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The periodic structure of non-singular Morse-Smale flows

John Franks(1)

Morse-Smale flows on smooth compact manifolds are roughly those flows
which exhibit only two relatively simple types of récurrent behavior-periodic
closed orbits and rest points which are of hyperbolic type. They hâve been studied

by several authors. In particular Smale and Palis [7] showed that they are

structurally stable and Asimov [2] showed the existence of non-singular Morse-
Smale flows on an essentially arbitrary manifold and in every homotopy class of

non-singular vector fields. The Morse-Smale flows are a large class which is open
in the C1 topology, and also a class whose study has led to insights into the

structure of flows with more complicated récurrent behavior.
The object of the présent article is to investigate the interplay between the

dynamics of a non-singular Morse-Smale flow, i.e. the kind of periodic behavior it
exhibits, and the topology of the manifold on which the flow occurs.

The local behavior of a hyperbolic periodic closed orbit is completely deter-
mined by the dimension of its unstable manifold (this dimension minus one is

called the index) and whether or not the orbit is twisted (has an unorientable
unstable manifold) or untwisted (has an orientable unstable manifold). We are
concerned with the problem of whether given periodic behavior in the form of a

specified number of closed orbits of each index can be realized with a non-
singular Morse-Smale flow on a given manifold. An article of Smale [8] deals with
precisely this problem and relates the number of closed orbits of each index to the
Betti numbers of the manifold through "Morse inequalities." Our aim is to
strengthen thèse necessary conditions until conditions which are both necessary
and sufficient are obtained.

THEOREM A. Suppose Mn admits a non-singular Morse-Smale ûow with Ak
untwisted closed orbits of index fc, then if Rk dim Hk(M; Q),

(a) Ak > Rk - Rk_x + • • • + JR0 for ail k.

(b) Ax^Ao-1, and An_2>An_1-l.
(c) 1/Ak_t Ak+1 0 and Rk-Rk_t+ • • -±Ro<0, then Ak 0.

1 Research supported in part by NSF Grant MPS74-06731 A01.
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280 JOHN FRANKS

We remark that (a) is essentially the Morse inequalities of Smale [8], the only
différence being that Ak is the number of untwisted closed orbits of index k, not
of ail orbits of index fc.

For a large class of manifolds the necessary conditions of (a), (b), and (c) of
Theorem A are sufficient as well.

THEOREM B. Suppose M is a simply connected compact manifold of dimension

greater than five. If the Euler characteristic of M vanishes and H*(M; Z) is

torsion free, then to any set of non-negative integers {Ak}, satisfying (a), (b) and (c)

above, there corresponds a non-singular Morse-Smale flow with Ak untwisted
closed orbits of index k and no twisted closed orbits.

The techniques used will apply to a number of manifolds of dimension <5. In
particular §4 deals with the case M= S3 and complète necessary and sufficient
conditions for the existence of flows with prescribed numbers of closed orbits
(twisted as well as untwisted) of each index is given.

1. Background and définitions

A closed orbit y of a flow <pt on M is said to be hyperbolic provided the

tangent bundle of M restricted to y, TMy is the sum of three Dçt invariant
bundles Ec © Eu © Es such that

(1) Ec is spanned by the vector field X tangent to the flow.
(2) There are constants C, A > 0 such that ||D<p,(i>)|| ^ Ce* \\v\\ for v e Eu, t > 0

and ||D?f(iO|| ^ C"1e~xt \\v\\ for veE\t>0, where || || is some Riemannian
metric.

A rest point x for a flow <pt is called hyperbolic provided TMX Eu © Es and the

inequalities of (2) are valid for veEu or E\
The stable and unstable manifolds of a hyperbolic closed orbit y are defined

by

W(y) - {^ I d(<ptx, <pty)-»O as f-»-oo for some y g y}

Ws(y) {x | d((ptx, <pty)->0 as t-*<*> for some y e y},

where d is a metric on M. Thèse are injectively immersed copies of the vector
bundles Eu or E% (see [9]). For a rest point x the stable and unstable manifolds
Ws(x) and Wu(x) are defined analogously.
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(1.1) DEFINITION. The index of a hyperbolic closed orbit or rest point is

defined to be the fiber dimension of the bundle Eu.

A point x of M is called chain récurrent (see [5]) for the flow <pt provided that
for any T, e > 0 there are points x, g M and real numbers tt > T, i 0,1,..., n,
such that x xo xn and d(<ptijct, jc1+1) < e.

