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The periodic structure of non-singular Morse-Smale flows

Joun Franks®?

Morse-Smale flows on smooth compact manifolds are roughly those flows
which exhibit only two relatively simple types of recurrent behavior - periodic
closed orbits and rest points which are of hyperbolic type. They have been studied
by several authors. In particular Smale and Palis [7] showed that they are
structurally stable and Asimov [2] showed the existence of non-singular Morse-
Smale flows on an essentially arbitrary manifold and in every homotopy class of
non-singular vector fields. The Morse-Smale flows are a large class which is open
in the C' topology, and also a class whose study has led to insights into the
structure of flows with more complicated recurrent behavior.

The object of the present article is to investigate the interplay between the
dynamics of a non-singular Morse-Smale flow, i.e. the kind of periodic behavior it
exhibits, and the topology of the manifold on which the flow occurs.

The local behavior of a hyperbolic periodic closed orbit is completely deter-
mined by the dimension of its unstable manifold (this dimension minus one is
called the index) and whether or not the orbit is twisted (has an unorientable
unstable manifold) or untwisted (has an orientable unstable manifold). We are
concerned with the problem of whether given periodic behavior in the form of a
specified number of closed orbits of each index can be realized with a non-
singular Morse-Smale flow on a given manifold. An article of Smale [8] deals with
precisely this problem and relates the number of closed orbits of each index to the
Betti numbers of the manifold through “Morse inequalities.” Our aim is to
strengthen these necessary conditions until conditions which are both necessary
and sufficient are obtained.

THEOREM A. Suppose M" admits a non-singular Morse-Smale flow with A,
untwisted closed orbits of index k, then if R, =dim H,(M; Q),

(a) AkZRk—Rk—l+'..+R0 for all k.
b) A;=A,—1, and A, ,=A._ —1.
(C) If Ak—l = Ak+1 =0 and Rk _Rk—1+ e ItROSO, then Ak =0.

! Research supported in part by NSF Grant MPS74-06731 A01.
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280 JOHN FRANKS

We remark that (a) is essentially the Morse inequalities of Smale [8], the only
difference being that A, is the number of untwisted closed orbits of index k, not
of all orbits of index k.

For a large class of manifolds the necessary conditions of (a), (b), and (c) of
Theorem A are sufficient as well.

THEOREM B. Suppose M is a simply connected compact manifold of dimen-
sion greater than five. If the Euler characteristic of M vanishes and H+(M; Z) is
torsion free, then to any set of non-negative integers {A,}, satisfying (a), (b) and (c)
above, there corresponds a non-singular Morse—-Smale flow with A, untwisted
closed orbits of index k and no twisted closed orbits.

The techniques used will apply to a number of manifolds of dimension =<5. In
particular §4 deals with the case M =S> and complete necessary and sufficient
conditions for the existence of flows with prescribed numbers of closed orbits
(twisted as well as untwisted) of each index is given.

1. Background and definitions

A closed orbit y of a flow ¢, on M is said to be hyperbolic provided the
tangent bundle of M restricted to y, TM, is the sum of three Dg, invariant
bundles E° @ E* @ E°® such that

(1) E° is spanned by the vector field X tangent to the flow.

(2) There are constants C, A > 0 such that |[De,(v)|| = Ce™ ||v| for ve E¥, t=0
and ||De,(v)]| = C'e ™ ||v|| for ve E®, t =0, where || || is some Riemannian
metric.

A rest point x for a flow ¢, is called hyperbolic provided TMx = E* @ E* and the
inequalities of (2) are valid for ve E* or E°.

The stable and unstable manifolds of a hyperbolic closed orbit y are defined
by

W*(y)={x| d(¢x, ¢y)—>0 as t—>—o for some ye4y}
We(y)={x|d(ox, ¢y)—>0 as t—o for some yevy},
where d is a metric on M. These are injectively immersed copies of the vector

bundles E“ or E* (see [9]). For a rest point x the stable and unstable manifolds
W*(x) and W*(x) are defined analogously.



The periodic structure of non-singular Morse-Smale flows 281

(1.1) DEFINITION. The index of a hyperbolic closed orbit or rest point is
defined to be the fiber dimension of the bundle E*.

A point x of M is called chain recurrent (see [5]) for the flow ¢, provided that
for any T, € >0 there are points x; € M and real numbers >T, i=0,1,...,n,
such that x = x,=x, and d(¢.x; x;1+1) <€

The set of all chain recurrent points R is a compact invariant set of the flow, if
M is compact.

