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Bilinear Forms on jfe-Vectorspaces ofDenumerable Dimension
in the Case of char (k) — 2

by Herbert Gross and Robert D. Engle, Bozeman (Mont.)

Introduction. The classification, up to metrie isomorphism, of finite di-
mensional &-vector spaces E, supplied with a symmetric bilinear form
0: E X E-+ k, isa rather difficult problem; it has been solvedfor particular
fields k, such as the field of rationals, reals, p-adic numbers or function fields
in one variable over a finite constant field. Kaplansky has shown that for
fc-vector spaces (E ,0) of a denumerable (algebraic) dimension, thèse prob-
lems vanish in a large number of cases, E admitting an orthonormal basis
for an extensive class of underlying fields ([4]; for an investigation of such
fields see [3]). In the denumerable case, an exceptional rôle is once more
played by the fields of characteristic 2. For perfect fields of characteristic 2

Kaplansky has proved the following

Theorem. For every ^0-dimensional &-space (E,0), 0 a non degenerate
bilinear form, precisely one of the following four possibilities holds: (1) E
possesses an orthonormal basis, (2) E possesses a symplectic basis, (3) E is an
orthogonal sum E Eo © L where EQ is spanned by a symplectic basis and
L is one-dimensional, (4) E is an orthogonal sum EQ ®L, where Eo has a
symplectic basis and L is two-dimensional, spanned by an orthogonal basis
([4] p. 15). Kaplansky has asked what becomes of this theorem if the as-

sumption that every élément in the coefficient field be a square, is dropped.
In the following, we investigate the case of an arbitrary field of characteristic

2. Complète results as regards the classification problem are obtained for
ail fields k of finite dimension over their subfields k2 (Theorem 2). As a side-
result we obtain an invariant characterization of the &-spaees (E, 0) of
denumerable dimension which admit of orthogonal bases, k an arbitrary field
of characteristic 2 (Theorem 3).

I. Notations and Results

Let k be a commutative field. A &-vector space (E, 0) is a fc-vector space
E supplied with a symmetric bilinear form 0: E X E-> k. (E, 0) is called
semisimple if E ^ E-1 (0). In the following, an isomorphism (E, 0) ^ (G, y))
is a vector space isomorphism &: E-+ G such that y)(êx,&y) 0(x,y)
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for ail x, y c E. If there is no risk of confusion, we simply talk about E instead
of (E,0) and, we write (x, y) and ||#|| respectively for &(x,y) and the
"length" 0(x, x) of xeE. A subspace H of (E,&) is always eonsidered
as being supplied with the restriction &/h of 0 to H. The radical of H (rad H)
is defined as H ^ H1-, A subspace H ci E is said to be closed if H±J- H.
If H is a closed subspace of (E, 0) and F a finite dimensional subspace of
(E, 0) then H + JP is closed.

2. The following lemma, proved by Kaplansky in [4], will be used in the
proof of Lemma 4 below. Lemma : Let (E, 0) be a semi-simple Jfc-vector space
of infinité dimension over an arbitrary field k. Let furthermore fbea finite
dimensional subspace of E, spanned by the basis fl9 /w, Fa subspace of
E with Fx (0). Then there exists a veetor x € E with x € F, a;^F^.F
and 0(x, f^ /?, for arbitrarily prescribed ftt c k.

3. Bases being the central object below, the following notations prove con-
venient. If oclt 9ocne k then (otl9 ocn} is an w-dimensional &-space

(E, 0) possessing an orthogonal basis e^ e2, en with ||et|| (xf. "P"
invariably dénotes a hyperbolic plane, i.e., a two-dimensional space (E, 0)
having a basis el9 e2 with || ^i|| || ^|| 0 and (%, e2) 1. 2*P is an
orthogonal sum of hyperbolic planes (i.e., a space spanned by a symplectic
basis). -£<<%> is a space (E9 0) spanned by an orthogonal basis (finite or
infinité), each basis vector of length <x, oc ^ 0. If Z(oC) is of denumerable
dimension, we dénote it by Eia).

4. In the following investigations, k will always be a field of characteristic 2

unless stated otherwise. Every such field is a vector space over its subfield k2

of squares.
5. If (E, 0) is a semi-simple k-vector space with dim E <; No *hen $ *s

an orthogonal sum ZP ®E09 where EQ is spanned by an orthogonal basis.

6. Let (E, 0) be a &-vector-spaee. We hâve || x + y\\ ~ || x\\ + ||y||
for ail x9y e E as char k 2. Thus, if H is a subspace of E, then the range
of the restriction \\H|| is a subspace of the k2-vector space k. This range will
be denoted by "||JÏ||" throughout. In particular, the set of ail isotropic
vectors x in E (|| x\\ 0) is a vector space. This subspace of E is invariably
denoted by E*. (The subspace of vectors satisfying condition (T) in [1] p. 66.)

The subspaces E*, E£9 E^-1, rad E* etc. will play an important rôle since

they are invariant subspaces under orthogonal transformations. We notice that
rad (E± c E* by the définition of E*, hence rad (E^ c rad (E$ ^ E* radE*.
Therefore rad E^ rad E*, the converse inclusion being trivial. This means

in particular that rad E* rad(JS?x) (E* + E^-)-1) is a closed space.
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IL Bases

Let us mention a few words about the fields. When describing i-spaces
(E, 0) in terms of orthogonal bases, it is clear that the non-square éléments
of k play an important rôle. Let gk be the multiplicative group of non-zero
éléments in k modulo square factors. If gk is finite, then its order is a power of
2 since every élément of gk is of order 2. If char k ^ 2 then one can find, for
every natural n> fields with gk of order 2n (even among the denumerable
fields, [3]). On the other hand, if char k 2 then k2 is a subfield of k and
the éléments of gk are precisely the straight Unes through the origin of the
&2-vector space k. In other words, the order of gk is either 1 or equal to card
(k). In particular, since gk is of order 1 for finite fields, gk is either of order 1

or infinité. In the following discussion of isomorphisms between ^0-dimensional
fc-spaces the fields with finite dimension [k : k2] over their subfields k2 are
seen to play a spécial rôle. Since a simple characterization of ail non isomorphic
spaces over such fields can be given (Theorem 2), let us mention a few ele-

mentary facts about thèse fields.

