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On the Euler class of représentations of finite groups over real
fields

Beno Eckmann and Guido Mislin

Introduction

For représentations of finite groups over the rationals Q there îs a uniform
bound, depending on the degree m of the représentation only, for the order of the
Euler class This has been proved in [E-M], and the best possible such bound was
shown there to be Em denominator of BJm if m îs even, where Bm îs the m-th
Bernoulli number (and, of course, Em 2 if m îs odd) The Euler class of a

représentation p G-*GLm(R) îs an élément of Hm(G,Z(p)), Z(p) being the

group of integers turned into a G-module by multiplication with sgn det p and
hence a trivial G-module if and only if p îs "orientable "

In the présent paper we discuss analogous bounds for représentations reahza-
ble over an arbitrary real field KcR instead of the rationals Q The universal
bound îs expressed in terms of a certain operator ^K(m) on finite Abehan groups,
depending on K and m only <£K(m) îs defined (cf Section 3 1), for each prime p,
bv îts action on p-torsion This action dépends on the degree çK(p) °f lne P"tn
cyclotomic extension of K, and on a further invariant YK(p)eNU°° attached to
K and p, cf Section 2 2 The main theorem states that if the représentation p
of a finite group G, of degree m, îs reahzable over K then

Moreover WK(m) îs best possible in that sensé
We mention hère some properties of the operator %K{m) If m îs not divisible

bv <Pk(p), then ^K(m) îs the îdentity operator on p-torsion, thus (*) just expresses
the fact (Proposition 2 1) that in that case the p-component of e(p) îs 0 If m îs

divisible by <pK(p), one has two différent possibilités Either yK(p) œ, then

^k(hi) annihilâtes p-torsion, and (*) tells nothing about the p-component of e(p)
in fact, there îs, in that case, no universal bound for the order of the p-component
of e(p) (Corollary 2 4) Or yK(p)<0C> tnen ^k(w) is, on p-torsion, multiplication
by p^c(p)+^ where vp is the exponent of p in the prime décomposition of m
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320 BENO ECKMANN AND GUIDO MISLIN

If we assume Yk(p)<oc f°r a^ primes p, and if çK(p) divides m for a finite
number of primes p only, then %K(m) can be replaced by multiplication with the

integer EK(m) lcm{n\m =0 mod çK(n)}. For K Q, EQ(m) Em is the integer
mentioned above. The assumption is fulfilled for ail real number fields K.
Statement (*) then tells that the order of e(p) divides EK(m), for ail finite groups
and ail K-representations of degree m; and this bound is best possible.

If a représentation p:G—»GLm(R) is not known to be realizable over a

subfield of R fixed in advance, we show that (*) still holds if one takes for K a

field containing the values of the character of p (without assuming p to be defined

over KcR). In particular we show (Theorem 3.8) that

EQ(x)(m)e(p) 0

where Q(x) dénotes the field obtained from Q by adjoining the values of the
character x of P-

We also obtain a bound for the order of e(p) of an arbitrary real représentation

p in terms of the exponent exp (G) of G (Theorem 3.9):

™exp(G)e(p) 0

for p:G—»GLm(R), m even.

1. K-representations of finite p-groups

1.1. Let G be a finite group, and K a subfield of the field C of complex
numbers. For a complex character ^ of G we dénote by K(x) the Galois field
extension obtained by adjoining to K ail values of \- I*1 case X is C-irreducible,
K(x) is isomorphic to the center of AK{x), the unique simple component of the

group algebra K[G] on which x is non-zero. If X\ an<3 X2 are two C-irreducible
characters of G, then AK(x\) AK(^2) if and only if X\ and X2 are Galois-
conjugaie over K, which means that there is a cr^Gal (K(xi)IK) such that
X2(g)= cXiig) f°r all g^G. The K-irreducible characters of K-representations of
G are the characters of the form

where x *s C-irreducible and the sum is extended over ail <r€Gal(K(x)/K), and
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where sK(x) dénotes the Schur index of \ over K (we recall that AK(\) 1S a

matnx algebra over a division algebra D, and that sK(\)2 is the dimension of D
over îts center K(\))

1 2 The following resuit (cf [E - M], Theorem 1 3) reduces the discussion of
K-representations of finite p-groups to p-groups of very spécial types