(1.2) DEFINITION. A smooth flow ¢, on M is called Morse-Smale if

(a) The chain-recurrent set R of ¢, consists of a finite number of hyperbolic
closed orbits and hyperbolic rest points, and

(b) The unstable manifold of any closed orbit or rest point has transversal
intersection with the stable manifold of any closed orbit or rest point.

A flow which is Morse-Smale possesses a filtration (see [5] or [7]). That is,
there are manifolds with boundary and with the same dimension as M,

NycN,cN,c---cN=M

such that for each i, N;_;<int N;, the vector field tangent to the flow points
inward on the boundary of M,, and int (M; — M,_,) contains precisely one closed
orbit or one rest point. In fact if the closed orbits and rest points {y;} are indexed
so that W*(y,)N W*(y;)= whenever i>j, we may choose the filtration so
Y: < N;— N;_4, (see [7]).

We shall have occasion to use a somewhat less fine filtration. The transversal-
ity of stable and unstable manifolds for Morse-Smale flows ((b) of (1.2)) guaran-
tees that if y;, and v; are closed orbits with index y; > index y; then W*(y;)N
W*(vy;) = . Hence we may choose a filtration {N;} with y, © N; — N,_; such that if
index y; > index v, then i>j. For a non-singular flow this allows us to make a
coarser filtration which will have all closed of the same index in the same level.

(1.3) Remark. If ¢, is a non-singular Morse-Smale flow and the N; are chosen
as above then we can define M, ={x | xe N, and v, has index < k}. It is then clear
that

MOCMIC "'CMn_l-—'—M

has all the properties of a filtration except that M; — M,_, contains all closed orbits
of index i.



282 JOHN FRANKS

2. The spectral sequence associated with a filtration

Let E, , be a spectral sequence over a field, satisfying E, ;=0 if g#0, 1, and
such that dim E;,=dim E}, for all k. We define a number of integers for
subsequent use:

a; =dim E, o =dim Ej ,

R,=dim @ E=,=dim Ef,+dim E_,,

p+q=k
a,=rankd': E,—>E;_;,
B.=rankd':Ex;—>Ei_1,
v =tank d”: E ;> E%_,,
¢ =dim E;,=dim Eg,

¢ =dim E;_, , =dim E}_, ,

We will be concerned with the spectral sequence associated with the filtration
of M as described in §1. In this case R, will be dim H, (M) and a, will be the
dimension of H,(M,, M, _;)=dim H,,,(M,, M, _,).

(2.1) LEMMA. With the above definitions

A, =B+ Br+1t Yzt Cr1 = A T a1+ ¥ie + G

Proof. We start with the fact that ¢, =dim E;, from which it follows that
dim EZ,=dim E; o+rank (d*: E; —>E}_,1) = ¢ + v«. Hence we have

a, =dim E} ,=dim E,+rank (d': E;,— Ei_,)

+rank (d' : Ex+10—>Eko) = G+ ¥ + @i+ apeiq
A similar computation shows that
a, =dim Ei,1 = Br + Br+it Yir1t Cvr
(2.2) LEMMA. With the above definitions
Ri—Ri_1+Ri_1— " £ Ro= Yir2~™ Yir1+ Brr1— W1 + Cisr

Proof. The previous lemma gives two expressions for a,. Using each of these
expressions we evaluate a; —a,_,; +a,_,— - - - £ a, and then equate the results. In
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this way we obtain
Bisiit (Yivo— Vi1 T ¥ — " £Y0) H(Cs1— G+ - - - £&y)
=t (V= Ye-1t v (G — g+ £ ).

Hence

e[ (G +a)+(C1t 1) — - - £(Cot Co)]= @1 — B+t Vi1~ Yira-

Since R, = ¢, + ¢, we have
Ri—Ry 1+ 2Ro=Yiro— Ye+1 T Brs1— s1 T Cisr-

(2.3) COROLLARY. ak = Rk - Rk—l + ot Ro.

Proof. By (2.1) and (2.2) we have

A = B + Brr1+ Yis2t Ciia

and

Ry —Ry_1+ - £Ro=Yi2— Vir1 T Br+r1— A1~ Crs1-

Therefore a;, — B = (Ry — Ry—1+ * - - £ Ry) + Yis1 + ap4q. Since By, Vi1 and ay .,
are all non-negative the result follows.