Clearly, if [k : k2] is finite, then [k : k2] is a power of 2. Furthermore, if k is

a finite algebraic extension of k, [k : k2] finite, then [k: k2] — [k: i2] ([k: k2]

[k: F] [k2: k2] [k : k] [k : k2] and [k2 : k2] [k : k]). From this follows

that [k : W\ <; [k : W] for an arbitrary algebraic extension k of k. (< is
witnessed by the transition to the algebraic closure.) On the other hand, if
& fe(fi, ...,£„), where fi, în are independent transcendentals over k,
we hâve [k: Je2] [k: k2] • 2n (a basis for k over &2 is given by the éléments

at f î1 f 22 • • • £nn> £> °> an(i at running through a k2 basis of A). In
particular :

// k is a field of characteristic 2 with finite [k : k2], then [k : k2] is finite for

an arbitrary over field k of k, provided its transcendence degree over k is finite.
The fields k with finite [k : k2] form thus a considérable class.

Let again k be an arbitrary field of characteristic 2. It is well known that
Witt's Cancellation Theorem does not hold for bilinear forms in the case of
char k 2. Instead, we hâve the following orthogonal isomorphisms :

Lemma 1. <<%> ® <<%, oc} ^ <a) © P (0 ^oc *k, P a hyperbolic plane and
ail the sums orthogonal).

Lemma 2. <<%, oc} e © <&> ^ <<%, â> e © <&> provided that the éléments
i€l %€l

ia> Pi}ici are independent over là and span the same subspace of k (over fê)
<w the déments {jx, pt}i€l (card I is finite or infinité; ail sums are orthogonal).

17CMHvol.40
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Proofs. 1. Let ely e2, ez be an orthogonal basis of <#> © <<%, a} with
|| e% || oc. Introduce anew basis ~ëx, ë2, êg by ~ëx et + e2 + ea, ë2 ex + e2,
ê3 «-1 (^2 + %) •

2. Let e^j, %, et(i e I) be an orthogonal basis of <<%, <%> e © </?,> with

ll^ooil il^oli <*> ||et||=/5t. Since {oc,pt}l€l and {*,&}l€/ span the

same subspace of k we hâve Ix X\ tx -\- £ 1\ fit for suitable Aq, A1? An.
1

Since the éléments {a, f$t}%€l are independent over &2 we hâve ^ =fi 0. For
a fixed choice of Àq, XXi An introduce the following basis

7—%, 5

+ cp) + e,

n < i : et et.

We shall list a few conséquences some of which will be of importance later.

Corollary 1. (i) © E(ot%) e HP © E(ot%) (ail surns orthogonal).
%€l _ _(ii) <ax (xx oc2 oc2 am <xm} ^ ^ocx ax a2 <x2 <xm <%m> provided the éléments

<xl9 ocm are independent over là and span the same subspace of k (over k2)

as the éléments lxl9 ~âm.
m m

(iii) ® <<*,<*,>©© </O ^ ©<<*,<%,>©©<&> provided the éléments
J=l l€l ?=1 ICI

{(*!, <xm, (5t}t€l are independent over k2 and span the same subspace of k as

the éléments {%,..., âm, (3t}l€l (card I is finite or infinité, m is a natural
number, ail sums are orthogonal).

We remark that the transformation of Lemma 2 does not lend itself to a

generalization of (ii) and (iii) to the case of infinité m. (We hâve not succeded

in proving or disproving the infinité analogue of (ii) by any other means,
cf. Proposition 3.)

Another lemma which we shall use is the following :

Lemma 3. Let (E, 0) be a k-vector space of denumerable dimension, semi-

simple with respect to the bilinear form 0 : E X E -> k and k a field of arbitrary
characteristic. Let furthermore Rbea closed, totally isotropic subspace of E (B-1 ± B
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and R c JRX There existe a basis (rt)t€l of R and a subspace Rf of E admitting
an orthogonal basis (r[)t€l such that R © R' décomposes into an orthogonal
sum of semi-simple planes Kt k(rt,r{),

R® R' @Kt card / dim R dim R1
tel

and, furthermore, such that R © R' admits of an orthogonal supplément in
E : E (R © R) © H, H J_ R © R

In the case of char k =£ 2, the planes Kt are hyperbolic and R © R' thus
possesses a sympletic basis (cf. Bourbaki, Formes Sesquilinéaires p. 78).

Proof. Let S and T be finite dimensional semi-simple subspaces with the
foliowing properties :

S_LT,T c R±,S= ®Kt,Kt k(rl,r[) and rt*R (1)

Let (Om^i be some fixed basis of the space E and let em be the first basis
vector not contained in 8 © T. We construct finite dimensional spaces K
and L in (S © T)1- such that 8' S © K and T' T © L satisfy the
properties (1) and (2) with 8' and T' in lieu of # and T and such that
em € $' © î1' • In this fashion we obtain a décomposition of E of the required
form:

E \jS ®T (\J8) ®(UT) H uT and 1Î©JR' U#.

Since S ®T is semi-simple and finite dimensional, we may décompose
em : em e'm + e^ with e^ € S ® T and e^ J_ $ © T. Thus we may with-
out loss of generality assume that em JL S ® T.

