; / be a complete H-surface with q constant.

If q 0, then † is invariant by a one-parameter group of isometries of E. ; /
and if H D 0 D then † is a slice in H2 R or S2 R.
Moreover, the Gauss curvature of these examples is as follows.

– If 4H2 C > 0, then K D 0, and they are rotationally invariant spheres.

– If 4H2 C D 0 and 0, then K 0 and † is either a vertical planeDin Nil3, or a vertical cylinder over a horocycle in H2 R or PSL.2; C/.
– There exists a point with negative Gauss curvature in the remaining cases.

If q ¤ 0 on †, then † is a vertical cylinder over a complete curve of curvature

2H onM2. /

3. Complete H-surfaces † with K 0

Here we prove

Theorem 3.1. Let † E. ; / be a complete H-surface with K 0. Then, †
is either a rotational sphere in particular, 4H2 C > 0), or a complete vertical
cylinder over a complete curve of geodesic curvature 2H onM2. /

Proof. The proof goes as follows: First, we prove that † is a topological sphere

or a complete non-compact parabolic surface. We show that when the surface is a

topological sphere then it is a rotational sphere. If † is a complete non-compact
parabolic surface, we prove that it is a vertical cylinder by means of Theorem 2.3.

Since K 0 and † is complete, Lemma 5 in [KO] implies that † is either a

sphere or non-compact and parabolic.
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If † is a sphere, then it is a rotational example see [AR2] or [AR]). Thus, we can
assume that † is non-compact and parabolic.

We can assume that q does not vanish identically in †. If q does vanish, then †
is either a vertical cylinder over a straight line in Nil3 or a vertical cylinder over aDhorocycle in H2 R or PLS.2; C/. Note that we have used here that K 0 and
Theorem 2.3.

On the one hand, from the Gauss equation 2.2)

0 K D Ke C
2

C 4 2/ 2 Ke C
2

C j 4 2
j;

hence

H2 Ke H 2
C

2
C j 4 2

j: 3.1)

On the other hand, using the very definition of Qdz2, 3.1) and the inequality

j 1 C 2j
2 2.j 1j

2
C j j2/ for 1; 2 2 C, we obtain

q

2 D
2jQj

2

2 4.H2
C

2/4jpj
2

2 C 4 2/2 4jAj
4

2

D 4.H2
C

2/.H2 Ke/ C
4 2/2

4
.1 2/2

4.H 2
C

2/.H 2 Ke/ C
4 2/2

4

4.H 2
C

2/.H 2
C

2
C j 4 2

j/ C
4 2/2

4
:

So, from 2.10), ln q D 4K 0 and ln q is a bounded subharmonic function
on a non-compact parabolic surface † and since the value 1 is allowed at isolated
points see [AS]), q is a positive constant recall that we are assuming that q does not
vanish identically). Therefore, Theorem 2.3 gives the result.

4. Complete H-surfaces † with K 0

Theorem 4.1. Let † E. ; / be a complete H-surface with K 0 and H2 C2
j 4 2

j > 0. Then, † is a complete vertical cylinder over a complete curve
of geodesic curvature 2H onM2. /

Proof. We divide the proof into two cases, 4 2 < 0 and 4 2 > 0.

Case 4 2 < 0: On the one hand, since K 0, we have

H2 Ke H2
C

2
C 4 2/ 2 H2

C 3 2;
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from the Gauss equation 2.2). Therefore, from 2.8) and 4 2 < 0, we obtain:

q 4.H2
C

2/.H2 Ke/ C 4 2/.1 2/

H2
C

2
C H 2 Ke C

4 2

4
.1 2/

D H 2 Ke/ 4H 2
C 4 2

C 4 2/.1 2/

C H 2
C

2/. 4 2/.1 2/ C
4 2/2

4
.1 2/2

H 2
C

2
C 4 2/ 2/ 4H2

C 4 2
C 4 2/.1 2/

C H 2
C

2/. 4 2/.1 2/ C
4 2/2

4
.1 2/2

I

note that the last inequality holds since4H2C4
2
C. 4 2/.1 2/ 4H2C > 0.