(2.4) PROPOSITION. If R, and ay are as previously defined and R,= R, =1,
then

(a) a;=ap—1and a,_,=a,_,—1,
(b) If ay_1=ayx.1=0 and R,— R, _;+--- £ R,=0, then a, =0.

Proof. By (2.1) ap= ay+ a;+y,+¢o; and since ¢, = Ry=1, and ay,=v,=0, it
follows ay,=a;+1. Since by (2.1) again, a,=a, we have a;,=a,~1. A similar
computation shows a,_,=a,_;—1.

To prove (b) we note that from (2.1) it follows that if a,_, = akﬂ-—O then
A =aks1 =B = Brry1=Y+1=0. But from (2.2) R—-Ri_+ - xR;=
Yer2z— Yes1F Brs1— Aks1+ Ck:1=0, so we have vy, ,,+C+1=0 which implies
Yi+2 = Cr+2 =0 since y,,, and .., are non-negative. Hence

a4 = Bt Brr1t Yirz T Cs2=0.
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(2.5) PROPOSITION. Given non-negative integers R,, R;, R,, ..., R,, such
that R,— R,_,+ - - -+ Ry=0, there exists a spectral sequence E:,,q over any field F

such that

(@) E;,=0if q#0,1 orif p<0 or p=n.
(b) R, =dim ®,,,-, E;,=dim E; ,+dim E}_, ;.
(c) dim E} o=dim E} ; = max {0, R, — R, _;+ - - - £ R}.

Proof. We can specify a spectral sequence satisfying (a) by specifying the
dim (Ef,,q= E; ) and the ranks of the non-zero differentials. That is, we need only
define the numbers ay, B, v, ¢ and ¢, defined in the beginning of this section.
We will define o, = B, =0 for all k (so that in fact E1 = E ) and inductively
define vy, ¢, and ¢, as follows:

Let ¢co=R,, and ¢, = ¢ = vy, =0 if k<0, and define

e =max {0, Ry — ¢_1— Y1} (1)
Y =max {0, ¢, >+ Y2~ Ri_1} (2)
& =R, — ¢, =min{R,, ¢, 1+ vi_1}. (3)

With these numbers specified, if we define E“,,q=0 for g# 0,1, we have a well
defined spectral sequence and as in (2.1), one can compute

dim Ek 0= Ykt Ci» (4)
and
dim Ekl Ye+2 1 Cisr (5)

Notice that by definition E, =0 if q# 0, 1, but we will postpone the proof of the
remainder of (a), namely that E,,=E,; =0 if p=n.

To show (b), note that dim @ ,,,-, E;,=dim E;,+dim E;_, ; and by con-
struction dim E} = ¢, and dim E;_; ; = &. Thus

dim Ez,0+dlm Ei—-l,l =+ Ek = C +Rk —C = Rk

by the definition of ¢,. So (b) is satisfied.
The first equality of (c) is obtained as follows, using (1)-(5) above
dim Ellc,l = Yir2+ Csr = max {0, ¢ + v — Ry}
+Ry.1—max {0, Ryi1— ¢ — ¥i}
=R+ (Rt Gt v =6+ %

= dim EL,.
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We now set a, =dim E; ,=dim E}, and note the spectral sequence we are
considering satisfies all the hypotheses of (2.2) and hence we can conclude

Ri— R+ £ Ro= Y2~ Vi1t Chs1

since a1 = PBr+1=0.
Since a; = Yii2+ Cr1 WE have

Ri.—Ry_1+ - £Ry=a;— vx41= a, —max{0,c,_; +v,_1— Ry}
= q, —max {0, a,_, — R, }.
So

aszk—Rk_l'*' s :i:R0+max {0, ak_l_Rk}. (6)
We now assume inductively that
a1 =max {0, R,_;— Ry_,+ -+ £ Ry}

and note that it follows that

0
max {0, a,_;— Ry} = {a -R
k-1 k

_{O if RkZRk——l_Rk—Z-I’...j:RO
—Rk+Rk_Rk—2+..'iR0 if Rk<Rk_1"'Rk_2+"'iR0.

Hence by (6) above
a, =max {0, R, —R,_;+ - £ R}

and by induction on k we have completed the proof of (c). Since we assume
R,—R,_;+---xR,=0 and define R, =0 for k> n, it follows that

R,—Ry_;+---xRy;=0 whenever k=n.

Hence dim E} o =dim E, , = a, = 0 for all k =n and we have completed the proof
of (a).