First case. ew e R. Therefore ||em|| 0 and, since (8 © 27)-1 is semi-
simple, there exists r' with (em, r') =£0. The space k(em, rf) is semi-simple
and we put Sf S + k(em, r') and T' T. We hâve to détermine
{T' + 8')r,R. Let r €(T'@S')r, R, r t + s + Um + pr' with teT,
s c 8 and r eR. Since TcJ!1 we obtain 0 (v, JB) (t, R) hence
£ 0 as T is semi-simple. Therefore, (since R c R-1) we obtain 0 (r, em)

^ j^f^, /). Thus fi 0 and t> ¦= 5 + Aew. Since em e R in our case therefore
« c iî i.e., S€8rsR k(rt){<n by (2). Thus (T' ® Sf) ~ R k(rlf ...,rm, ej
which, upon relabeling em as rn+1 (and r' as rn+1), is (2). The remaining
conditions are trivially satisfied.
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Case 2. em 4 R and cm c R1-. We first convince ourselves that em i R -f
+ (S ® T); assume that cm r + s + £ with r € i?, s c $ and 2 € T. Since

em _L £ + ï7 and î7 c jRx we hâve in particular 0 (ew, î7) (£, T) ;

hence £ 0 as T is semi-simple. Since ew c i?x in the présent case, and
R c R±, we obtain furthermore 0 (ew, R ^ 8) (s, R ^ 8) i. e.,
8 ± 8 ^ R. From the explicit form of /S © jfc(rz, r£) we see that neees-

sarily s eRr^S. Thus em r + s cR, a contradiction. Since (iî -f 8 + T)x±
iî + S + T, we conclude from em i R + 8 + T that (R + S + T)-1- (£ ewx.

Hence there exists a vector t € (R + 8 + T)x R-1- ~ (S + T)1- with
(cm, f) ^ 0. Thus, if || em|| 0 then k(em, t) is a semi-simple space and we put
S' S, î7' T + jfc(em, Q. If, on the other hand, ||ej| # 0, we simply
put and £r 8 and T' T + k(em). We hâve to détermine {Tr ®8')^R.
Let, in the first case, r c T1 ® S1 i.e., r s + « + Xem + /ut with s cS^teT
and reR. Since em€JR-L and ||em||=0 we find 0 (r, em) // (^, ew),
therefore p 0. Since « c jRx ^ (^ © î7)^ we then find 0 (r, t) A(ew, <).

Hence A 0. This shows that (T ® S') ^ R (T ® 8) ^ R. In the other
case, 11 em \| ^ 0, itis evensimpler to verify that (T' © 8f) ^ R (T © S)r>R.
The remaining conditions (1) are trivially satisfied for 8f and T'.

Case 3. em i R1-. As in the second case one vérifies that em i Rx -\- S -\-T.
Since (Rx + S + T)±JL j?x + >S + î7, we conclude from ew < R± + S + T
that (R1- + 8 + T)-1 <t e£ In other words there exists a vector

r € (R1- + /S + î7)-1 E-1--1- ^ (flf © T)x iî ^ (S © î7)-1 with (ew, r) ^ 0.
Since r e R we hâve ||r|| 0 and the space k(r, em) is semi-simple. We

put S1 8 © k(r9 em) and î7' T. Upon relabeling r as rn+1 (and em as

fn+i) ^e conditions (1) and (2) are verified as in case 1. Q.E.D.
Lemma 3 often finds application in the following situation. Suppose that G

is a subspace of E such that the radical R G ^ G1- of G happens to be a

closed subspace of E. We then hâve a décomposition E (R © R') © H,
H J_ (R ©.fi')- Furthermore, one can always find an algebraic complément
L of R in G such that L c H. For, if Xo is some algebraic complément of R

in G then jk0 J_ i2. Every vector l0 c 2/0 has a décomposition l0 r -j- r' + h.
Since Zo X i2 necessarily r' 0. In other words, Lo c: R ® H which shows

that there is a complément i> of JB in with L c. H.
We are interested in décompositions of -E? of the following sort: E is an

orthogonal sum E ®E{ such that the ranges ||i?t|| of the summands

are either 0 or 1-dimensional subspaces of the ifc2-vector space \\E\\ and such

that the éléments spanning the non trivial \\Et\\ are linearly independent over k%.

In other words,
E EP®E <*!> © Z <^2> ©
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where the P8 are hyperbolic planes and where the field éléments ocl9oc2>

are linearly independent over k2. In view of Lemma 1 we may assume that
the summands E <&t> are either of infinité dimension or of dimension < 2.
Thus, collecting 1-, 2- and N0-dimensional summands we may rewrite the
above décomposition as follows :

E=EPe® Em e 0 <ytyty e 0 <dt> (1)
l€li i€/2 i€l9

where ail the field éléments pt9yi9 6t together are independent over k2.

We shall détermine those fc-spaee {E, 0) which admit of a décomposition
of type (1). We first hâve

Proposition 1. If E admits of a décomposition (1) then

?5je)J-. (2)

Prooî. Let for every i e Ix the space E{pi) be spanned by the vectors

(eii)*>i * C®o»)')* *s spanned by the vectors (etl -f- e%X^i an(l, the orthogonal
complément of (EiPi))^ in EiPi) is (0). Let furthermore, for every i c 72,

<y,y,> be spanned by the vectors />,/,. Since ail the éléments Pt,yjyôe
together are independent over k2 (by assumption), we obtain for E* from (1)

E* EP e © Elfii)* © © * (A + /() © (0) •

Furthermore

Et (0) e © k(/, + /•) e © <ôty and E^ =EP® Eifii)* ®@k(ft + /().
i i

From this we readily read ofF that (2) holds.
Condition (2) is not always satisfied. The simplest kind of counter-example

is the following. Let E be spanned by the basis vectors {et}i^1 ^ {/Ji>i ^ {^o}
and let 0 be defined on the basis as follows: || et || oc and (et, e})

0(i¥*j,i,J7>l)9 || A || =& and (/„ /) - 0(t ^ ;, i, j ^ 1), \\go\\ =y
and (et, ft) 0, (e,, 0O) ^, (A, 9o) ^, (i, j ^ 1) for «, y, ft, /?2,

independent over i2 (a field with [k: &2]^No is required). Hère radiS* 0

and (rad E*)-1 ^, but J££ + ^^x falls short of E by one dimension.
We remark that (2) is équivalent to E$ © E^ being closed.

