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Concavity of the Lagrangian for quasi-periodic orbits

JOHN N. MATHER

Abstract. Percival introduced a “Lagrangian” for finding quasi-periodic orbits. For suitable area
preserving mappings, we show that Percival’s “Lagrangian” is strictly concave with respect to an
appropriate affine structure on its domain. Consequently, the ‘“Lagrangian” admits a unique maximum
in the case of irrational frequencies.

Introduction

In [3, 4], Percival sketched a method of finding quasi-periodic orbits numeri-
cally, by maximizing a function, which he called the ‘“Lagrangian.” Percival was
looking for invariant tori. In the case we study in this paper (area preserving
mappings), the invariant tori would be invariant circles.

It is well known that frequently invariant circles (of a given frequency) do not
exist. But the author proved in [2] that, under suitable hypotheses, Percival’s
“Lagrangian’ always has a maximum, and there is an invariant set associated to
to this maximum. If there is an invariant circle of the given frequency, it contains the
invariant set associated to the maximum; otherwise, the invariant set associated to
the maximum is a Cantor set.

In this paper, we will show that for irrational frequencies, Percival’s “Lagran-
gian” is strictly concave with respect to a suitable affine structure on its domain.
As a consequence, we obtain that the maximum of Percival’s “Lagrangian” is
unique.

We impose slightly stronger hypotheses than in [2].

§2. Definitions and main results

We retain the notations and hypotheses on f from [2]. In addition, we suppose
that f is C* and df(x, y);/0y > 0. (Under the hypotheses of [2], this inequality need
not be strict.) We also suppose that p(fy) <w <p(f,).
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In [2], we proved the existence of quasi-periodic orbits of frequency w. These
were associated to a maximum of Percival’s “Lagrangian’ F,.

Let W denote the set of weakly order preserving, left continuous mappings
¢ :R — R such that ¢(t) - £ as t — o, Define I: W — W by

(x, y) € graph I(¢) & (y, x) € graph ¢.
In other words,

I(¢)(t) =sup{s: P(s)<t}.

When ¢ is a homeomorphism, I(¢)=¢ *. Obviously, I*=id.

We let Y, =1I(Y,). Thus, Y, is the set of weakly order-preserving, left-
continuous mappings ¢ :R—R such that ¢(x+1)=¢(x)+1 and ¢Y(fo(x)) =<
P(x) + o =P (fi(x)).

Obviously, Y, is a convex subset of the space of all real valued functions of a
real variable.

THEOREM 1. F_I:Y_,— R is a concave function.
The statement that F,_I is concave means that if ¢, ¢, € Y, and O0=s=1, then
(1—=3s)E I(o) + sE, I(Y) < F I((1—s)Yy+ s¢;). (2.1)
Let X_={¢eY, :¢(0)=0}. Then I(X_,)< X, and we have an identification
Y,=X_XR,

where Yy e Y, is identified with (¢ —¢(0), ¢(0))e X XR. From the translation

invariance of F,, (cf. [2, §3]), it follows that F_I(¢) = F I(¢— ¢(0)), for all ¢ € Y.
We let X__. denote the set of continuous ¢ € X_,.

THEOREM 2. If w is irrational, then F,_I:X_ — R is strictly concave.

In other words, if ¢y, s, are distinct members of X_ . and 0<s<1, then
(l - S)le(ll’O) + SFwI(d’l) < FwI((]- - S)ll/() + Sll’l)- (2-2)

For ¢, y € W, we set

d(&, ¢) =max {sgp inf |E—m), sup inf |€E—nl},
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where £ ranges over graph ¢, the element n ranges over graph ¢, and | | denotes
the Euclidean norm on R?. This may be infinite. However, we have

d(d1, d2)=d(d1, d3)+d(¢s, ¢2)
d(¢1, d2) =d(ds, d1)

d(db1, d2)=0

(b1, $2) =0 ¢1 =,

for ¢4, P, P36 W. In [2], we showed that the restriction of d to Y, is always
finite. In view of the conditions which d satisfies, this implies that d is a metric on
Y,. Likewise the restriction of d to Y is always finite, and d is a metric on Y.
Obviously I: Y, — Y, is an isometry.

We let w: Y, — X, denote the mapping defined by

() = ¢ —y(0).

We call 7 the projection of Y_ on X_. The subspace X of Y, is not closed. For
this reason, the induced topology and metric on X are not convenient; instead,
we provide X_ with the quotient topology associated to this projection and the
quotient metric d defined by

67(101, ) = a,ig}efnd(llll +a, Y +Db).