(2.6) Proof of Theorem A
We will consider a filtration J=M_,cM,c---< M, ;=M for which all
closed orbits of the flow of index k are contained in M, — M, _; (see (1.3)) and
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k+1| Q
k e a Q
Q .
- Q
0] Qa
Q
V-Ak
Figure 1

make some calculations concerning H «(M,;, M,_;; Q). To do this we consider a
further filtration M, = X,< X, < - - - € X, = M, ,, such that there is precisely one
untwisted closed orbit in X, — X, _; so we will have r= A,. It is then not a difficult
computation to see

Q if i=k or k+1

HI(XP’HP-I;Q)={O if i=k k+1

This is, for example, a special case of (5.3) of [4]. Notice in particular that the
possible existence of twisted closed orbits of index k in X, — X, ; does not alter
this result because we are using rational coefficients.

Consider now the E' spectral sequence with E, = H,,,(X,, X,_;; Q). It has
the form shown in Figure 1 and converges to an associated graded vector space of
Hx(M,, M;._;; Q).

From this two facts follow: If a, =dim H,(M,, M,_;; Q) then A, =a, and
A, #0 implies that q,# 0. Notice also that H;(M,, M;_;; Q)=0 if i#k, k+1,
so since the Euler -characteristic y(M,, M,_;)=0, we must have a,=
dim H, . ,(M,, M, _;; Q) also.

We can now consider the E' spectral sequence associated with the filtration
M,cM,c---cM,_,. Thus we have E, ;= H,,,(M,, M,_;; Q) and this spectral
sequence converges to an associated graded vector space for H«(M; Q). So if
R*=dim H,(M; Q) we will have R, =dim E;,. Since this spectral sequence
satisfies all the conditions for the spectral sequence considered at the beginning of
this section it satisfies the hypotheses of (2.3) and (2.4). We thus have A, =aq; =
R, —R,_;+ - - - + Ry which proves part (a) of the theorem. Part (c) of the theorem
follows from (b) of (2.4) since, as remarked above A,_,=A,,;=0 implies
1= a1 =0 and a, =0 implies A; =0. .

Finally to prove part (b) of the theorem we note A, is the number of
components of M, so A,= a, and dually (considering the inverse flow) A,_,=
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a,_,. Thus from (a) of (2.4) we have

and

A 2Zza, ,=za, ,—1=A, -1

3. Constructing Morse-Smale flows

In this section we give the proof of Theorem B by constructing a non-singular
Morse-Smale flow with the required number of untwisted closed orbits of each
index. The main tool for doing this is the following result of Asimov.

(3.1) THEOREM. (Asimov [1], [2]). Suppose f: W—[a, b] is a Morse func-
tion with two critical points p and q of index k and k +1 respectively, such that
W (q)N W (p)= O, if k# 0, then there is a non-singular Morse-Smale vector field
X on W satisfying

(1) X =~Vf on a neighborhood of W, and
(2) the flow of X has exactly one closed orbit and this orbit has index k and is
untwisted.

(3.2) DEFINITION. The Morse function f will be called an associated Morse
function for the flow X on M.

The important property of the associated Morse function is that it has two
critical points, one of index k and one of index k+1; and that the unstable
manifold of the index k + 1 critical point does not intersect the stable manifold of
the index k critical point if k# 0. It is not clear that every Morse-Smale flow on
W with a single untwisted closed orbit has an associated Morse function, but all of
the Morse-Smale flows we construct will be obtained by applying Theorem (3.1)
and then piecing together.

(3.3) LEMMA. Let f: W—[a, b] be a Morse function defined on a connected
n-dimensional manifold such that all critical points of index 0 are in f~'(a) and all
critical points of index n are in f~1(b). Then given c, d such that a<c<d<b, and
0=k <n, there exists a Morse function g: W—[a, b] such that

(a) The functions f and g agree on a neighborhood of dW and on a neighbor-
hood of the critical points of f.
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(b) The function g has two additional critical points: one of index k in g~'(c)
and one of index k+1 in g7'(d).

(c) The unstable manifolds of the additional critical points are disjoint from the
stable manifolds of any of the previous critical points except perhaps those of
index 0 and this is also true for the dual Morse function —g.