We shall prove that the converse of Proposition 1 is true. This is accom-
plished by reducing the gênerai case to the cases of spaces E with jE?£ (0)
or E £ E*. We start out with thèse spécial cases.
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Lemma 4. Let (E ,0) be a semi-simple space of denumerable dimension with
E± (0). Then for every oc e 11E \ \ and every orthogonal décomposition
E H © Hx with finite dimensional H we hâve oc c || l/-1 \\.

Proof. Let E H © H± be any décomposition with finite dimensional
H, furthermore oc some arbitrarily fixed élément in || jE?|| We apply Lemma
1.2 with E* and H in the rôles of F and F respectively. Since oc c 11 E \ |,
there exists some vector xoeE with 11 x0 \ \ oc. Hence there exists a vector
x € E* with (x, ft) — (#o> /«)> /i> •••>/« a fixed basis of H. Therefore
(x0 + x, ft) 0 i. e., xQ + x _]_ H. Since x € E* we hâve || x0 + x \\

Proposition 2. Let (E, 0) be a semi-simple space of denumerable dimension
with \\E\\ ^ 0. We hâve an orthogonal décomposition

E= ® E{n%)
l€l

where {nt}%€l is a k2-basis for \\E\\ if and only if E^ (0).

Prooî. If E admits such a décomposition it is readily verified that E-^ (0).
Let us then assume that 2?£ (0). We construct a décomposition of E of
the required type step by step. Let F SP © i^Oi) © © ^<^M> ^e

a finite dimensional subspace of E, the P8 hyperbolic planes and the field
éléments n1, ...,nn linearly independent over Je2. Let furthermore (et)t>1
be some fixed basis for the space E and assume that em is the first basis vector not
contained in F. We shall construct a finite dimensional subspace H in F1- such

that em€F@H and F' F@H is of the form ZP®!^ © ©2XO
with 7tx, nr linearly independent over k2.

Since F is finite dimensional and semi-simple, we may décompose em : em

em + em TOth em e F and e"m ± F. Three cases are possible: || e£|| =0
and elfm is contained in some hyperbolic plane P' c F1- or ||e^|| 7^ 0 or
II e£|| 0 and e^ € <<5, <5> c J1^ for some 0 ^ ^ € Jfc. In the first case

we may choose P' for H and we put F' F © P'. In the second case

we put F' F © &(e^) provided that e£ t || JF||. If, on the other hand,
n

we should hâve e^ EX\n% with, say ^ # 0, then we apply Lemma 4 a
1

finite number of times and find a séquence of mutually orthogonal vectors

hx,K,...,hnm (F + k(e'i))± with ||M ||O|, P.ll=».. 2<i^n.
By Lemma 2 the space if spanned by enm, hl9 h2, hn is isomorphic to

...9nny and we put F' F ®H. The third case is treated in
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the same way, the first two vectors for the construction of H already at hand.
Thus, in ail three cases we find F' F © H, em e F1 where Ff again is of
the form SP © H^y © © i7<jrr>, the ?rts linearly independent over
fc2. In this fashion we find an orthogonal décomposition of E as follows,
E {)F ZP ®Z (jt^ © S <tt2> © In view of the independence of
the nts we hâve E* SP © (S^n^))* © Not ail of the summands
£(7zt} can be (0) since ||.E|| ^ 0. Thus, if one of the summands should be

finite dimensional we would hâve E^ ^ (0), contrary to assumption. Hence
ail the summands £<jity are infinité dimensional. Application of Corollary 1

finally yields E g* E{7ll) © E(n%) ©

Corollary 2. // (E, 0) is a space with E^ (0) whose range \\E\\ ^ 0
is spanned by the éléments nli nm (not necessarily independent over k2)
then E is isomorphic to E(7ll) © © Ei7lm).

Prooî. By Proposition 2 E ^ E(an) © © E(ai) where ax an is a
fc2-basis for 11 E \ \. Let then nx, nn (n < m) be a subset of éléments
independent over là. By Corollary 1 (ii) we hâve

Oi^i) © © <7tnnny ^ <orxOi> © © <onon>.

r
Hence trivially Eiai) © © Eian) ^ E(7lx) ®...®Einn). Let nn+1 21 A? w,.

1 1

After renumbering n1 nn we may assume that Xx =^ 0, 1 < r < i.
Hence by Corollary 1 (ii) <rcn+1 ^rn+i n2 7rr> ^ <% nx n% ;rn>. Thus

^(«n+1) © ^(7r2) © © E{nf) ^ JS(Wl) © © Ei7tf) can be arranged in a
trivial fashion. In this manner we obtain E{7ll) © © Ei7tm) ^ E.

Proposition 3. Let (E, 0) be a semi-simple space of at most denumerable

dimension. We hâve an orthogonal décomposition

where the nt form some Jc2-basis for \\E\\ if and only if E^ E*.