THEOREM 11 LetGbea finite p-group, and p G->GLm(!C) an irreduable
représentation over K <= C Then either p is induced, or p factors through a faithful
représentation p G—>GLm(X) of a factor group G of G which is of one of the

following types

Cp-, a ^0 (cychc of order pa),
Q2«, a ^3 (generahzed quatermon group of order 2a),
D2«, a ^4 (dihedral group of order 2a), or
SD2«, a ^4 (semidihedral group of order 2a)

In order to détermine the degrees of the faithful irreducible K-representations
of thèse groups of spécial type, we use two invariants of K

DEFINITION 1 2 Let K(n) dénote the "n-th cyclotomic extension of K",
î e the field obtained by adjoining to K the n-th roots of unity Then we wnte
<pK(n) for the dimension of K(n) over K and we put

yK(p) sup{a\K(p) K(pa)} for an odd prime p,

and

We wnte sometimes y for yK(p), if no confusion can anse, there are, of

course, cases with y oc

If p is an odd prime and a ^ 1 is such that K{pa)¥^ K(pa + l) (î e (K(pa + l)

K(pa)) p) then K(pa+l)¥= K(pa+2) This follows from the commutative diagram
of Galois groups (the maps being induced by restriction)

Gai (K(pa+2)IK(p" — Gai (Q(p« J2)/Q(pa Z/p2Z

Gai

Similarly, if a 2*2, then K(2a)^ K(2a + 1) implies X(2a+1)^ X(2a+2) Note also

that for KcR, <pK(p) is even for p odd, and (X(4) K) 2 The following lemma
is now immédiate
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LEMMA 1.3. (a) For an odd prime p one has, for any

_ <Pk(p) if 1^«^7

(b) J/XcR and p 2, then

if a l
if Ka^Y + K7 YK(2)),

if a ^ 7 4-1.

1.3. We now describe the degrees of the faithful irreducible représentations of
the p-groups listed in Theorem 1.1, and their orientability.

PROPOSITION 1.4. Let K be a subfield of R, and let p be a faithful
irreducible K-représentation of one of the p-groups G of spécial type. Then the

degree m of p is :

m <pK(pa) in case G Cp«(a^0);
m 2çK(2a~l) in case G O2«(«^3);
m (pK(2a~1) in case G D2«(a^4);
m çK(2a~1) or 2<pK(2O£"1) in case G SD2*(a^4).

Moreover, p is orientable (Le., lies in SLm(K)) except for G C2.

Proof. The character i// of p is of the form ip sK(x)^orx, o-eGa\(K(x)/K),
where x ls faithful and C-irreducible. The faithful and C-irreducible représentations

of the groups of spécial types were discussed in [E-M]; we will make use of
their properties without further référence. The following four cases hâve to be

considered.

Cp^ :sK(x)= 1, x is °f degree one and K(x) K(pa). The degree of i// is

therefore m |Gal (K(pa)/K)\ <pK(pa).

O2«: for any KcR, one has sK(x) 2, and x nas degree 2. Since K(x) —

K(2a~l)nR and a 2*3, we hâve (K(2a'l):K(x)) 2. The degree of ijj is thus

given by m 2-2-|Gal (K(X)/K)\ 2|Gal (K(2a-1)/K)\ 2<pK(2^x).
D2<* (or SD2« respectively): sK(x)=l and x nas degree 2. Again we hâve

(K(2"~1):K(x)) 2 (or possibly K(2ot~1) K(\) in the case SD2«) and thus
<pK(2a~l) (or possibly 2<pK(2<*~1) in the case SD2«).
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If p is odd, p is certainly orientable. For p 2 we note that, except for the
faithful représentation of C2 of degree 1, i// is a sum of an even number of Galois
conjugate représentations a\ which are ail orientable in cases C2«, a ^ 2 and Q2«,

a ^3; and which are ail non-orientable in the other cases (cf. [E-M]). Hence ifj is

orientable except for G C2.

COROLLARY 1.5. Let K be a subfield of R. The degree of a K-irreducible
représentation p of a finite p-group G is either 1 or of the form <pK(p)pP> j3^0.

Proof. We consider the alternative in Theorem 1.1.

If p is induced from a représentation r of degree 1, then p 2 and therefore
the degree of p is of the form 2p=<pK(2)2p (p odd would imply that t is a

permutation représentation, thus reducible). If p is induced from a représentation

t of degree >1, the degree of t is of the form çK(p)pp, by induction, and thus the

degree of p has the desired form.
If p factors through a faithful représentation p of Cp«, Q2«, D2« or SD2«, the

degree of p is <pK(pa)> 2<pK(2a~1) or <pK(2a~1), which is 1 or of the form <

jS^O. The assertion of the Corollary thus follows.