The triangle inequality for d is an easy consequence of

J(d’l’ Y) = éfgllf‘ d(yn+a, ¥,)= (}fel;f; d(¢,, Y+ a),

which, in turn, follows from the obvious translation invariance of d:

d(‘l’l +a’ ¢2+ a) = d(dll, d’Z)-

It is easily verified that the quotient topology on X (associated to the projection
ar) is the underlying topology of the metric d.

Provided with the metric d, the space X, is compact. For, wI: X, — X_ is a
continuous surjective mapping, and we proved in [2, §5] that X is compact.

In [2, §6], we proved that F,: Y, — R is continuous. Since I: Y_,— Y, is an
isometry, it follows that F_I:Y_,— R is continuous. Since F Iw = F_I, it follows
that F,I:X_,— R is continuous.



Concavity of the Lagrangian for quasi-periodic orbits 359

To summarize, F,I: X_— R is a concave, continuous function on a compact,
convex set, and it is strictly concave on X_. when w is irrational.

Since F_I takes its maximum only in X, this proves the uniqueness of the
maximum, when  1is irrational.

§3. Outline of the Proof of Theorem 1

We will say that ¢ € Y, is smooth if it is C? and its first derivative never
vanishes. We let Y, denote the set of smooth members of Y,. We will prove in
§§4, 5 that Y_, is dense in Y. Since F,_I is continuous on Y, and Y, is dense in
Y., (2.1) will follow if we verify it whenever ¢, Yy, € Y,

Suppose o, Y1 € Yo, Set ¢, = so+ (1= )¢, ¥ = — o, &, =4 '. We have

1
Fl) = [ W0, 6,0+ o) dt 3.1)
As we observed in [2,81], h is a C! function on B. We set

h oh
hqi(x, x') _o" (x, x"), hy(x, x") =— (x, x').
ox X

Since ¢, ¢; are C2, we have that ¢ (x) is a C? function of xR and s €[0, 1].
Since the first derivatives of ¢, and ¢, never vanish and both ¢, and ¢, are
weakly increasing, we have

everywhere. Hence, ¢,(t) is a C* function of teR and s €[0, 1]. Consequently,

L pat = [ [m6.0, 400 2201 1,0, 6,0+ @) 22T
§ 0
Obviously,

0= a(tbstbs)( )_atbs( )+ daps( )24: o,

where x = ¢,(t). Hence

. d
2 =2 ) /2 () i) [ 55
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since t=y,(x). Changing the independent variable from t to x in the first
summand of the above integral, we obtain

j .0, ¢, + o)) 228 4

d/(x)
dt/dx

=-—Ll 1(x, x'(s, x)) dt=— Jﬂhl(x, x'(s, x))(x) dx.

where x'(s, x) = ¢,(¥,(x) + w)). Similarly, the change of variables x = ¢ (t+ w)
gives

J ha(64 (1), 6, (1+ 0 ))w

¥(x)
dt/dx

-I hy(x(s, x), x) ~L hoy(%(s, x), X)(x) dx,

where x(s, x) = ¢, (¢, (x) — w)). Note that when we change variables, we may take
0 and 1 as the limits of integration, since everything under the integral signs in
periodic (in x and t) of period 1. From the formulas which we have just derived,
we obtain

1
-;s- F I(y,) = —L [h,(x, x'(s, x))+ ho(Z(s, x), x)Jé(x) dx. (3.2)

From the fact that f is C! and 3f(x, y),/dy >0, we obtain that the functions g
and g’, defined in the introduction of [2], are C' on B. In view of the definition of
h given in [2, §1], it follows that h is C? on the interior of B and the second
partial derivatives of h extend continuously to the boundary of B. We set

2

9°h
hy(x, x') =
12( ) ax ax'

(x, x".