4H2 C > 0 follows from

0 < 4.H2
C

2/ j 4 2
j D 4H 2

C :

Set a WD H2C
2 and b WD 4 2. Define the realsmooth functionf W

OE 1; 1

R as

f x/ D a C bx2/.4a C b.1 x2// C ab.1 x2/ C
b2

4
.1 x2/2: 4.1)

Note thatq f / on†, f / is just the lastpart in the above inequality involving
q. It is easy to verify that the only critical point of f in 1; 1/ is x D 0. Moreover,

f .0/ D .4a C b/2 4 > 0 and f 1/ D 4a.a C b/ > 0:

Actually, f W R R has two others critical points, x D q4aCb
3jbj

but here we

have used that
4a C b

3jbj
> 1;

since 0 < 4.H2 C 3 2/ D .4H2 C / 3j 4 2j D .4a C b/ 3jbj.
So, set c D min ff .0/; f 1/g > 0, then

q f / c > 0:

Now, from 2.10) and q c > 0 on †, it follows that ds2 D pqI is a complete
flat metric on † and

ds2 ln q D
1

pq ln q D
4K
pq 0:
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Since q is bounded below by a positive constant and .†; ds2/ is parabolic, then

ln q is constant which implies that q is a positive constant. Thus, the result follows
from Theorem 2.3. The case 4 2 < 0 is proved.

Case 4 2 > 0: Set w1 WD 2.H C i /p and w2 WD 4 2/ A2 i.e., q D
4jw1 w2j2. Then

jw1j
2
D H2

C
2/.H2 Ke/ H 2

C
2/2;

jw2j
2
D

4 2/2 4 2 2

.1
16

2/2 ;
4

where we have used that H2 Ke H2 C
2

C 4 2/ 2 H2 C 2, since

K 0 and 4 2 > 0.
We recall a well-known inequality for complex numbers. Let 1; 2 2 C, then

j 1 C 2j
2

j 1j j 2j
2 Thus,

1

4
q jw1j jw2j

2 H2
C

2/ j 4 2
j

4

2

D
1
16

2 > 0:4.H 2
C

2/ j 4 2
j

So, as q is bounded below by a positive constant, then, arguing as in the previous
case, q is aconstant. Thus, the result followsfromTheorem2.3. The case 4 2 > 0
is proved.

Remark 4.1. Note that in the above theorem, in the case 4 2 > 0, we only need

to assume that 4.H2 C 2/ j 4 2
j > 0.

5. Complete H-surfaces with constant angle function

We classify here the complete H-surfaces in E. ; / with constant angle function.
The purpose is to take advantage of this classification result in the next section.

Theorem 2.2. Let † E. ; / be a complete H-surface with constant angle function.

Then † is either a vertical cylinder over a complete curve of curvature 2H on

M2. / a slice in H2 R or S2 R, or † 2 ; with < 0 see Definition 2.2).

Proof. We can assume that 0. We will divide the proof into three cases:

D 0: In this case, † must be a vertical cylinder over a complete curve of
geodesic curvature 2H onM2. /
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D 1: From 2.4), D 0 and H D 0, then † is a slice in H2 R or S2 R.

1 < < 0: We prove here that † 2 ; with < 0. From 2.5) we have

H i /A D
2p

AN; 5.1)

then

H2
C

2
D

4jpj
2

2 D H2 Ke

since jAj
2 ¤ 0 from 2.6), so Ke D

2 on †.
Thus, from 2.9), we have

4H 2
C 4 2

C 4 2/.1 2/ D 0: 5.2)

Now, using the definition of q, 5.1), 5.2) and Ke D 2, we have

q D
4jQj

2

2 D 4.H2
C

2/4jpj
2

2 C 4 2/2 4jAj
4

2

4
4 2

2
2 H C i /pAN

2
C 2 H i /pNA

2

.1 2/2
D 4.H2

C
2/.H2 Ke/ C 4 2/2

4

C 2. 4 2/.1 2/.H2
C

2/

D
1

4
4H2

C 4 2/.1 2/ C 4 2 2

D 0;

that is, q vanishes identically on †. Moreover, from 5.2), we can see that
4H2 C < 0, that is, < 0. Therefore, † 2 ; < 0.

6. Complete H-surfaces with q constant

Here, we prove the classification result for completeH-surfaces in E. ; / employed
in the proof of Theorem 3.1 and Theorem 4.1.

Theorem 2.3. Let † E. ; / be a complete H-surface with q constant.

If q D 0 on †, then † is either a slice in H2 R or S2 R if H D 0 D or

† is invariant by a one-parameter group of isometries of E. ; /

Moreover, the Gauss curvature of these examples is as follows.