Proof. Because all critical points of f of index 0 and n are in f~'(a)U f~'(b)
and W is connected there is an integral curve I of —Vf running from a point in
f'(d+e€) to a point in f~'(c—¢€), for some small e>0. We may assume I is
disjoint from stable and unstable manifolds of all critical points of index #0, n;
since these manifolds will have dimension < n. By standard arguments there is a
neighborhood U of I (also disjoint from stable and unstable manifolds) and a
chart map ¢ : U — ¢(U)< R" such that if xe U f(x) = h(¢(x)) where h: R"—>R
is a linear height function. Now by (8.2) of [6] the function h : ¢(U)— R can be
altered to h which has two cancelling critical points of index k and k+1 at the
desired level. Finally, g is defined by

(fx) if x£U
g(x)—{ﬁ((p(x)) if xeU.

(3.4) PROPOSITION. Suppose X is a Morse-Smale flow W with a single
closed orbit and with an associated Morse function f'. If the closed orbit is untwisted
and has index k such that 1<k <n-—1, then there exist non-singular Morse-Smale

flows Y, and Y, on W such that,

(a) On a neighborhood of dW, X=Y,=Y,.

(b) The flow of Y, has precisely two closed orbits, both untwisted and of index k.

(c) The flow Y, has precisely two closed orbits, both untwisted, but one of index
k and one of index k+ 1. (For this, k =0 is permissable).

We remark that the construction of Y, in the case K=0 has been done by
Asimov in [3].

Proof. Suppose q, and gq,,; are the critical points of f'. Then, since
W*(qi+1) N W*(q) = I, by (4.1) of [6] we can change f' to a new Morse function
f which is unchanged on a neighborhood of dW, and has the same critical points
as f', but satisfies f(qx)> f(Qic+1)-

Now by (3.3) we can form a new Morse function g, agreeing with f on a
neighborhood of W but having two additional critical points p, ., and p, of index
k+1 and k. It is clear we can do this in such a way that

8(Pu+1)> 8(qk) = f(qi) > f(qu+1) = 8(qu+1) > g(D1)-
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If we now consider the flow —Vg then by (3.3) we have W*(p,..) N W*(q,)= O
and WU(CIkH) NW(p.)=D.

We are now in a position to apply (3.1) to construct the vector field Y;.
Namely if we choose ce R such that g(g,;)<c<g(q.) and define W,=
g '([c,»)) and W, =g '((—=, c]) then (3.1) asserts the existence of a flow X, on
W, agreeing with —V g on a neighborhood of dW,, and with a single closed orbit of
index k which is untwisted. Defining Y, to be X; on W, gives the desired flow.

The construction of Y, is similar. For this, we alter to Morse function f' to g,
leaving it unchanged on a neighborhood of W but adding two cancelling critical
points (using (3.3)) g.» and gy, of index k+2 and k +1. We can do this in such
a way that

8'(Gi+2) > 8'(Pr+1) = f'(Pr+1) > 8'(ge 1) > &' (i) = f'(pi)-

If we now choose ¢’ such that g'(qc.1)<c'<g'(pcs1) and define W=
f""'(La, c]) and W3 = f"""([c, b]), then as before we are in a position to apply (3.1).
The key point is that by construction the unstable manifold of g, ., (with respect
to the flow of —Vg’') is disjoint from W*(p,,,). Likewise W"(q,.,) N W*(p,)= .
Thus by (3.1) we can construct X; on W with an untwisted closed orbit of index
k and X; on W, with an untwisted closed orbit of index k + 1. Defining Y, on W
to be X; on Wi and X; on W gives the desired flow.

(3.5) LEMMA. Suppose f: W—[a, b] is a Morse function with no critical
points, then there exists a non-singular Morse-Smale vector field X on M such that

(a) X agrees with —Vf on a neighborhood of dW.
(b) X has two closed orbits, both untwisted; one of index k and one of index
k+1.

Proof. Choose numbers ¢;, i=1, 2, 3, 4 such that a<c¢,;<c¢,<c¢3<c¢;<b. By
applications of (3.3) we can construct a Morse function g on W agreeing with f on
a neighborhood of aW and with critical points p; € g~'(c;) such that p; and p, form
a cancelling pair of index k and k+1 and p, and p, for a cancelling pair of k+1
and k +2. Moreover by (3.3) we can assume

W4 (p)N Wi(p)=(

and

W“(ps) N We(ps)=D.
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Now choose c € (c,, ¢;) and let W; = g7 '([a, c]), W, =g~ ([c, b]). Two applica-
tions of (3.1) now produce the desired flow on W.