Set f(x,y)=(x',y'). Taking x and y as independent variables, our “twist”
condition on f states dx’'/dy > 0. Recall that the “twist” condition implies that for
(x, x") € B, there exists unique y, y’' € [0, 1] such that f(x, y) =(x’, y'). Thus, we may
take x and x’ as independent variables, and the condition dx'/dy >0 becomes

ag("”‘)z."bi?()_
ax’ ax
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Since oh(x, x")/ox = g(x, x"), by the definition of h, it follows that
hix(x, x") >0, (3.3)

for all (x, x") e B.
From (3.2), we obtain

d2
d2

ax’(s x) T i (E(s, %), x)ax(s X)

FI(p) = — j [t 26,2 it dx

From the definition of x'(s, x), we obtain

%3;_’ acbssz( Vo)t d)s(([;s(x)er)ll/(x)
Moreover,

0= 28 ) 8y () + L (g, (o),
o

% () +0) =~ 2 (0 + @) (5, ),
Hence

ax'(s X)

[ st x5, 00 2222 ) i
-| ax, x'(5, %)) d"’s("’ﬁf JF9) i) — (s, 2 J(x) dx.

From the definition of x(s, x), we obtain

=2 g0 -w)+ "’swfs(x) ©) - (%)
S as
b,

(tbs( ) — @) (x)— g(x(s, x))].



362 JOHN N. MATHER

Hence,

ax(s x)

j hq2(X(s, x), x) (x) dx

r1

= hlz(X(S,
J0

(x) — @) (x) — P(x(s, X)) (x) dx

- [ ha(x, x'Gs, X)) 49,

(tlfs(x))[tlt(x'(s X)) — g(x) ] (x'(s, x)) dx'(s, x)

r1

=1 hp(x, x
Jo

(x)+ @)[W(x'(s, x))— P(x) W (x'(s, x)) dx,

since

dx'(s, x) d(bs ¢,
20 B 4,01+ ) 2 4,0,

Combining the above integrals, we get

d2
d2

do,

4 E )= - L s, X' 1) 52 (4, () + @) (5, 1)~ 00T

(3.4)

In view of the fact that h,, and d¢,/dt are everywhere positive, we get

d2

252 To I(¢) <0.

Since this is satisfied for 0 <s =1, we obtain (2.1).

The only thing which remains to be done in order to finish the proof of
Theorem 1 is to prove that Y, is dense in Y.
§4. Proof that Y, is dense in Y __

DEFINITION. We let Y__. denote the set of continuous Y€ Y.

LEMMA. There exists a homeomorphism €Y, and >0 such that

P(fo(x)) +8 =p(x)+ o =¢(f1(x))— 8. 4.1)
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Proof. When o is irrational, let go=p*(fo+¢€), g, =p*(f;—¢), where p is a
bump function, i.e., p is infinitely differentiable, p =0 everywhere, [ p =1, and
supp p is contained in a small interval [—8, 8] above the origin. Here, u *v denote
the convolution of u and v, i.e.,

oo

o)) = u@®ox-8 d= [ ute-op() de

—00

We suppose € >0 and then choose 6 >0 such that
|x—x'| <8 > |fi(x) - fi(x)|<e

i=0,1. Then g is infinitely differentiable, g (x+1)=g;(x)+1, and dg/dx >0
everywhere, for i =0, 1. Moreover, g,>f,, 2 <f:, by our hypotheses on 8§ and
the assumption that supp p =[-8, 8]. Obviously, g — f,, uniformly as € — 0, so

p(g)— p(f).

In view of our standing assumption that p(fy) <w <p(f,), we may choose ¢
and the bump function p such that p(gy) <w <p(g,).

Let g, = (1—5)g,+5sg,. Then p(g,) is a continuous function of s, so there exists
s(0), satisfying 0 <s(0) <1, such that p(g) = w, where g = g,. Clearly, g is a C~
diffeomorphism and g(x+1) = g(x)+ 1, so there exists a homeomorphism ¢:R —
R satisfying ¢(x +1)=¢(x)+1, and

Pg(x) =¢(x)+ o,

for all x eR, by Denjoy’s theorem [1].
From the construction of g, it is obvious that there exists §, >0 such that

fo(x)+8; < g(x)<fi(x)— 8y,

for all x eR. Since  is a homeomorphism and ¢(x + 1) = ¢(x)+ 1, it follows that
there exists 8 >0 such that

Y(x+8)>¢(x)+8,  P(x—38y)<¢P(x)-3,
for all x eR. Then
P(folx)) + 8 < P(fo(x) + 8;) < P(g(x)) = (x) + w < Y(fy(x) — 8;) < Y(fi(x)) - §,

proving our assertion.
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Proof when w is rational. Let w,, @, be irrational numbers such that

p(fo) <we<w <w; <p(fy).

By what we have just proved there exist homeomorphisms ¢, ¥; € Y, and 6 >0,
such that

P; (fo(x)) + 8 = ¢ (x) + w; = ¢ (f1(x)) — 6, i=0,1.