The set of ail chain récurrent points JR is a compact invariant set of the flow, if
M is compact.

(1.2) DEFINITION. A smooth flow çt on M is called Morse-Smale if

(a) The chain-recurrent set R of <pt consists of a finite number of hyperbolic
closed orbits and hyperbolic rest points, and

(b) The unstable manifold of any closed orbit or rest point has transversal
intersection with the stable manifold of any closed orbit or rest point.

A flow which is Morse-Smale possesses a filtration (see [5] or [7]). That is,

there are manifolds with boundary and with the same dimension as M,

such that for each i, N^czint Nl? the vector field tangent to the flow points
inward on the boundary of Mt, and int(MI-MI_1) contains precisely one closed

orbit or one rest point. In fact if the closed orbits and rest points {y,} are indexed
so that Ws(yt)n Wu(y}) 0 whenever i>/, we may choose the filtration so

Y,<=NI-N,_1,(see[7]).
We shall hâve occasion to use a somewhat less fine filtration. The transversal-

ity of stable and unstable manifolds for Morse-Smale flows ((b) of (1.2)) guaran-
tees that if y, and y} are closed orbits with index y, > index y, then Ws(yt)fï
Wu(T/) 0. Hence we may choose a filtration {N,} with yt <= N, - Nt_x such that if
index y, > index y} then i > j. For a non-singular flow this allows us to make a

coarser filtration which will hâve ail closed of the same index in the same level.

(1.3) Remark. If <pt is a non-singular Morse-Smale flow and the Nt are chosen

as above then we can define Mk {x \ xeNt and y, has index < k}. It is then clear
that

has ail the properties of a filtration except that Ml-Ml^1 contains ail closed orbits
of index i.
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2. The spectral séquence associated with a filtration

Let Expq be a spectral séquence over a field, satisfying Epq 0 if q^ 0,1, and
such that dim Ek0 dim Ekjl for ail k. We define a number of integers for
subséquent use:

ak dim E\o dim E£,i

Rk dim 0 E£q
p+q k

ck dim Ek0 dim Ek>0

ck dim E\_lx dim Efc_14

We will be concerned with the spectral séquence associated with the filtration
of M as described in §1. In this case Rk will be dimHk(M) and ak will be the
dimension of Hk(Mk, Mk-t) dim Hk+l(Mk, Mk_i).

(2.1) LEMMA. With the above définitions

ak j3k + j3k+1 + yk+2 + ck+1 ak 4- ak+1 + yk + ck.

Froo/. We start with the fact that ck dimEk0 from which it follows that
dim Ek0 dim Ek0 + rank (d2 : Ek0-»Ek_2,i) ck + yk. Hence we hâve

ak dim Ek>0==dim E^o

+ rank (d1 : EjU1)0-*Ek>0) ck + yk 4- ak 4- ak+1

A similar computation shows that

ak dim Ei4 pk + pk+i + yk+i 4- ck+1.

(2.2) LEMMA. Wirh rhe above définitions

Proof. The previous lemma gives two expressions for ak. Using each of thèse

expressions we evaluate ak ~ ak_, + ak_2- • - ±a0 and then equate the results. In
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this way we obtain

j8k+i + ('yk+2-Tk+i+7k =t7o) + (ôc+i"-êk + • • • ±c0)

ak+1 + (rk-rk_1+ • • • ±yo)+(<*-<*-i + • • • ±c0).

Hence

Since Rk ck + ck we hâve

(2.3) COROLLARY. ak => JRk - Kk_! + • • • ± J?o

Proo/. By (2.1) and (2.2) we hâve

and

Therefore ak-pk (Rk-Rk.l + • • • ±R0) + 7k+i + ak+1. Since j3k, yk+1 and ak+1

are ail non-negative the resuit follows.