Proof. If E admits such a décomposition we trivially hâve E^ — E*.
Conversely, let us assume that E£ E*. We first remark that E cannot
contain a triple of mutually orthogonal vectors of the same length ^ 0. For,
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assume that zl9 z2, zz were such vectors, ||zi|| 11^II ||^|| ¥* 0- We
décompose according to the décomposition E J7* © L : z1 et + lx,
z2 e2 + l2, % 63 + £,. Thus Hdll H^ll |H,||. Since L contains no
isotropic vectors we must necessarily hâve lt l2 Z3. Since 1?* is

totally isotropic in our case, the three orthogonality conditions reduce to
0 (e1 + e29l1) + \\h\\, 0 (e1 + e,^) + \\h\\, 0 (e2 + e3, ^) + \\h\\-
Adding the first two of thèse équations we obtain (e2 + ez, 1^) 0 which
contradicts the third one as || lt \\ ^ 0. We now construct a décomposition
of E step by step as in the proof of Proposition 2. Let F (nx n{) © <jt2 tt2) 0
© © <^w7rn> be a finite dimensional subspaceof J?, %, 7r2, jrn linearly
independent over i2. Furthermore, let em again be the first basis vector of
some fixed basis for E not contained in F. Without loss of generality we may
proceed assuming that em ±_F. We consider first the case that || em \\ ^ 0.
We try to find a vector l c F-1 ^ E* with (l, em) ^ 0. Suppose that there
is no such vector l, in other words F1- r> E* c e£ Since E* is closed

in our case, we find (F + E^)1- F1- ^ E±x F1- ^ E* c e£ therefore

em€(F + E±)^=F + E± Le., em c F + E$ J + ^ Thus cm / +/0

Since f e F we should therefore hâve three mutually orthogonal vectors of
the same length ||em|| ^ 0, a contradiction (if F contains one vector of
some length a^0, then it contains, by virtue of its form, two orthogonal
vectors of that length). Thus we must hâve F1- r\ E^ cf e£ and there exists

a vector leFx rs E* with (em91) ^ 0. Hence em and e'm em + '', l

are mutually orthogonal vectors of F1- with ||em|| || erm\\. We put
Ff F ®k (em, erm). There remains the possibility that || em || 0. Since

E* is totally isotropic, em cannot be contained in a hyperbolic plane, therefore

em c <<5, ^> c jPx for some 0 ^ ô € k (F1- is semi-simple). Since there cannot
be more than two orthogonal vectors of the same length ^ 0 we must hâve
(5* II .F II and we put Ff F@(ôô} similar to the former case. In this
fashion we obtain a décomposition of E of the required form, E U F
<% n^) ® <jr2 7t2y © where ail the nt s are linearly independent over k2.

We now prove the converse of Proposition 1.

Theorem 1. Let char k 2 and (E,&) a semi-simple k-space of denu-

merable dimension and let E* be the svbspace of vectors of length zéro. If

then E admits of an orthogonal décomposition
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E © E{Yi) © © 0t, pty © © ot> (I)
%€l2

or
© P, 0 © <j9,, &> © © <oct} (II)

l€/2 i€/8

where, in the first case, the déments of the union {yt}i€ll ^ {fii}i€i2 w (at}i€i, are
a Jc2-basis of the range \\E\\ over k2, in the second case the same for the éléments

of the union {/?t}i€j2 ^ {^t)i€i% (^e Pis are hyperbolic planes).

Proof. Let R rad (E^) (E* + E^. Since iî is totally isotropic
and closed, we can apply Lemma 3 and obtain a décomposition

E (R@R')@H, H±(R@Rf)

R@Rr =^®k(rt,r[), R © k (rt)4€/l. (1)
i€l2

Since i2 J_ ^J^ x, we can find an algebraic complément 8 of R in 25 £x with
S _]_ R' (see the remark foliowing the proof of Lemma 3). Hence S JL R © R' :

#£x JB©i8f, S cz H (2)

Furthermore >S is semi-simple. If T is the orthogonal of S in H, we obtain
from (2) E^=E^±±=R@T. On the other hand, by the assumption of
the theorem R © H R± E± + ^ JB © (S © T). Since S + T c: H
therefore S -\- T H. Furthermore, since S is semi-simple, the sum S -\- T
is direct. Thus E is decomposed into three orthogonal summands:

E (R@R')®S®T (3)

and it remains to discuss the spaces R © Rr, S and T. With regard to S we
first remark that

E*=R@S*. (4)

For R © #* c E* is trivial. Conversely, if x c ^ c ^x R © /S we hâve
x r + s with rcJ? and se S. Therefore 0 || x\\ ||r|| + \\s\\ ||*||
and s c S*. This shows JP^ c JB + S*. Let then £x* be the orthogonal
of 8* in 8. Since ££« c 8 and S 1 i? we hâve 8$* c J5?£ by (4). Also
#£« c 8 c jE?xj-, hence ££« c ^ ^ £^ R. Therefore S^* (0) as
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S^s c 8 and S ^ R (0). Thus, S is semi-simple and S^s (0). Two
cases are possible for # : Either S 8* in which case S is a sum of hyper-
bolic planes or else 8 =£ 8* in which case the range ||#|| is différent from
0 and Proposition 2 can be quoted: Thus

either 8 © Pt or S © E{V%) (5)
l l

From (4) we learn that R' r> E^ (0). Therefore, taking orthogonals in
R + Rf, we obtain (R + E')* R R± (R + R')± and we may cite

Proposition 3 :

*©*'=©<&,&>. (6)
l€l2

Finally 2?* rs T (0) by (4), i.e., T contains no isotropic vectors. Hence T
possesses an orthogonal basis, T © <(%2> where ail the <xts are independent

over &2. Summarizing the facts about the décomposition (3) we see that E
admits of an orthogonal décomposition of the form