Let A be such that
o =(1-Nwy+Aw;.
Then ¢ =(1—A)Yy+ AY; has the required properties. [

End of proof that Y, is dense in Y_.. Let € Y. and let ¢ be as in the
lemma. Let ¢, =(1—s)¢+sy,. Then ¢, is a homeomorphism in Y, satisfying

¥ (fo(x)) + (1 —5)8 = ¢, (x) + o =< ¢ (f1(x)) — (1 - 5)8. (4.2)

If p is a bump function (as above), it is clear that p*¢, is C* and has
non-vanishing derivative everywhere. Moreover, as supp p — {0}, we have
p * ¥, — ¥, uniformly; in particular, we have p*ys € Y,,, when supp p is small
enough. Since Y, — ¢ as s — 1, this finishes the proof.

§5. Proof that Y__is dense in Y,

Let Y,€Y,. Let ye€Y, be as in the lemma of §4. Let ¢, =(1—s)¢ + s¢;.
Obviously, ¢, satisfies (4.2) and is strictly increasing. If ¢’ :R — R is left continu-
ous, weakly order preserving, satisfies ¢'(x+1)=¢'(x)+1, and |¢'(x)— ¢ (x)|<
(1—5)8/2, then ¢'e Y,. Obviously, there exists such a ' such that ¢’ has only
finitely many discontinuities in [0, 1), and is strictly order preserving. Since we
may take s, arbitrarily close to ¢, and ¢’ arbitrarily close to s, it follows that any
member of Y, may be arbitrarily well approximated by a member which has only
finitely many discontinuities in [0, 1) and which is strictly order preserving.

So, we suppose from now on that ¢; has only finitely many discontinuities in
[0, 1) and is strictly increasing.

One of the conditions for ¢, to be in Y is

P1(fo(x)) = ¢ (x) + 0 < ¢ (f1(x)).
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This implies the two conditions:

P (fo(x) —o =g (x)= ¢ (fo' (X)) + @ (5.1)
(f1' (%) + o < ¢y (x) = ¢ (f1 (%)) — 0. (5.2)

This leads us to introduce the following two quantities:

L{¥y, x) =min (¢ (fo'(x) =)+ o, §(f;(x) —) — )
Uy, x) =max (¢, (fo(x) +) — o, ¢ (fi ' (x) +) + ).

LEMMA 5.1. Let x, be a point of discontinuity of {,. Let >8>0, and
suppose X, is the only point of discontinuity of Y, in [x,— 8, xo+ 8]. Then there exists
Y'e Y, arbitrarily close to ¢, such that ¢' is strictly increasing, ¢' =, on
[xo+8, xo+1—8], and the following holds: If U(y, xo) <L (¥, o), then ¢’ is
continuous in [x,—8, xo+8]. If L({y, xo) < U(Y, xo), then x, is the only point of
discontinuity of /' in the interval [x,— 8, xo+ 8], and

¥'(xo—)=L{1, x0),  ¥'(xo+)=U(y, xo). (5.3)

Proof. Consider ¢’ which is left-continuous, strictly order preserving, and
satisfies ¢'(x+1)=¢'(x)+1 and ¢' =¢, on [xy,+ 8, xo+1—8]. For ¢/ to be in Y,
it is enough that (5.1,2 — with ¢, replaced by ') be satisfied for x € [x;— 8, xo+ 8].
When fo(xo)—xo¢Z and f,(xy)—xo¢Z, it is possible to alter ¢, in a small
neighborhood of x, without changing it near fy(x,) or fi(x,). Conditions (5.1, 2)
then become

P (fo(x)—o=¢'(x)=¢;(fo' (x)+w (5.4)
P (f11(x) — o =¢/'(x) = ¢y (f1(x)) — o, (5.5)

where it is enough that these conditions should be satisfied in the set of x where
Y’ differs from ;, which may be taken to be an arbitrarily small neighborhood of
xo. It is easy to see that there exists such a ¢’ which is continuous on [x,—8, xo+
8] except possibly at x,, is continuous at x, if U(ys,, Xo) = L(¥;, X,), and satisfies
(5.3), otherwise.