2. The Euler class of K-représentations of p-groups

2.1. For a K-representation p : G-*GLm(K), where K is a subfield of R, the
Euler class e(p)eHm(G; Z(p)) is defined as the Euler class of the flat real vector
bundle over K(G, 1), associated with p®R; Z(p) stands for the G-module Z with
G-action defined by g- l sgndet p(g). The gênerai properties of this (twisted)
Euler class were discussed in [E-M].

Our main objective is to find universal bounds, depending on the field KcR
and the degree m only, for the order of the Euler class of K-representations of
finite groups. We proceed by dealing first with p-groups and then (Section 3) with
arbitrary finite groups.

2.2. We start with the following simple observation.

PROPOSITION 2.1 Let G be a finite p-group and let p:G^GLm(K) be a

représentation of degree m^Omod <Pk(p)- Then the Euler class of p is 0.

Proof. The assumption implies that cpK(p)> 1 and tnus P odd (<Pk(2)= 1). Let
P ©r=i p,, with p, irreducible; then e(p) e(pl)e(p2) • • * e(pn). At least one of the
P, must hâve degree 1, for otherwise m would be divisible by <pK(p) (Corollary
1.5). Thus the corresponding e(pt) is 0 and whence e(p) 0.
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We may thus, for a p-group G, assume that the degree m of p is

=0 mod cpK(p). It turns out that the situation is quite différent according to
whether yK(p) is finite or infinité.

Let m be even and =0 mod <pK(p), and assume yKCp)^00- Then no uniform
bound can exist for the order of the Euler class of K-representations of p-groups.
This will be illustrated by Corollary 2.4 below. We first prove a lemma concerning
the cyclic group Cn.

LEMMA 2.3. Let KcR be an arbitrary real field. There exists, for any integer

/>0, a K-represenîation p of Cn of degree l(pK(n) and with Euler class e(p) of
(maximal possible) order n.

Proof. Q has a faithful irreducible représentation t over K of degree m

çK(n) (its character is Jdtrcrx, where \ *s faithful C-irreducible and a varies

through Gai (K(n)/K)). For the Euler class e(r) one has e(r)2 ±cm(r<8)C), the

top Chern class of t®C; since r®C is a sum of m faithful one-dimensional

C-representations, cm(r®C) has order n, and so has e(r). If we take for p the

/-fold direct sum of such K-representations r, the order of e(p) will be n and the

degree /-<pK(n).

COROLLARY 2.4. Let K ci R, and let p be a prime such that yK (p) oc. // m
is even and m =0 mod (pK(p), then there exists an m-dimensional K-représentation
of Cp« with Euler class of order pa.

Proof. If p is odd, yK(p) cc implies that çK(p) <pK(pa) f°r ot^l and the
resuit follows from Lemma 2.3. If p 2, <pK(2a) 2 or 1 for a ^ 1. Hence for any
even m one can find a K-representation of C2« of degree m and Euler class of
order 2a (cf. Lemma 2.3).

2.3. We now turn to the case yK(p)<œ, where the situation is différent.

THEOREM 2.5. Let K be a subfield of R and p a prime with y YK(p)<0C-
For any finite p-group G and any K-representation p : G-—»GLm(K) the Euler class

e(p)eHm(G:Z(p)) satisfies

pyme(p) 0.

Proof. We first assume that p is irreducible. According to Theorem 1.2 we
distinguish two possibilities.

(a) p factors as G-+G P
> GLm(K) where G is one of the p-groups of

spécial type and p faithful. If G is of order pa, a =$7 then plainly p7me(p) 0;
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thus we may assume a > y. If p is odd, p is of degree m çK{pa) <pK(p) • pa~7,
and hence pyme(p) 0. In case p 2 and a y + l, 2a divides 27m for m even;
thus 2me(p) — 0 (the case m odd is trivial, since then always 2e(p) 0). It remains
to consider the case p 2, a ^ y + 2. According to Proposition 1.4 the degree of p
is then 2a~7 for the groups C2«, Q2* ; and 2a~y'1 for D2«, 2a~7 or 2<x~y~l for SD2«.

For the first two groups, 27 -2a~y - 2a \G\ annihilâtes e(p), and for the latter
ones 2y -2a~y~l 2a~l |G|/2 annihilâtes e(p) (since the cohomology of D2« and
SD2<* with Z-coefficients contains no éléments of order 2a).