(2.4) PROPOSITION. If Rk and ak are as previously defined and R0=Rn 1,

then

(a) a!>ao-l and an.2>an.1-l,
(b) J/ak-^ak+^O and jRk-JRk_x+- '

Proof. By (2.1) ao «0 + ^1 + 70 + ^0; and since co=Ro=l, and ao=7o==0» it
follows ao ai + l. Since by (2.1) again, ûi^a! we hâve ai^ao-l. A similar
computation shows On-^fln-i-l-

To prove (b) we note that from (2.1) it follows that if ak_1 ak+1 0 then

«k «k+i ^k A+i Tk+i 0. But from (2.2) Rk - Rk.t + - • • ± Ro

Pk+i-«k+i + ck+1<0, so we hâve yk+2 + ck+1<0 which implies
0 since yk+2 and ck+2 are non-negative. Hence

Pk + £k + l + Tk+2 + Cfc+2 0.
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(2.5) PROPOSITION. Given non-négative integers jR0, Ri, R2, • • •, K, such

that Rn - Rn-i + • • • =t Ro 0, ffiere exists a spectral séquence E\q over any field F
such that

(a) Ej,q=0 if qï 0,1 or if p<0 or p>n.
(b) JRk dim 0p+q=k E£q dim E^+ dim JBj_M.
(c) dim Ek o dim Ek?1 max {0, Rk - Rk-i + • • • ± Ro}.

Proof We can specify a spectral séquence satisfying (a) by specifying the
dim (£p q E*q) and the ranks of the non-zero differentials. That is, we need only
define the numbers ak, j8k, yk, ck and ck defined in the beginning of this section.
We will define ak pk 0 for ail k (so that in fact Elpq E2pc) and inductively
define yk, ck and ck as follows:

Let c0 Ro, and ck ck yk 0 if k < 0, and define

ck max {0, Rk - ck_! - yk_J (1)

7k max {0, ck_2 4- yk_2- Rfc.J (2)

ck Kk - ck min {Kk, ck^ + yk_J. (3)

With thèse numbers specified, if we define Epq 0 for q^0,1, we hâve a well
defined spectral séquence and as in (2.1), one can compute

dim Elo =yk + ck9 (4)

and

dimEltl yk+2 + ck+1. (5)

Notice that by définition Epq= 0 if q^ 0,1, but we will postpone the proof of the
remainder of (a), namely that Ep 0 Epl — 0 if p ^ n.

To show (b), note that dim ©p+q=kEpq dim Ek0 + dim Ek_x4 and by
construction dim Ek 0 ck, and dim Ek_xtl ck. Thus

dim Ek 0 + dim E3k_ltl ck + ck ck + Rk - ck Kk

by the définition of ck. So (b) is satisfied.
The first equality of (c) is obtained as follows, using (l)-(5) above

dim E£,i yk+2 + ck+i - max {0, ck + yk - Rk+1}

4- Rk+1 - max {0, Rk+1 - ck - yk}

Rk+X + (-JRk+1 + ck 4- 7k) ck + 7k

dim Ek>0.
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We now set ak dim E\>0 dim E\x and note the spectral séquence we are

considering satisfies ail the hypothèses of (2.2) and hence we can conclude

since ak+1 j3k+1 0.

Since ak yk+2 + Ck+i we hâve

ak-max{0,
So

ak Rk-Rk_t+ • - ±R0 + m2ix{0,ak_1-Rk}. (6)

We now assume inductively that

ak_1 max{0,Kk_1-Kk_2 + • • • ±RO}

and note that it follows that

r. fO if Rk^ak^
,ak_1-JRk}=

_
k k

max {0

0 if Rk^Rk.1-Rk^2+-±R0
Ri ~n jy _i_ _i_ "D -î-P D *^* JD D _l _i_ "D

k ' **-k *^k—2 ' " * * ^0 **^ -*^k -*^k —1 ^k—2 ' * * ' -*^0*

Hence by (6) above

ak max {0, Rk - Kk_x + • • • ± Ro}

and by induction on k we hâve completed the proof of (c). Since we assume

Rn - Rn_x + • • • ± Ro 0 and define Rk 0 for k > n, it follows that

Rk-Rk_1+ - - - ±R0 0 whenever k>n.

Hence dim E\ 0 dim E\ x ak 0 for ail k > n and we hâve completed the proof
of (a).

(2.6) Proof of Theorem A
We will consider a filtration 0 M_1cMoc-"cMn.1 M for which ail

closed orbits of the flow of index k are contained in Mk—Mk_1 (see (1.3)) and
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make some calculations concerning H*{Mk, Mk_x\ Q). To do this we consider a

further filtration Mk Xo<= Xtc: • • • cXr Mk+1 such that there is precisely one
untwisted closed orbit in Xp - Xp_t so we will hâve r Ak. It is then not a difficult
computation to see

P,HP^;Q) ]n .f kk + 1

This is, for example, a spécial case of (5.3) of [4]. Notice in particular that the

possible existence of twisted closed orbits of index k in Xp-Xp_1 does not alter
this resuit because we are using rational coefficients.