If fo(xo)—x0€Z, then fy(xo) — xo =p(fo) <w. In view of the periodicity condi-
tion on ¥, condition (5.1), for ' in place of ;, may be rewritten as

Y (fo(x) - =¢'(x)=y¢'(fi(x)+a, (5.6)
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where f{=fo—p(fo) and o' =w —p(f,). Then x, is a fixed point of f; and w'>0.
When f(xo) — xo ¢ Z, then we must satisfy (5.5) and (5.6), when ¢’ is an alteration
of ¢, in a sufficiently small neighborhood of x, (and its translates). In this case, it
is easy to see that we can make the alteration so that ¢ is continuous in
[xo—8, xo+ 8], no matter what L (¢, xo) and U(y, x,) are. (Of course, we could
also arrange for (5.3) to hold, if we prefer.)

There are two more cases to be considered: namely, f,(x,)—x0€Z,
folxo)—x0¢Z and fi(xg)—x0€Z, fo(xo) —xo€Z. But these may be treated in
exactly the same way as the case which we just studied. [

Now consider the following procedure. Let x,...,x, be the points of
discontinuity of ¢, in the interval [0, 1). Use Lemma 5.1 to change ¢, in a small
neighborhood of x;. This gives ¢, € Y, which may be taken arbitrarily close to ;.
The new element has discontinuities only at x,,..., x, and at x,. The jumps at
X5, ..., X, are the same as before. The jump at x, is no larger than before.

Next use the lemma to change ¢, in a small neighborhood of x,, getting a new
element {5, just as before. Continue this process, making alterations successively

at xs,..., X,, getting new elements ¢, ..., ¢, 1. If ¢, still has discontinuities,
start over at x; and then run through x,,...,x, just as before, getting
Unaos -+ o s Yoni1- If Py, 44 still has discontinuities, start over again at x;, etc.

LEMMA 5.2. If w is irrational, this procedure stops after finitely many steps,
and gives a continuous ¢ € Y, arbitrarily close to ;.

Proof. Let K;=;(R), U, =R\K,, J,=((x;—), ¢(x;+)), i=1,...,n For
fixed i, we have that U, is thg disjoint union of the T (J;), where j=1,...,n,
where k ranges over all integers, and T is translation by one.

Consider a positive integer | and write [ =qn+r, where ,qeZ and 1=r=n.
From the construction we have given of .4, it is clear that

Jivri= Ty, J#FT

SUBLEMMA. If either t+w¢ U, or t—w¢ U, then t¢ J,,4,.

PrOOf. If L(‘l’b xr)Z U(‘l’b xr): then Jl+1,r= @ SO: W€ may Suppose L(llll: xr)<
Uy, x,). Since fo(x) <fi(x), we have

U(fo(x)+H)—w=¢(f(x) ) o
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Since 7' (x0) <fo'(x,), we have

Y (f1'(x)H)+to=¢h(fi'(x)-)+o.

Since L(yy, x,) < U(¢y, x,), we must have one of the following two possibilities:

L@, x,) = ¢(fo'(x,) )+ o
U(n, x.) = h(fo(x)+) —w (5.7)

or

Ly, x,) =¢(f1(x,)—)—w
U, x,) =t (f{'(x)+) + @ (5.8)

Suppose (5.7) holds and t—w¢ U,. Since te€J,, we have that ¢4(x, +)>t. By
(5.1), with ¢, replaced by ¢, we have

d(fo'(x,)+) >t~ w.
Since t—w¢ U, this implies
w(fo'(x)-)=zt—w.
Hence, L(y, x,)=t, and t¢ J,,,,, by construction of ¢ ;.

Next, suppose (5.7) holds and t+w¢ U, Since t € J,,, we have ¢;(x, —)<t. By
(5.1), with ¢, replaced by ¢4, we have

Y (folx,) —)<t+o.

Since t+w¢ U, we have

P (folx)+)=t+w.

Hence, U(yy, x,)<t, and t¢ J,,,,, by the construction of ¢j,;.
We have thus proved the sublemma when (5.7) holds. The case when (5.8)

holds may be treated in the same way. [

End of the proof of Lemma 5.2. K, has non-empty interior, because y; has
only finitely many jumps and is strictly increasing. Since  is irrational, it follows
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that there is a positive integer N such that for any t€R, there exists a €Z,
|a|=N, such that t+aw € K,. Then te K, ., by the sublemma. Hence K .=
R, and our procedure stops after finitely many steps, as we asserted. []

By Lemma 5.2, Y  is dense in Y_, when w is irrational. Now we will prove
that Y. is dense in Y_, when w is rational, using the fact that it is dense when w
is irrational.