JP ©tf(yt)e©<j8tA>e©<«t> or E @Ple®0J,)e@<ociy.
l€li l€l2 l€l9 l€li l€/2 l€ls

A dependence 0 I>v\yt + E fi,\ /}t -f- Ex\<xt defines an isotropic vector
x Evtct + Ef/,tbt + Extat, Ev.c.eS, Ejtitbt € R + Rr and Extat€T.
By (4) xeE*= R + S* and thus xt 0, \\Evtct\\ Ev\yt 0 and

||27^6t|| E/ulfii 0. However, the yts are linearly independent over k2

by Proposition 2. Therefore vt 0. Proposition 3 guarantees the inde-

pendence of the /?t 5 and therefore jx% 0. This proves that the éléments

yt, fi3, oce together are independent over k2 and the proof of Theorem 1 is

complète.
Theorem 1 can be used to discuss the problem of isomorphism between n0-

dimensional i-spaces (E, <P) in a large number of cases. We shali give hère

a complète discussion of the cases where the underlying field k is of finite
dimension over its subfield k2. Thus, let fc be a field with [k : k2] finite. For

a space (E, 0) we hâve codim E* <,[k: k2] or else an algebraic complément

of jE?* in E should contain an isotropic vector which is impossible. Since

dim E^ < codim E^, the space E^ is finite dimensional and E^1- + 2?£ is

therefore closed. Hence every space of denumerable dimension over such a

field admits of a basis as described by Theorem 1. (The following discussion

also includes that of spaces (E, 0) with ||i?|| finite dimensional over k2, k

an arbitrary field.)
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Theorem 2. Let k be a field of characteristic 2 of finite dimension n over its
subfield k2(n [k: k2]), (E, 0) an uQ-dimensional semi-simple space over k.
Then (i) E isoftheform:

E E(y0 0 0 E(Yr) ® <pxPiP*P* - • • PsP.> ® Oi*2 • **> r > 1 (I)
or

E^SP® <P1p1p2p2 p9p9> ® <^a2 aq), (II)

where ail the snms are orthogonal and, in the first case, the éléments

ylf yr, plt fis, <xl9 oct are independent over k2 and the same for
Pi, • • • » Pv > % > •••><*« in tfec second case (thus r-^-s-^-tKn^p-^-q^n),

(ii) JE is uniqnely determined, up to orthogonal isomorphism, by its range
\\E\\, the range \\ E^ || and by the space E^ (In particular, the numbers

r, s and t, respectively p and q are orthogonal invariants of the space E.)
(iii) In terms of the above bases: If WE^1-1| ^ 0 (i.e., E* not closed) then

E is of type (I), if || E^1-1| — 0 (i.e., ^ closed) then E is of type (II). {Thus
(I) and (II) represent non isomorphic spaces.) A space of type (I) is uniquely
determined, up to orthogonal isomorphism, by \\E\\, the subspace of k (over k2)
spanned by the éléments ylf yr and by the space <«j, octy. A space of
type (II) is uniquely determined, up to isomorphism, by \\E\\ and by the space

Prooî. It only remains to discuss the question of isomorphisms. For a

space of type (I) let E{Yi) be spanned by a basis {etJ} > 2 • E{y{) ^
is then spanned

by the vectors etl -f e^ (j > 1) and the orthogonal of E{Vt)^ in E{Yi) is 0.
Let (piPl9 fis fis) be spanned by a basis {et, efi}1<i<s and let R be the
totally isotropic space k(et + ei)i<i<,«- We then hâve, by virtue of the in-
dependence of the lements yx, px, ,oc1,

E^ tf(yl)5|e 0 ®E{Yr)* ®R, E± =£©<«!, ...,«,>>

JB^ JB(V 0 ®E{yr)@R.

Let JE be another space falling into category (I), E ^(yl} © © E{Y7) ®

and jEJ£ ^E^. We hâve to prove that E ^ E. Since ^, yr and

7i, ...j- are independent over k2 we first hâve r r (since || E^1- \\

By Corollary 2 we see that E^x ^ E £ x. Hence we may intro-
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duce a new basis in ^x such that yt, yti 1 ^ i < r. From the isomor-

phism B © <jxx, act> ^ i? © (ôc1, ârç> we conclude that (ocx, <xt} ^
^ <%,..., «ï> since Jî and B are totally isotropic orthogonal summands and
since both (ocl9 octy and <>x, ôq> are semi-simple (even non-isotropic
by the independence of the as). Thus t — t and we may introduce a new basis

in <jxt, ,âj> such that ~it <xt, l <i <>t. Pinally, since \\E\\ \\E\\
and since yx,..., pi9...,%,... and y1?..., pl9...,âl5... are independent

over là we hâve r -\- s -\-t r + s -\-l; therefore s s as r r and £ ï.
Furthermore, having introduced the new bases in E^1- and

we may cite CorollaryJ (ii), <y^,..., yr> ® (^ift,..., /8S/?S> © <«x

^ <7i, • • • »?r> ©</?ij8i,.. •, P8fi8>®(<xi> • • • ><**>• Afortiori E{Vy) ©
© <Aft, pgpay ©<%,..., «t>^ ^^ © ©E{yr) © <ftftL,

© <<%!, ,âf> and thus E ^.E. The simpler case of spaces falling into

category (II) is treated in the same way. This proves Theorem 2.

Theorem 2 may also be expressed in the foliowing way : If [k : fc2] is finite
and (E, 0) an N0-dimensional, semi-simple 4-space with E* not closed, then
there exist three finite dimensional fc-spaces F, G and H such that F © G © H
contains no isotropic vectors and E is isomorphic to the (external) ortho-

00

gonal sum (SF) © G © G © H. E is uniquely determined by the ranges
||2? -f G + H\\, \\F\\ and by the space H; on the other hand, if E* is

closed, then there exist two finite dimensional &-spaces G and H such that
G © H contains no isotropic vector and E is isomorphic to the (external)

00

orthogonal sum (ZP) © G © G © H. In this case E is uniquely determined

by the ranges 11 G + H \ | and by the space H.
We should like to mention that Theorem 2 alone can be obtained more

directly by proving Theorem 1 only for spaces E with \\E\\ of finite dimension

over k2. This is done by an induction on dim^11 E11. For dimfca\\E\\ 0

we hâve E ZP. After induction assumption two cases arise which hâve

to be treated differently: First case, there exists some décomposition
E H © Hx with finite dimensional H such that dim^ 11Hx 11 < dim^ 11E \ \.
Hence there is a basis of the required sort for Hx by the induction assumption.
The required basis for E is then found easily by applications of Corollary 1.