Consider now the E1 spectral séquence with E*>q Hp+q(Xp, Xp_t; Q). It has

the form shown in Figure 1 and converges to an associated graded vector space of

From this two facts follow: If ak dim Hk(Mk,Mk_x; Q) then Ak>ak and

Afc#0 implies that akï*0. Notice also that H,(Mfc, Mk_x; Q) 0 if iV k, fc + l,
so since the Euler characteristic *(Mk, Mk_1) 0, we must hâve ak-
dim Hk+t(Mk, Mk_t; Q) also.

We can now consider the E1 spectral séquence associated with the filtration
Moc Mi <= • • • c Mn_x. Thus we hâve £*,„ Hp+q(Mp, Mp_x\ Q) and this spectral

séquence converges to an associated graded vector space for H*(M; Q). So if
Rk dim Hk(M, Q) we will hâve l?k dimEpq. Since this spectral séquence
satisfies ail the conditions for the spectral séquence considered at the beginning of
this section it satisfies the hypothèses of (2.3) and (2.4). We thus hâve Ak>ak^
Rk — JRk_x + • • • ± Ro which proves part (a) of the theorem. Part (c) of the theorem
follows from (b) of (2.4) since, as remarked above Ak_1 Ak+1 0 implies
ak_x ak+1 0 and ak 0 implies Ak 0.

Finally to prove part (b) of the theorem we note Ao is the number of
components of Mo so A0-a0 and dually (considering the inverse flow) An^x~
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an_x. Thus from (a) of (2.4) we hâve

and

An_2 > an_2 > an_! - 1 An_x - 1.

3. Constructing Morse-Smale flows

In this section we give the proof of Theorem B by constructing a non-singular
Morse-Smale flow with the required number of untwisted closed orbits of each

index. The main tool for doing this is the following resuit of Asimov.

(3.1) THEOREM. (Asimov [1], [2]). Suppose f : W->[a, b] is a Morse func-
tion with two criîicaï points p and q of index k and fc +1 respectively, such that
Wu(q) fl Ws(p) 0, if k7* 0, then there is a non-singular Morse-Smale vector field
X on W satisfying

(1) X -Vf on a neighborhood of dW, and
(2) the flow of X has exactly one closed orbit and this orbit has index k and is

untwisted.

(3.2) DEFINITION. The Morse function / will be called an associated Morse
function for the flow X on M.

The important property of the associated Morse function is that it has two
critical points, one of index k and one of index k + 1; and that the unstable
manifold of the index k -h 1 critical point does not intersect the stable manifold of
the index k critical point if k# 0. It is not clear that every Morse-Smale flow on
W with a single untwisted closed orbit has an associated Morse function, but ail of
the Morse-Smale flows we construct will be obtained by applying Theorem (3.1)
and then piecing together.

(3.3) LEMMA. Let f : W^>[a, b] be a Morse function defined on a connected

n-dimensional manifold such that ail critical points of index 0 are in f~l{a) and ail
critical points of index n are in f1^). Then given c, d such that a<c<d<b, and
0< k < n, there exists a Morse function g : W-+[a, b] such that

(a) The functions f and g agrée on a neighborhood of dW and on a neighbor¬
hood of the critical points of f.
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(b) The fonction g has two additional critical points: one of index k in g"1^)
and one of index fc 4-1 in g-1(d).

(c) The unstable manifolds of the additional critical points are disjoint from the

stable manifolds of any of the previous critical points except perhaps those of
index 0 and this is also true for the dual Morse function -g.

Proof. Because ail critical points of / of index 0 and n are in f~1(a)Uf~1(b)
and W is connected there is an intégral curve I of -V/ running from a point in
f~l(d + e) to a point in f~1(c-e), for some small e>0. We may assume I is

disjoint from stable and unstable manifolds of ail critical points of index ^0, n;
since thèse manifolds will hâve dimension < n. By standard arguments there is a

neighborhood U of I (also disjoint from stable and unstable manifolds) and a

chart map <p:U^> <p(*7)<= Rn such that if xe Uf(x) h(<p(x)) where h : Rn-*R
is a linear height function. Now by (8.2) of [6] the function h : <p(U)->R can be
altered to h which has two cancelling critical points of index k and k +1 at the
desired level. Finally, g is defined by

f/(x) if xiÉU
gW \h(<p(x)) if xeU.