Suppose w is rational, and let ¢, € Y,. Let ¢y Y, satisfy (4.1). Let ¢, =
(1—s)y+sy,. Then

Y. €Yy, for |o—ow|<(1-s)s.

Choose irrational numbers w, and w; such that p(fy) <w,<w <w;<p(f;) and
lw; —w| <(1-5)8, for i =0, 1. By what we have just finished proving, there exist
Y, Y1 arbitrarily close to ¢, such that

! _— ! —
Vo€ Y L 0yer Y1€ Yo a)e-

Define A by @ =(1—A)wye+Aw;. Then 0<A <1. Set ¢'=(1—A)¢P{+ A;. Obvi-
ously ¢’ € Y,,..

Since we may choose s, arbitrarily close to ¢, and ¢, ¢ arbitrarily close to
Y., it follows that this procedure produces ' arbitrarily close to ;.

This finishes the proof that Y__is dense in Y_. [

In §3, we showed that if Y is dense in Y, then Theorem 1 is true. In §4, we

showed that Y, is dense in Y. In this section, we showed that Y. is dense in
Y.,. We have thereby completed the proof of Theorem 1.

§6. Outline of the Proof of Theorem 2

We set
AW, ¥1) = L [ELI(0,) — SELI(Wo) — (1 $)Eu ()] dx.

This is the area bounded by the graph of the function s +— F_I(y,) and the graph
of the function s~ sF_ I()+(1—5s)F_I(¢,). By Theorem 1, A(¢o, ¥;)=0 and
the necessary and sufficient condition for (2.2) to hold is that A (¢, ¢;)>0.
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Suppose ¢, ¥, € Y. Integration by parts gives

Ao, ) = —L (s =5 Folwn) + L) - ELI(00) ) ds.

A second integration by parts gives

1 _ 2
sU=9) d° & 1) ds

A(l’lo, d’l)z—'L 2 ds2 ()

Using (3.4), we obtain

de,
dt

Alio, "’I)ZL L SU9) - x'Gs, 1)) B2 (0 (1) + )5, %)) — ()P dlx .

2

Recall that x'(s, x) = ¢, (¥, (x)+w). In other words, x"=x'(s, x) is the unique
solution of the equation

P (x") = Y (x) + o,
ie.,
(1= 8)po(x") + sy (x") = (1 = $)o(x) + st (x) + . (6.1)

We wish to express the integral in terms of independent variables x and x'.
Observe that (6.1) is equivalent to

_ Po(x) — ho(x') + w (6.2)
d(x)—d(x)

Hence

.r sd-s) hio(x, x'(s, X)) %% (¢ (x) + @)[ (x5, X)) — d(x) T ds
0

2
£ (%) . .

- UG 0t ) G O+ )T [ 2|63
o(x)
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where s is given by (6.2), and

_s(1-5)
===

=0, otherwise.

U(x, x") if 0=s=1,

Of course, we must assume (x’) # gs(x) for this to make sense.

Note that for any fixed xR, there are three possibilities, according to
whether x'(0, x) > x'(1, x), x'(0, x)<x'(1, x), or x'(0, x) =x'(1, x). In the first case,
U(x, x") #0 is equivalent to x'(1, x)<x'<x'(0, x). For x' in this range,

Po(x") < o(x'(0, x)) = Po(x) + @
Pi(x)> P (x'(1, %)) = 1 (x) + o,

so we obtain (x’)> y/(x). Moreover, s is a strictly decreasing function of x’, for
x'(1,x)=x'=x'(0, x), in view of (6.2). This justifies our change of variables in
(6.3), in the first case.

In the second case, U(x, x") # 0 is equivalent to x'(0, x) <x'<x'(1, x). For x’ in
this range, we have

PYo(x") > o(x'(0, X)) = Yo(x) + @
P (x") <y (x'(1, x)) = ¢, (x) + o,

so we obtain (x')< ¢(x). Moreover, s is a strictly increasing function of x’, for
x'(0,x)=x'=x'(1, x), in view of (6.2). This justifies our change of variables in
(6.3) in the second case.