Second case, there is no such décomposition of E. In that case, one proves
directly that E Ei7tl) © © E{7ln) where nl9..., nn span || E ||. This is

accomplished along the Une of the proof of Proposition 2, where now the
assumption of our case replaces the function of Lemma 4.
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Thus, for fields k with finite [k : k2] a complète list of non isomorphic
fc-spaees (E, 0) of denumerable dimension ean easily be given on the basis
of Theorem 2, provided one knows the finite dimensional, non-isotropie k-

spaces (<«!, octy It is advantageous to first subdivide the spaces ac-
cording to the dimensions of E/E*, E^ and rad (E*). In the notations of
Theorem 2: p + qir + s + t dim (£?/£*); p + q, s + t dim(E^);
p,s dim (rad E*) p + q, r -\- s -\- t <[k :]<?]. We may use uniformly the
notations r, s, t by interpreting a triple (r, s, t) with r 0 as belonging

to a space of type (II). There are ~— — ordered triples

(r, s, t) with 0<r-\-s-\-t<n; they yield a subdivision of ail semi-simple
No-dimensional i-spaces (E,0) according to their dimensions of EjE%9 E-^

classes (n [k : k2]). The particularand rad 25* into
6

choices for yl9 yr, fil9 fi89 (xv, <xt are then taken. For the sake of
illustration, we give a complète list for an underlying field k with [k: k2] 2 :

dïmE/E*

0

1

1

1

2

2

2

2

2

2

dimJ?i
8 + t

0

0

1

1

0

1

1

2

2

2

dim
(rad 15^

8

0

0

0

1

0

0

1

0

1

2

00

ZP

00

ZP
00

rp

•®<v)

E{a)
00

ZP
00

27P
00

27P

© <»*>

©<",

®E{
©</«:

©<|8

©<«>

©</3>

©<«,

v>

3)

> "^^
,j8>, ^(v) ©<«,«> r ^=a

Ail the sums are orthogonal, {a, /?} is some fixed basis of k over k2) v and
M- run independently through a fixed set of représentatives of gk (the multi-
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plicative group of k modulo square factors), subject only to conditions listed
in the table. Ail the spaces thus obtained are mutually non isomorphic and
they are, up to orthogonal isomorphisms, ail semi-simple i-spaces (E, 0) of
denumerable dimension.

III. Orthogonal bases

Let k be an arbitrary field of characteristie 2. If the semi-simple i-space
(E, 0) is finite dimensional, then either E — EP or E possesses an orthogonal
basis (Lemma 1). Let (E, 0) be a space of denumerable dimension. E is an
orthogonal sum EP@E0 where Eo possesses an orthogonal basis. If
dimfc (EjE^) is infinité (i.e., dim^ 112? 11 is infinité), then dim Eo is infinité
and E has an orthogonal basis by virtue of Lemma 1. Thus, if E does not
admit of an orthogonal basis, then E/E^ is of finite dimension and there
exists a décomposition of E as described in Theorem 2 (necessarily of type (II)) :

E E P © Eo, where Eo is finite dimensional and spanned by an orthogonal
basis. Conversely, a space of this form does not admit of an orthogonal basis

oo N
for, EP © Eo c © k(et) gives EQ c © k(et) for a suitable N and thus, for

00

the respective orthogonals, we obtain © k (et) <z EP. This is a contradiction

as ||ej| ^ 0 for an orthogonal basis of a semi-simple space. Thus, a space
(E, 0) of denumerable dimension admits of no orthogonal basis if and only
if E* is closed and E/E* finite dimensional. Thèse conditions may be formu-
lated in various ways. Hère is a sélection :

Theorem 3. Let k be an arbitrary field of characteristie 2, (E,0) a semi-simple
k-space of denumerable dimension. The following statements are équivalent:

(j) E possesses no orthogonal basis;

(jj) E\E* is finite dimensional and E* is closed;

(jjj) E-^ is finite dimensional and dim E\E^ dim JE?£ ;

(jv) E\E* is finite dimensional and dim (rad E*) dim E/(Et + E$)

TV. Automorphisms

We shall add hère a few remarks about the group D(E, 0) of ail metric

automorphisms of a space (E,0), i.e., the group of ail vector space auto-
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morphisms T E -> E which satisfy &(Tx, Ty) 0(x, y) for ail x,y e E.
The underlying field k is of characteristic 2 and dim E $0. The structure
of the group D(E, 0) is unknown in the gênerai case. If (E, 0) satisfies the
conditions

+ E^ is closed, dim(rad E*) < n0 (l)1)

- which always takes place when the underlying field is of finite dimension
[k : k2] over k2 - then the study of B(E, 0) can be reduced to the study of
simpler groups. They are the (sympletic) group £)(E,0), where the No~

dimensional space (E, 0) is an orthogonal sum of hyperbolic planes, and the

group D(E, 0), where (E, 0) is an orthogonal sum EUl) 0 E{ûi2) ® and
the éléments ocl9(x2, independent over k2 (cf. 1.3 for notations). This
réduction, possible for the spaces subject to (1), shall be carried out hère.