(3.4) PROPOSITION. Suppose X is a Morse-Smale flow W with a single
closed orbit and with an associated Morse function /'. If the closed orbit is untwisted
and has index k such that 1 < k < n -1, then there exist non-singular Morse-Smale
flows Yt and Y2 on W such that,

(a) On a neighborhood of dW, X Yt=Y2.
(b) The flow of Yx has precisely two closed orbits, both untwisted and of index k.

(c) The flow Y2 has precisely two closed orbits, both untwisted, but one of index
k and one of index k H-1. (For this, k 0 is permissable).

We remark that the construction of Y2 in the case K 0 has been done by
Asimov in [3].

Proof. Suppose qk and qk+x are the critical points of /'. Then, since

Wu(qk+Î)fi W5(qk) 0, by (4.1) of [6] we can change /' to a new Morse function

/ which is unchanged on a neighborhood of dW, and has the same critical points
as f, but satisfies /(<&)>/(<}k+i).

Now by (3.3) we can form a new Morse function g, agreeing with / on a

neighborhood of d W but having two additional critical points pk+l and pk of index
k +1 and k. It is clear we can do this in such a way that

ô> g(qk) f(qk)>f(qk+i) g(qk+i)> g(pk).
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If we now consider the flow -Vg then by (3.3) we hâve WM(pk+1)fl Ws(qk) 0
and Wu(qk+1)nWs(pk)=0.

We are now in a position to apply (3.1) to construct the vector field Yx.

Namely if we choose ceR such that g(qk+i)<c<g(qk) and define Wx

g'^tc,00)) and W2 g"1^-00, c]) then (3.1) asserts the existence of a flow Xt on
Wt agreeing with -Vg on a neighborhood of dWt, and with a single closed orbit of
index fc which is untwisted. Defining Yx to be X, on W, gives the desired flow.

The construction of Y2 is similar. For this, we alter to Morse function /' to g',

leaving it unchanged on a neighborhood of dW but adding two cancelling critical
points (using (3.3)) qk+2 and qk+1 of index fc + 2 and fc +1. We can do this in such

a way that

gf(qk+2) > g'Ofc+i) f(ft+i) > g'(<fc+i) > g'(pk) /'(ft

If we now choose c' such that g'(<Jk+i)<c'<g'(Pk+i) and define W[
/'~1([a, c]) and W2 /'*" *([<:, fc]), then as before we are in a position to apply (3.1).
The key point is that by construction the unstable manifold of qk+2 (with respect
to the flow of -Vg') is disjoint from Ws(pk+1). Likewise Wu(qk+1)n Ws(pk)= 0.
Thus by (3.1) we can construct X[ on W[ with an untwisted closed orbit of index
fc and X2 on W2 with an untwisted closed orbit of index fc -f 1. Defining Y2 on W
to be X[ on W[ and X2 on W2 gives the desired flow.

(3.5) LEMMA. Suppose f: W^>[a, b] is a Morse function with no critical
points, then there exists a non-singular Morse-Smale vector field X on M such that

(a) X agrées with -Vf on a neighborhood of dW.

(b) X has two closed orbits, both untwisted; one of index fc and one of index
fc + 1.

Proof. Choose numbers c,, i- 1, 2, 3, 4 such that a<cx<c2<c3<c4<b. By
applications of (3.3) we can construct a Morse function g on W agreeing with / on
a neighborhood of d W and with critical points p, e g"1^,) such that px and p2 form
a cancelling pair of index fc and fc + 1 and p2 and p4 for a cancelling pair of fc +1
and k + 2. Moreover by (3.3) we can assume

wM(p2)nws(Pl) 0

and

Wu(p4)nWs(p3)=0.
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Now choose c e (c2, c3) and let Wx g 1([a, c]), W2 g x([c, b]). Two applications

of (3.1) now produce the desired flow on W.

The following proposition is simply a restatement of Proposition (2.5).

(3.5) PROPOSITION. Given non-negative integers R0,...,Rn such that Rn -
Rn-i+ • • • ± JR0 0, there exist non-negative integers ck, ck, yk, k 0,..., n such

that

(a) yk + ck yk+2 + ck+1 max {0, JRk - JRk_! + • • • ± Ro}.
(b) R c + c c 0

(3.7) Proof of Theorem B. The hypothesis that M is simply connected, has

dimension greater than 5, and has torsion free homology guarantees that M
admits a self-indexing Morse function / whose type numbers are equal to its Betti
numbers. (This is (6.3) of [10]).