In the third case, U(x, x')=0 except for x'=x'(0, x)=x'(1, x), where it is
undefined. Then

Po(x") = o(x) + @
Pi1(x") = ¢ (x) + o,

so we obtain $(x’) = ¥(x). Moreover, ¢,(x') =, (x)+w, for all 0=s=<1, so we
obtain x'=x'(s, x). It follows that the integral on the left side of (6.3) vanishes.
The integral on the right side of (6.3) also vanishes, since the integrand vanishes
everywhere except at one point, where it is undefined. Thus, (6.3) holds in this
case, too, even though the change of variables argument does not apply.
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From ¢ (x')—y,(x) = w, we obtain

dis
dx’

(P (x") = g(x)) ds +=—= (x') dx’ =0,

when x is held constant. Moreover, since ), = ¢!, we have

W) _ (b )

dx’ dt

Hence
ds | (do, o -1
= (FE w0 i) - i)

Hence the right side of (6.3) equals

fi(x)

U(x, x")hya(x, x') [(x") = @(x)] dx’.
folx)

Substituting this in the equation we obtained previously for A (y,, ¥,), we get

10 (£, ' ,
Ao, ¥) = L [ jf UGk xhyale, 3 hitx) — 0] de’ | v 6.4)

o(x)

The possibility that (x’) = ¢s(x) for some values of x and x’ causes no difficulty,
since in the above calculation, both sides contribute 0 on the set of (x, x) for
which §(x') = @ (x).

In order to finish the proof of Theorem 2, two further steps are enough. First,
we will show that (6.4) is valid for all ¢, ¢ € F,,. (So far, we have shown it only
for ¢, ¥, € F,,.) For this it is enough to prove that the right side of (6.4) is
continuous on F_ X F_. For, we have proved that Y_, is dense in Y_ (8§84, 5).
Moreover, the left side of (6.4) is continuous in (@, ¥,) € Y, X Y, in view of the
definition of A (s, ¥;) and the fact that F_I is continuous on Y (§2). The proof
of the continuity of the right side of (6.4) will be carried out in §7.

Second, we will show that (6.4) implies that if A(¢o, ¥;)=0 and ¢, is
continuous then i, = Y, + constant (§8). This will finish the proof of Theorem 2.
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§7. Proof of (6.4) for all ¢, Y, €Y,

As we just observed, it is enough to prove that the right side of (6.4) is
continuous in ¥, and .

Let 0<8<1072. Let g, ¥y, Yo, ¥1€ Yo,. We suppose that d(¢s, ¢}) <8, for
i=0,1.

Let 8, =v8+86. If yi(x)—u(x)=8,, then ¢;(x +8)=y;(x)++8. At a point x
where (x)—(x)=8,, the variation of y; over the interval [x, x +8] is =+8.
Since the total variation of ¢ over the interval [0, 1] is =<1, it follows that
{x [0, 1]: ¢i(x)— ¢(x)=8,} can be covered by at most [6 *]+1 intervals of
length 8. Hence, we have the following estimate for its measure:

p{x €0, 1]: ¢ri(x) — d(x) = 8,} = 8([6 ]+ 1) =35,.
Here, u denotes Lebesque measure. Likewise,

pix [0, 1]: u(x) — ¢Pi(x) = 8,} = 8,
wix € [fo(0), fi(D]: ¢i(x) — g (x) = 8,} = N3,
p{x € [£o(0), fi(D]: ¢s(x) — ¢i(x) = 6,} = N8§,,

where N is the smallest integer greater than |f,(1)— fo(0)).
Let ¢'=¢1—y,. If

|1 (x") = ()| = |’ (x) — ' (x)|| = 484,

then we must have at least one of the four inequalities
| (x) — ¢i(x)| = 84, i=0orl,

or
i (x) = i(x)|=8;, i=0orl.

The Lebesque measure of the set IT of (x, x") €[0, 1]x[fy(0), f;(1)] where one of
these four inequalities holds is <8N&d;.
Let U’ be defined in terms of ¢ and ¢ in the same way as U was defined in



Concavity of the Lagrangian for quasi-periodic orbits 373

terms of ¢, and ;. In other words,
_s'(1-5%")
2 -}

=0, otherwise,

U'(x, x") if0=s'<1,

where

B d(x) + o
V&)= x)

Then
U-U'|=z|s—s|
|o(x) — tl/o(?c)| + lll'{)(x') — Yo(x")]
2 [g(x") — ¢(x)| ’
where C is an upper bound for |¢go(x)—yo(x)+w|, for x€[0,1] and x'e

[fo(0), f1(1)]. In view of the fact that ¢ is weakly increasing and satisfies

Po(x +1) = ¢{(x)+1, such a bound exists and is independent of . From this, we
obtain