For a space satisfying (1) there is décomposition (Theorem 1):

E E0@(R + R')@El, (2)

where E09 R ® R' and Ex are orthogonal summands such that

*, E* =E0*@R, E$ =R@El9 E^ E0@R (3)

and, furthermore, R @ R' is an orthogonal sum of planes k(rt,r[), i e I for
{rt}l€l and {r[}l€l a basis of R and R' respectively. For every T eD(E,0)
we hâve T (E*) E*9 T (R) R, T(E±) E± and T(E^) E^.
When x e R1 © E1 we write Tx x -f Lx. Hence || Lx || 0 and

LxtE* c E^,
LxeE0@R for X€Rf@E1. (4)

In particular, if a; c i? and y e R' then (x,y) (Tx, Ty) (Txfy + Ly)
(Tx,y) since Tx€R±EQ@R. Therefore (x — Tx,y) Q for ail

y *R' or x— TxeRf±, R^^R^O, hence x— Tx 0 since x—Tx also

belongs to iî. Thus the restriction TjR of T to JK leaves the vectors of 1? fixed,

2) We recall an earher example where the second condition is satisfied but not the first. See the
remark at the end of this section.
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Let then x € Et and y e R'. Since Ex c E^ and T(E±) E$ we hâve

Lx*R\ hence (x, y) (Tx, Ty) (x + Lx, y + Ly) (x, y) + (Lx, y).
Thus (ix,2/) 0 for ail y € Rf i.e., Lx € Rr±, Rf± ^ R Q and therefore
ia; 0 as Lx c JB. In other words,

TIe^Ib,. (6)

Thus, every automorphism of E leaves E^ pointwise fixed. Therefore we hâve
for every x c Rf and y e E^ that (x, y) (Tx, Ty) (Ta, y) hence

x — Taî€jKJ-L JÏ0 + jB for every x e R'. Therefore, and in view of (5)
and (6) we can décompose the image Tx for every x € (R 0 Rf) + Ex as

follows, Ta; a; + ioa; + ^ix with Lox c Eo and Ltx e R. Computing
|| Ta; || shows furthermore that even Lox e Eo* We therefore hâve

{x € R ® R' 0 J8TX)

Ta; x + Lox + L±x (7)

where the projections Lo and Lx are linear maps

LQ:R@Rf@E1^EOii:, L0(R ® Ex) (0);

Lx: R@Rf ®Ex-> R, LX(R ® Ex) (0).

On the other hand, for x e Eo c E±x Eo © JS we hâve

(zci^o) Tx L2x + Lzx L2x€E0, Lzx c R (8)

Since Jî is totally isotropic and orthogonal to EQ, L2: iS0-> J50 is a metric

automorphism of Eo; Lz is some linear map Eo-+ R. If we express Tx for
an arbitrary x*E by using (7) and (8), then the condition that (x,y)

(Ta:, Ty) for ail x,y € E, T e D(E, &) is équivalent with the conditions

=:O for ail X€Rf,y€E0 (9)

*,Xlly) 0 for ail «,ycJlf (10)

(9) and (10) permits a discussion of Q(E, 0) as in the finite dimensional case
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([2]). First, the System (9) and (10) admits of solutions LQ and Lx for arbitrarily
prescribed L2 and Lz, L2 an automorphism of Eo and Ls: Eo-> R a linear
map. Indeed. For given L2 and L3 (9) defines a linear map Lo : R' -> Eo* in
a unique manner. We then extend it to Lo: R © Rf © E1-> Eo* by defining
L0(R ® Ex) (0). Appealing to the basis of R © Rr © k (rt, rf{) we put

i
Lxr\ Zoc^Vj. Condition (10) is satisfied with the previously found Lo pro-
videdthat «t, + *,t (LQrf{, Lor'}). Since (Lor^, Lor^ \\Lor[\\ 0 as
Zor^ c J^o^, there are always solutions for the unknowns al3 ; (this is the only
place where use is made of the assumption (1) that dim R < n0) This proves
our assertion. Thus, if T runs through D(E ,0) then the restriction T\EqqR
(it leaves Eo © R E^1- invariant!) runs through the group (5 of ail auto-
morphisms of the space Eo@ R that leave R pointwise fixed (as we hâve
just proved, every élément of © can be extended to an automorphism of E).
T -> T\BqqR defines an epimorphism

y: O(E,0)-> ® (11)

The kernel G ker 99 can easily be described. T e (£ means that T\BqqR
is the identical transformation of Eo © R. For such a T and every
xeE0@R@E1, yeR' we obtain from (x, y) (Tx, Ty) {x, Ty) that
y-Tyt(E0 + R + E^ iî. Thus

LAx, L^xcR, xeE, L^(E0 + R + Ex) (0) (12)

yields

(t/,X4x) + (i4yja;) (0). (13)

Conversely, every linear map LA:Rf-> R meeting (13) defines an élément
T e £ by means of (12). G is thus seen to be isomorphic to the additive group
of linear maps L: R-> R' satisfying (13). Thus, as 5 dimi? is finite,

S ^ k 2
9 Let us turn to the group (5. It contains the subgroup ©0 of

automorphisms T' : Eo © R -> JE<, © R of the form T' : x -> x + L$x where
£5 is an arbitrary linear map L5: Eo® JS-> R with L5(R) (0). ©0 is an
invariant subgroup of © and ®/©0 g* D(Eo,0\Eq)- ©o is isomorphic to the
additive group of ail linear maps L : Eo -> JB, and ffi0 ^ ^ or ©0 •

18CMHvol.40
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Thus, if we put (£<, 99~1©O> we hâve the séries of invariant subgroups

with C^fc 2 ^/Œsé <S0> O(E, $)l&o Ç* O (®o> ®\e0), s dim(md E*).
Eo is an algebraic complément of radi?* in 2?£x; it is either an orthogonal
sum of hyperbolic planes or an orthogonal sum EUl) ® @ Ei(Xn), the
éléments oct, oc2, <xn independent over k2.

Remark (added in proof The condition in 1) that dim R dim (rad E* < n0

is quite unnecessary for the discussion that followed. Setting Lx r% — S(xl} ri the
matrix équation ottJ + <xn (Lo r[, LQ r^) admits row-finite solutions (which
actually define a map Lt); for example octS =0 (j > i), <xti (Lo r^, Lo r'7) for

j < i. For the normal séries ofgroups obtained we hâve in the case dim R n0 :

G0^k»> and C ^ &*>.
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