– If 4H2 C > 0, thenK > 0 they are the rotationally invariant spheres.
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– If 4H2 C D 0 and 0, then K 0 and † is either a vertical planeDin Nil3, or a vertical cylinder over a horocycle in H2 R or PSL.2; C/.
– There exists a point with negative Gauss curvature in the remaining cases.

If q ¤ 0 on †, then † is a vertical cylinder over a complete curve of curvature
2H onM2. /

The case q D 0 has been treated extensively when the target manifold is a product
space, but is has not been established explicitly when ¤ 0. So, we assemble the
results in [AR], [AR2] for the reader’s convenience.

Lemma 6.1. Let † E. ; / be a complete H-surface whose Abresch–Rosenberg
differential vanishes. Then † is either a slice in H2 R or S2 R if H D 0 D
or † is invariant by a one-parameter group of isometries of E. ; /

Moreover, the Gauss curvature of these examples is as follows.

If 4H2 C > 0, thenK > 0 they are the rotationally invariant spheres.

If 4H2 C D 0 and 0, then K 0 and † is either a vertical plane inDNil3, or a vertical cylinder over a horocycle in H2 R or PSL.2; C/.
There exists a point with negative Gauss curvature in the remaining cases.

Proof. The idea of the proof for product spaces that we use below can be found in
[dCF] and [FM].

If H D 0 D from the definition of the Abresch–Rosenberg differential, we
have

0 D 4 /A2;
that is, 2

D 1 using 2.6). Thus, † is a slice in H2 R or S2 R.
If H ¤ 0 or ¤ 0, we have

2.H C i /p D 4 2/A2; 6.1)

from where we obtain, taking modulus,

H2 Ke D
4 2/2.1 2/2

16.H2 C 2/
: 6.2)

Inserting 6.1) in 2.5),

H C i / z D
1

4
.4H2

C 4 2/ 2/A;

and taking modulus,

j zj
2

D g. /2jAj
2 ; g. / D

4H2 C 4 2/ 2

4pH2 C
2

: 6.3)
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Assume that is not constant. Let p 2 † be a point where z.p/ ¤ 0 and let U
be a neighborhood of that point p where z ¤ 0 we can assume 2 ¤ 1 at p). In
particular, g. / ¤ 0 in U from 6.3). Now, inserting 6.3) in 2.6), we obtain

D
4j zj

2

.1 2/g. /2
: 6.4)

Thus, putting 6.2) and 6.4) in the Jacobi equation 2.9)

z Nz D 2 j zj
2

1 2
: 6.5)

So, define the real function s WD arctgh. / on U. Such a function is harmonic
by means of 6.5), thus we can consider a new conformal parameter w for the first
fundamental form so that s D Re.w/, w D s C i t

Since D tgh.s/ by the definition of s, we have that s/, i.e., it only
depends on one parameter. Thus, we have s/ and T T.s/ from 6.4)
and 6.3) respectively, and p p.s/ by the definition of the Abresch–Rosenberg
differential. That is, all the fundamental data of † depend only on s.

Now, let U be a simply connected domain on † and V R2 a simply connected
domain of a surface S so that 0 W V U E. ; / We parametrize V by the
parameters s; t/obtainedabove. Then, the fundamental data see[FM], Theorem2.3)

f 0; p0; T0; 0g of 0 are given by

8ˆ̂̂<
ˆ̂̂:

0.s; t/ D s/;
p0.s; t/ D p.s/;

T0.s; t / D a.s/@s;

0.s; t/ D s/;

where a.s/ is a smooth function.
Let Nt 2 R and let i

Nt W
R2 R2 be the diffeomorphism given by

i
Nt

s; t/ WD s;t C Nt/;

and define
Nt WD 0 B i

Nt
Then, the fundamental data f Nt; pNt; TNt; Nt g of

Nt
are given

by

8ˆ̂̂<
ˆ̂̂:

Nt
s; t/ D s/;

pNt s; t/ D p.s/;

TNt s; t/ D a.s/@s;

Nt
s; t/ D s/;

that is, both fundamental data match at any point s; t/ 2 V. Therefore, using [D],
Theorem 4.3, there exists an ambient isometry

Nt W E. ; / E. ; / so that

Nt B 0 D 0 B i
Nt

for all Nt 2 R;
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thus the surface is invariant by a one parameter group of isometries.
Let us prove the claim about the Gauss curvature. Using the Gauss equation 2.2)

in 6.2), one gets

H2
C

2
C 4 2/ 2 K D

4 2/2.1 2/2

16.H2 C 2/
:

Set a WD 4.H2 C 2/ and b WD 4 2, then one can check easily that the above
equality can be expressed as

4aK D a2 b 2
C .2a C b/2 .2a C b.1 2//2 : 6.6)

So, if 4H2 C > 0 then a > jbj andK > 0, that is, † is a topological sphere

since it is complete. If 4H2 C D 0, a D b and the equation reads as

4aK D a2.1 .1 C
2/2/;

that is, † has a point with negative Gauss curvature unless 0.
If 4H2C < 0, one can check that a2 b2 D a b/.aCb/ < 0since aCb > 0

and a b < 0. So, if inf†f
2

g D 0 then, from 6.6), † has a point with negative
curvature. Therefore, to finish this lemma, we shall prove the following

Claim. There are no complete constant mean curvature surfaces in E. ; / with
4H2 C < 0, q 0, K 0, and inff

2
g D c > 0.

Proof of the Claim. Assume such a surface † exists. Since we are assuming that

K 0 and † is complete, then † is parabolic and noncompact. If † were compact
we would have a contradiction with the fact that inf†f 2

g D c > 0and 4H2 C < 0.
Since q vanishes identically on †, arctanh. / is a bounded harmonic function on

† and so is constant. So, the projection
W † M2. / is a globaldiffeomorphism

and a quasi-isometry. This is impossible since † is parabolic and M2. / < 0, is
hyperbolic. Therefore, the Claim is proved and so the lemma is proved.

Proof of Theorem 2.3. We focus on the case q ¤ 0 because Lemma 6.1 gives the
classification when q D 0.

Suppose is not constant in †. Since q D c2 > 0, we can consider a conformal
parameter z so that h ; i D jdzj

2 and Qdz2 D c dz2 on †. Thus,

Q D c D 2.H C i /p 4 2/A2 :

First, note that we can assume that H ¤ 0 or ¤ 0, otherwise would be
constant. So, from 2.5), we have

H C i / z D H2
C

2
C

4 2

4
.1 2/ A cAN;
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where we have used 2.H C i /p D c C 4 2/A2. That is,

16.H2
C

2/kr k
2

D g. / C 4c/2 .1 2/; 6.7)

where

g. / WD 4H 2
C 4 2/ 2

: 6.8)

From 2.10), † is flat and H2 Ke D H2 C
2
C. 4 2/ 2 by 2.2), joining

this last equation to 2.8) we obtain using the definition of g. / given in 6.8)

kr k
2

D
g. /2

4. 4 2/ C
2g. /

c2

4 2
: 6.9)

Putting together 6.7) and 6.9) we obtain a polynomial expression in 2 with
coefficients depending on a WD 4.H2 C 2/, b WD 4 2 and c:

P. 2/ WD C.a; b; c/ 6
C lower terms D 0;

but one can easily check that the coefficient of 6 is C.a; b;c/ D a 1b2 ¤ 0, a

contradiction. Thus is constant, and so, by means of Theorem 2.2, † is a vertical
cylinder over a complete curve of curvature 2H.

7. Appendix

Let † be a connected Riemannian surface. We establish in this Appendix a result
which we think is of independent interest, concerning differential operators of the
form C g, acting on C2.†/-functions, where is the Laplacian with respect to
the Riemannian metric on † and g 2 C0.†/.

Lemma 7.1. Let g 2 C0.†/, v 2 C2.†/ such that krvk
2 hv2 on †, h is a

non-negative continuous function on †, and vCgv D 0 in †. Then either v never
vanishes or v vanishes identically on †.

Proof. Set D fp 2 † W v.p/ D 0g. We will show that either D ; or D †.
So, let us assume that ¤ ;. If we prove that is an open set then, since is

closed and † is connected, D †. Let p 2 and B.R/ † be the geodesic ball
centered at p of radius R. Such a geodesic ball is relatively compact in †.

Set D v2=2 0. Then

D v v C krvk
2

D gv2
C krvk

2 2.g h/ ;

that is,

2.g h/ 0: 7.1)
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Define WD min finf f2.g h/g ; 0g 0. Then, D satisfies

C D 2.g h/ 0;

where we have used 7.1).
Since we are assuming that v has a zero at an interior point of B.R/, 0 and

has a non-negative maximum at p, the Maximum Principle [GT], Theorem 3.5,
implies that is constant and so v is constant as well, i.e, v 0 in B.R/. Then

B.R/ and is an open set. Thus D †.
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