(b) p is induced from t:H—»GLm/p(K), where H<^G is of index p. Let fr
dénote the cohomology transfer. The Euler class of the restriction pH satisfies

tr e(pH) pe(p). Since we may assume by induction that py(m/p)e(r) 0, and
since pH is of the form t©i>, we infer py(m/p)e(pH) py(m/p)e(r)e(v) 0. It
follows that

We now assume that p is reducible, p — pi©p2© * * * 0Pk, the p, being
K-irreducible. Then e(p) e(p1)e(p2)- • -e(pk), and

p7me(p) p7m1e(p1)e(p2)- • -e(pk)+ • • • +pymke(pl)e{p2)' • -e(pk)

where mt is the degree of pr Since p, is irreducible, we hâve pymle(pl) 0J and
thus pyme(p) 0.

Remark 2.6. If m is even, m (pK(p)p(i 'f vvith (/, p)=l and yK(p)
then there exists a K-representation of Cp>+P of degree m with Euler class

satisfying py~lme(p)^0. This follows immediately from Lemma 2.3.

3. Arbitrary finite groups

3.1. We define for a subfield K of R and an integer m>0, an additive

operator <£K(m) on finite Abelian groups. If m is odd, %K(m):A->A is multiplication

by 2. For m even, <£K(m) is given by its action on p-torsion groups as

follows.
(1) %K{m) is the identity on p-torsion, if m^O mod <pK(p).

(2) ^k(w) is zéro on p-torsion if m =0 mod çK(p) and 7k(p) 0C-

(3) <§K(m) is multiplication by py+a on p-torsion, if m 0 mod <pK(p), y
yK(p)<0C and m=pa •/, / prime to p.
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For instance, if K R, then ^R(m) is the zéro operator for ail even m.

If K is a field such that yK(p)<0C Ior ail p, and if only finitely many <pK(p)

divide m, we define a numerical function by

EK(m) lcm{n | m=0mod(pK(n)}.

Note that, for any prime p, pp divides EK(m) if and only if m =0 mod <pK(pp)-

In one direction this is part of the définition; conversely, if p*3 divides EK(m)
there is an n divisible by pp with m =0 mod cpK(n) and thus, since <pK(p^) divides
<pK(n), one has m^Omod <pK(pp). The prime décomposition of EK(m) is now
obtained as follows, for KcR and m even (EK(m) 2 if m is odd):

Let m IIp^p be the décomposition of m into powers of différent primes. By
Lemma 1.3, <pK(Pfi+y)== ^Pk(p)P^ (t 7k(p)> j3^0 in case p odd, and (3 ^ 1 if

p 2); thus, for a prime p with m =0mod <pK(p), m even, the greatest power
dividing EK(m) is pv*+y. We thus hâve

PROPOSITION 3.1. If for KcR and m l\pv* the inieger EK(m) is defined,
then

EK(m) 2 if m is odd,

EK(m) YVpvp+y^ip) if m is even, the product IT being taken over ail those primes

p for which m=0mod <pK(p)-

Remarks. (1) If K Q, J5Q(m) Em, the numerical function considered in

[E-M] (which is equal to the denominator of Bm/m, m even).
(2) EK(m) is defined for ail m if K is an algebraic number field.

COROLLARY 3.2. IfforKaR the integer EK(m) is defined, then the operator
<%K(m)\A->A differs from "multiplication with EK(m)" only by a canonical

automorphism of A. In particular, ^K(m) and multiplication by EK(m) hâve the

same kernel
We will make use later on of the following spécial case.

COROLLARY 3.3. Let K Q(4n)DR and p a prime dividing An. Then for
even m the operator <£K(m) has the same kernel on any p-torsion group as

multiplication by 2nm.

Proof. Let m Ilpvp(m) and n IIpvp(n) be the prime décompositions. Since

p\4n we hâve, for p odd, <pK(p) 2. Further we hâve yK(p) vp{n) for p odd and

yK(2)= v2(n)+l. Hence, for m even, ^K(m) acts on p-torsion by multiplication
with pVn)+Vm) if p is odd, and with 2v*in)+1+v*im) if p 2. Thus the kernel of
^K(m) on p-torsion is the same as the kernel of multiplication by 2nm.

3.2. We now state and prove our main theorem.
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THEOREM 3.4. Let KaR be a real field and p:G->GLm(K) a K-
representation of degree m of a finite group G. Then the Euler class e(p)e
Hm(G;Z(p)) satisfies

«K(m)e(p) 0.