Now using the techniques of (6.4) of [6] and in particular (6.6) of [6] we can
alter this Morse function so that

whenever qk and pk+1 are critical points of index k and fc + 1 respectively. Note
that since M is simply connected there are no critical points of index 1 or n - 1.

(3.8) Remarks. It is only to obtain this Morse function that we need the
hypothèses that dimM>5. So in fact if M is any simply connected manifold
admitting a self-indexing Morse function with type numbers equal to the Betti
numbers and satisfying (1) above, then the conclusion of Theorem B holds.

Using (4.1) of [6] we can alter / again so that there are ck critical points of
index fc in /^(fc + c) and ck critical points of index fc in f~1(k-e).

We are using the fact that ck + ck~ Rk and moving ck points up slightly and
the remaining ck down slightly. This can be done without disturbing the property
that Wu(pk+l)n Ws(qk)= 0.

We now add yk pairs of cancelling pairs of critical points of index k and k -1
using (3.3) in such a way that those of index k -1 are in f~l(k -1 - e) and those
of index fc are in f\k + e). We do this for each fc.

Now let Mk /~1((-°°, fc +1]) and Wk /~1([fc, fc + 1]). By construction Wk
contains ck + yk critical points of index fc (in /-1(fc + €)) and ck+1 + yk+2 critical
points of index fc +1 (in f~l{k +1 -€)). Also if l^fc<n-l the unstable manifold
of each index fc + 1 point is disjoint from the stable manifold of each index fc

point.
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xxx Ck+1
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k+1

Figure 2

The situation is shown schematically in Figure 2.

Thus using (4.1) of [6] to rearrange the levels on which critical points occur
and repeatedly applying (3.1) we can construct a Morse-Smale vector field Xk on
Wk such that Xk —Vf on a neighborhood of dWk and such that the flow of Xk
has precisely ck + yk ck+1 + yk+2 closed orbits ail untwisted and of index fc.

We take spécial note of the cases fc 0,1, n -1, n. By hypothesis Ro Rn 1,

jRj Rn_! 0. Thus c0 -Ro 1 and hence y0 + c0 #o implies y0 0- Also
R1-JRO -1 so y1 + c1 0 and hence both yx and cx are zéro. The équations
y2 + Ci Ko 1 and Ci + C! JRx 0, then imply c1 0 and y2 1- It follows that
Mo contains exactly two critical points, one of index zéro and one of index one.
Hence Mo is diffeomorphic to S1xDn~1 and admits a vector field agreeing with
—Vf on dM0 and having one closed orbit of index zéro. A completely dual

argument (using the fact that Rn-Rn-i + ••• ±R0 0) shows that M
/~1([n — 1, °°)) admits a vector field agreeing with —Vf on dM and having a single
closed orbit of index n-1. Thus piecing together the vector fields on the Wk, Mo
and M, we obtain a flow which almost proves the theorem in the spécial case

Ak max{0, Rk-Rk-x+ • • • ±Ko}- We hâve constructed a flow which has a

filtration and which satisfies ail the properties of Morse-Smale except the trans-
versality of stable and unstable manifolds. But if we take a Kupka-Smale
approximation (see [9]) we can achieve this transversality and because the

filtration will be a filtration for the approximation, we will not change the periodic
behavior or add additional chain récurrent points.

To prove the gênerai case we use Lemmas (3.4) and (3.5) to add closed orbits
to this flow. More precisely, given non-negative integers {Ak} satisfying (a), (b)
and (c) of Theorem A we first use (3.5) to add A0-l cancelling pairs of closed

orbits of index 0 and 1 to Mo and A^-l cancelling pairs of index n-2 and
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n-\ to M. If Al>A0-l we then use (3.4) to add A1-(AO~1) closed orbits of
index 1 to Mo so we will hâve Ao closed orbits of index 0 and Ax of index 1.