The following proposition is simply a restatement of Proposition (2.5).

(3.5) PROPOSITION. Given non-negative integers R, ..., R, such that R, —
R, 1+ -+ £ Ry=0, there exist non-negative integers ¢, Cx, Y, k=0,...,n such
that

(@) Yt = Yisat Cepy=max{0, Ry —Ry_;+--- £ Ry}
(b) Rk =€ + éka (_:0"_: 0.

(3.7) Proof of Theorem B. The hypothesis that M is simply connected, has
dimension greater than 5, and has torsion free homology guarantees that M
admits a self-indexing Morse function f whose type numbers are equal to its Betti
numbers. (This is (6.3) of [10]).

Now using the techniques of (6.4) of [6] and in particular (6.6) of [6] we can
alter this Morse function so that

W (P ) N We (g ) = 3. (1)

whenever q, and p,., are critical points of index k and k +1 respectively. Note
that since M is simply connected there are no critical points of index 1 or n—1.

(3.8) Remarks. 1t is only to obtain this Morse function that we need the
hypotheses that dim M>5. So in fact if M is any simply connected manifold
admitting a self-indexing Morse function with type numbers equal to the Betti
numbers and satisfying (1) above, then the conclusion of Theorem B holds.

Using (4.1) of [6] we can alter f again so that there are ¢, critical points of
index k in f~'(k+¢€) and &, critical points of index k in f~'(k —&).

We are using the fact that ¢, + ¢, = R, and moving ¢, points up slightly and
the remaining ¢, down slightly. This can be done without disturbing the property
that W, (p.1) N W (q) = J.

We now add v, pairs of cancelling pairs of critical points of index k and k—1
using (3.3) in such a way that those of index k—1 are in f~'(k—1—¢€) and those
of index k are in f~'(k +€). We do this for each k.

Now let M, =f"'((—>, k+1]) and W, =f"'((k, k+1]). By construction W,
contains ¢, + vy, critical points of index k (in f~'(k+¢€)) and &, + i, critical
points of index k+1 (in f~'(k+1—¢€)). Also if 1<k <n—1 the unstable manifold
of each index k+1 point is disjoint from the stable manifold of each index k
point.
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Figure 2

The situation is shown schematically in Figure 2.

Thus using (4.1) of [6] to rearrange the levels on which critical points occur
and repeatedly applying (3.1) we can construct a Morse-Smale vector field X, on
W, such that X, = —Vf on a neighborhood of dW, and such that the flow of X,
has precisely ¢, + vy = Cc 41t Y42 closed orbits all untwisted and of index k.

We take special note of the cases k =0, 1, n—1, n. By hypothesis R,=R, =1,
R,=R,_;=0. Thus ¢,=Ry=1 and hence vy,+c,=R, implies y,=0. Also
R;—R;=-1 so y;+¢,=0 and hence both y, and ¢, are zero. The equations
v+ ¢;=Ry=1 and ¢, +¢;=R; =0, then imply ¢, =0 and y,=1. It follows that
M, contains exactly two critical points, one of index zero and one of index one.
Hence M, is diffeomorphic to S'X D" and admits a vector field agreeing with
—Vf on M, and having one closed orbit of index zero. A completely dual
argument (using the fact that R,—R,_;+‘--+R,=0) shows that M=
f*([n—1,)) admits a vector field agreeing with —Vf on 9M and having a single
closed orbit of index n—1. Thus piecing together the vector fields on the W, M,
and M, we obtain a flow which almost proves the theorem in the special case
Ay =max{0, R, —R,_,+ -+ R;}. We have constructed a flow which has a
filtration and which satisfies all the properties of Morse-Smale except the trans-
versality of stable and unstable manifolds. But if we take a Kupka-Smale
approximation (see [9]) we can achieve this transversality and because the
filtration will be a filtration for the approximation, we will not change the periodic
behavior or add additional chain recurrent points.

To prove the general case we use Lemmas (3.4) and (3.5) to add closed orbits
to this flow. More precisely, given non-negative integers {A,} satisfying (a), (b)
and (c) of Theorem A we first use (3.5) to add A,—1 cancelling pairs of closed
orbits of index 0 and 1 to M, and A,_,—1 cancelling pairs of index n—2 and
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n—1to M. If A,>A,—1 we then use (3.4) to add A, —(A,~1) closed orbits of
index 1 to M, so we will have A, closed orbits of index 0 and A; of index 1.
Similarly we can alter the flow so that there are A, _, closed orbits of index n —2
and A,_; of index n—1.