In particular, if Em(K) is defined (e.g., if K is a number field) the order of e(p)
divides EK(m).

Proof. Let G(p) dénote a p-Sylow subgroup of G. Since the cohomology
restriction from G to G(p) is injective on the p-primary component, it suffices to

prove the theorem in the case where G is a p-group. If m is odd, 2e(p)
(êK(m)e(p) Q. If m is even and m?£0 mod <pK(p), e(p) 0 by Proposition 2.1. It
remains to consider the case m even, m =0 mod <pK(p): If yK(p) cci then

(£K(m)e(p) Q by définition of ^K(m). If y yK(p)<cc, we hâve p7me(p) 0 by
Theorem 2.5; since, for a p-group G, pyme(p) and py+vp(m)e(p) hâve the same

order, we infer <£K(m)e(p) 0. In case EK(m) is defined, EK(m)e(p) 0 by
Corollary 3.2.

Remark 3.5. The operator <£K(m) in Theorem 3.4 is best possible in the

following obvious sensé. Suppose <£'K(m) is another such operator (i.e., a natural
transformation of the identity functor on the category of finite Abelian

groups, such that <fë'K(m)e(p) 0 for ail K-representations p of degree m of finite
groups) then

for ail finite Abelian groups A. In order to prove this we observe that it suffices to
check (*) in case A is a cyclic p-group; for that case (*) is an easy conséquence of
Lemma 2.3 and Remark 2.6 together with the définition of <£K(m).

In particular, if K is a number field, we obtain the following.

COROLLARY 3.6. Let KaR be a number field. Then the least common
multiple of the orders of the Euler classes e(p), where p ranges over ail
K-representations of degree m of finite groups, is equal to EK(m)

lcm{n\m^Ornod <pK(n)}.

3.3. If a représentation p:G->GLm(R) is not known to be realizable over
some subfield K<=R fixed in advance, one can still obtain a bound on the order of

e(p), depending on the character field Q(x) (i.e. the field obtained from Q be

adjoining the values of the character \ °f p)- We need first tne following lemma.
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LEMMA 3 7 Let p G—»GLm(R) be a real représentation of a finite p-group
G Then p is équivalent to a représentation defined over Q(\), where x « the

character of p

Proof If p is odd, ail C-irreducible characters ^ of G hâve Schur index 1 over
Q, and therefore p is defined over Q(x) (cf [R]) In case p 2, the Schur index
sQ(i/0 is one or two, by [F, Prop 4 2], sQ(i/>) sR(i/>) and therefore sK(i/0 sR(i/>)

for any subfield KcR It follows that an R-representation of a 2-group whose

character takes values in K<=:R, is reahzable over K

THEOREM 3 8 Let p G—->GLm(R) be a real représentation of an arbitrary
finite group G Then the Euler class e(p) satisfies

EQix)(m)e(p) 0

where Q(x) dénotes the fïeld obtained from Q by adjoining the values of the

character x °f P

Proof Let p dénote the restriction of p to a p-Sylow subgroup of G, and

dénote by x tne character of p From Theorem 3 4 and Lemma 3 7 we infer that

EQ(xf)e(p') 0 and, as QO^'^QM, EQ(x)e(pf) 0 The assertion of the theorem
now follows, since the cohomology restriction from G to a p-Sylow subgroup is

injective on the p-pnmary component
3 4 Using Corollary 3 3 we can get bounds for the order of Euler classes of

arbitrary real représentations, in terms of the exponent of G

THEOREM 3 9 Let G be a finite group of exponent exp(G) and p G—-»

GLm(R) a real représentation of even degree m Then the Euler class satisfies

— exp(G)e(p) 0

Proof Since the cohomology restriction from G to a p-Sylow subgroup is

injective on the p-pnmary component, we may assume that G is a p-group Then

p is reahzable over Q(exp (G))HR since the character of p takes îts values in that
field (Lemma 3 7) If p is odd, we apply Corollary 3 3 with K Q(4 exp (G))flR
and obtain 2m exp (G)e(p) 0, thus (m/2) exp (G)e(p) 0, e(p) being a p-torsion
élément If p 2 and exp (G) ^2, then G is an elementary Abehan 2-group and

thus even exp (G)e(p) 0 If p 2 and exp (G) An ^ 4, we infer from Corollary
3 3 (with K Q(4rc)DR) that 2nme(p) 0, whence the assertion
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