=3C(¢' (x) = ') = [ (x) —d(x)[ ) +

|U = U'|<8C8, |dh(x") = dr(x)| >+ 8 |dr(x") — s (x)| ", (7.1)
if

s () —i(x)| =<8, and |¢(x)—¢i(x)<8;, i=0,1 (7.2)
and

88, =|d(x")— g(x)|. (7.3)

Let M =max {hx(x, x"):0=x =1, fo(0) = x’=f,(1)}. This maximum exists and
is finite because h,, is continuous (§3) and hy(x +1, x'+1) = hy,(x, x').
Writing A*(y,, ¢,) for the right side of (6.4), we find

A%, )~ A* G, )
1r rf,(x) . . ) )
=[ [ m0d) - il ax | ax

o(x)

1 pf,60 , .
+L U; M |U'(x, x)— U(x, x| |(x") — ¢p(x)] dx’] dx,

o(x)
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in view of M= h,,>0 and 0 < U’ <3, everywhere. We estimate the first summand
on the right side by breaking it into two parts: the integral over II and the integral
over the complement €I1 of II.

Our hypothesis that d(y;, ¢}) <8 <1072 implies that

i) — ¢ (x)| <1+ 1073 <2,
for all xeR, in view of the fact that ¢, and ] are strictly order-preserving and
satisfy the periodicity properties ¢ (x +1) = ¢;(x)+ 1, ¢i(x +1) = ¢i(x)+ 1. Conse-

quently, the integrand J; is the first integral is =<4M, everywhere. Since the
Lebesque measure of II is =<8N§,, we obtain

JJ’Jl dx dx'=32NMs, .

I

By definition of I, (7.2) holds on €Il. Hence J, <2MS$, and
Jjjl dx dx'_<—2MN81.
€n

We estimate the second summand on the right side by breaking it into three
parts: the integral over II, the integral over the set II; of (x, x') € €I such that

8V, =|d(x) — ¥(x)|, (7.4)

and the integral over the set I, of (x, x") € €I such that (7.4) does not hold.
It is easily seen that

lf(x")—ds(x)| <2, everywhere,

in view of gs(x+1) = ¢s(x), and the fact that the variation of ¢ over [0, 1] is <2.
Hence the integrand J, of the integral in the second summand is <2M
everywhere. It follows that

JJ'JZ dx dx'S 16NM61.

I

If (x, x") € IT,, then (7.3) holds by (7.4) and the fact that §, <1. Moreover, (7.2)
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holds because (x, x") € €I1. Hence, (7.1) holds. From (7.1) and (7.4), we get
J,=CMV8,+ M8,
on II,. Hence
Ijlz dx dx' = MN(CV8,+8,).
11,
On II,, we have 1258Mx/61. Hence
”Jz dx dx' =8MNWV§,.
1,

Combining all these estimates, we get

|A*(W, ¥1)— A*(Wo, Y1) = C V8,

where C; =(59+ C)NM. Here we use the fact that §, <v§,, since 6, <1.
Since this was obtained under the hypothesis that d(¢;, ¢i)<$8, i =0, 1, and
V8, =(V8+8)"2— 0 as & — 0, it follows that the right side of (6.4) is continuous

in ¥, and .
Hence (6.4) holds for all ¢, Y€ Y,,.

§8. End of the Proof of Theorem 2

Suppose w is irrational.
Suppose that there exists (x, x') € B such that

P1(x) > (x)+o  and  Po(x) <yo(x)+ @ (8.1)
or
P (xX)<yYy(x)+w and Po(x')> Po(x) + w. (8.2)

In this case, we have U(x, x')>0 and |¢(x)— §(x")| >0, and these inequalities still
hold everywhere in a sufficiently small neighborhood of (x, x'). It follows that

Ao, Y1) >0.
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Suppose that there is no (x, x") € B such that (8.1) or (8.2) holds. Let ¢, = I(y),
i =0, 1. (See §2 for the definition of L) Since neither (8.1) nor (8.2) ever holds and
Yy is continuous,

d1(t1) = do(to) = ¢1(t; + @) = Po(to + ).

Since ¢;(t+1)=¢,(t)+1, and w is irrational, we obtain that ¢, = ¢,T,, for some
acR, where T,(x)=x+a. Hence, ¢y =yp+a. If ¢, Yo X,., we must have

¥ = Yo.
We have proved: if ¢, ¢; € X,,. and w is irrational, then either A (Y, ¥,) >0 or

Yo=¢. So, Theorem 2 holds. [
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