Now inductively suppose the flow has been altered so we have the desired
number of closed orbits through index k—1, and we want to alter it further so
there are A, of index k. Suppose first that R, — R, _;+ - - - = R;> 0 then there is
already at least one closed orbit of index k and by repeated application of (3.4)
we can alter the flow so there are A, of index k. Otherwise either A,_; # 0 and
repeated application of (3.4) works, or A, ,; # 0 in which case we use (3.5) to add
a cancelling pair of index k and k +1 and then apply (3.4) repeatedly to obtain A,
of index k and A, of index k+ 1. This last case is done slightly differently if
k = n—3, for then there are already present A,,, = A,_, orbits of index n—2 so
we can use the dual of (c) of (3.4) (obtained from applying 3.4 to the inverse flow)
to add closed orbits of index n —3. We repeat this until we have A, _; such orbits.
We again take a Kupka-Smale approximation to get the desired Morse-Smale
flow.

4. Morse-Smale flows on S°

In this section we consider the periodic behavior of a non-singular Morse-
Smale flow on S3. Conversations with D. Asimov were valuable for the prepara-
tion of this section.

(4.1) THEOREM. Necessary and sufficient conditions for the existence of a
non-singular Morse-Smale flow on S> with A, untwisted closed orbits of index k
are:

(@) Ay=1, A,=1.
(b) A12A0—17 A12A2—1.

With any specified numbers of untwisted orbits the number of twisted orbits of index
1 is completely arbitrary. There can be no twisted orbits of index 0 or 2.

Proof. We first note that the necessity of (a) and (b) follows from (a) and (b) of
Theorem A.

For the sufficiency we consider Figure 3.

We have two round handles (see [1]) of index 0 (i.e. S'x D?) labelled R, and
R on which we can put a vector field perpendicular to the boundaries and
pointing inward, and such that there will be a single closed orbit of index zero in
each of R, and Rj. To these we attach a round one handle R, =S'xD'x D".
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Figure 3

They are attached as shown by identifying S'x D' x S§° with embedded copies of
S'x D' in the boundary of R, and R{. On R, we can construct a vector field with
a single untwisted closed orbit of index 1 in such a way that the vector field agrees
with the vector field on R, and R; where identifications are made and is
transverse inward on the remainder of R,. In co-ordinates (0, x, y) for R, =
S'x D'x D" this vector field could be X =9/30— x(8/dx)+ y(3/0y).

Noting now that the complement of R,U R{U R, in S is two disjoint copies
of S'xD? we add two such solid tori on each of which an outward pointing
vector field with one closed orbit of index 2 has been constructed. These vector
fields are constructed to match up with those already defined on the boundary of
R,U RJUR,. We have thus constructed a Morse-Smale flow on S$> with A,=2,
A =1, A,=2.

We can however iterate this construction as shown in Figure 4 to create a flow
with Ag=m, A;=m-—1, A,=m.

For the general case we suppose that A,, A,, A, satisfying (a) and (b) are
given and let m =min {A,, A,}. We consider the case A,=m the other being
similar. First, as above we can construct a flow with m closed orbits of index 0,
m—1 of index 1, and m of index 2. Then using (3.5) we add A,— m cancelling
pairs of closed orbits of index zero and one. Finally we use (3.4) (c) to add
A;— A, untwisted orbits of index one.

It is clear that there can be no twisted orbits of index 0 or 2 since it is not
possible to embed an unoriented three manifold in S°.

To see that the number of twisted orbits of index 1 is arbitrary we consider the
following example. It is not difficult to construct an embedding of the disk D” in

9

Figure 4
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its interior with precisely three hyperbolic periodic points: a sink of period 2 and a
saddle whose unstable manifold has its orientation reversed. By taking the
suspension (or mapping torus) of this embedding and rounding off corners we
obtain a flow on the solid torus pointing inward on the boundary and with one
untwisted orbit of index zero and one twisted orbit of index one.

If we now take any non-singular Morse-Smale flow on $>, cut out a tubular
neighborhood of an index zero closed orbit and replace it by the example above
we have increased the number of twisted closed orbits by one without changing
the numbers of untwisted ones. Repeated application will give any desired
number of twisted closed orbits of index one. Finally we take a Kupka-Smale
approximation (see [9]) to achieve transversality of stable and unstable manifolds,
and this will not change the periodic behavior.
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