Similarly we can alter the flow so that there are An_2 closed orbits of index n - 2

and An_! of index n-1.
Now inductively suppose the flow has been altered so we hâve the desired

number of closed orbits through index fc-1, and we want to alter it further so

there are Ak of index k. Suppose first that Rk-Rk_l+ • • • ±JRo>0 then there is

already at least one closed orbit of index k and by repeated application of (3.4)
we can alter the flow so there are Ak of index k. Otherwise either Ak_x ï 0 and

repeated application of (3.4) works, or Ak+1 # 0 in which case we use (3.5) to add

a cancelling pair of index fc and k +1 and then apply (3.4) repeatedly to obtain Ak
of index k and Ak+1 of index k + 1. This last case is done slightly differently if
k n - 3, for then there are already présent Ak+1 An_2 orbits of index n - 2 so

we can use the dual of (c) of (3.4) (obtained from applying 3.4 to the inverse flow)
to add closed orbits of index n -3. We repeat this until we hâve An_3 such orbits.
We again take a Kupka-Smale approximation to get the desired Morse-Smale
flow.

4. Morse-Smale flows on S3

In this section we consider the periodic behavior of a non-singular Morse-
Smale flow on S3. Conversations with D. Asimov were valuable for the préparation

of this section.

(4.1) THEOREM. Necessary and sufficient conditions for the existence of a

non-singular Morse-Smale flow on S3 with Ak untwisted closed orbits of index k

are:

(a) AO>1, A2>1.
(b) A^Ao-1, A1>A2-1.

With any specified numbers of untwisted orbits the number of twisted orbits of index
1 is completely arbitrary. There can be no twisted orbits of index 0 or 2.

Proof. We first note that the necessity of (a) and (b) follows from (a) and (b) of
Theorem A.

For the sufficiency we consider Figure 3.

We hâve two round handles (see [1]) of index 0 (i.e. S1 x D2) labelled Ro and

Rô on which we can put a vector field perpendicular to the boundaries and

pointing inward, and such that there will be a single closed orbit of index zéro in
each of JR0 and Rq, To thèse we attach a round one handle R1 S1*D1xD1.
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Figure 3

They are attachée as shown by identifying S1xD1xS° with embedded copies of
S1 x D1 in the boundary of jR0 and Rq. On Rx we can construct a vector field with
a single untwisted closed orbit of index 1 in such a way that the vector field agrées
with the vector field on RQ and Rô where identifications are made and is

transverse inward on the remainder of Rt. In co-ordinates (0, x, y) for Rx
S1xD1xD1 this vector field could be X d/dO - x(d/dx) + y(dldy).

Noting now that the complément of R0URqURx in S3 is two disjoint copies
of SxxD2, we add two such solid tori on each of which an outward pointing
vector field with one closed orbit of index 2 has been constructed. Thèse vector
fields are constructed to match up with those already defined on the boundary of
R0U RqU Rr. We hâve thus constructed a Morse-Smale flow on S3 with Ao 2,

Al l, A2 2.
We can however iterate this construction as shown in Figure 4 to create a flow

with Ao m, Ax m — 1, A2 — m.

For the gênerai case we suppose that Ao, Al9 A2 satisfying (a) and (b) are
given and let m min{Ao, A2}. We consider the case A2= m the other being
similar. First, as above we can construct a flow with m closed orbits of index 0,

m-1 of index 1, and m of index 2. Then using (3.5) we add A0-m cancelling
pairs of closed orbits of index zéro and one. Finally we use (3.4) (c) to add

A1-Ao untwisted orbits of index one.
It is clear that there can be no twisted orbits of index 0 or 2 since it is not

possible to embed an unoriented three manifold in S3.

To see that the number of twisted orbits of index 1 is arbitrary we consider the

following example. It is not difficult to construct an embedding of the disk D2 in

Figure 4
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îts inténor with precisely three hyperbohc penodic points, a sink of penod 2 and a

saddle whose unstable manifold has îts orientation reversed. By taking the

suspension (or mapping torus) of this embedding and rounding off corners we
obtain a flow on the sohd torus pointing mward on the boundary and with one
untwisted orbit of index zéro and one twisted orbit of index one.

If we now take any non-singular Morse-Smale flow on S3, eut out a tubular
neighborhood of an index zéro closed orbit and replace ît by the example above

we hâve mereased the number of twisted closed orbits by one without changmg
the numbers of untwisted ones. Repeated application will give any desired
number of twisted closed orbits of index one Fmally we take a Kupka-Smale
approximation (see [9]) to achieve transversahty of stable and unstable mamfolds,
and this will not change the penodic behavior.
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