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A Discrète Renewal Theorem with Infinité Mean

by Adriano Garsia and John Lamperti1)

1. Statement of results

1.1. This paper is devoted to a problem which can reasonably be considered
as belonging to pure analysis, but which was suggested by, and has
applications to, the theory of probability. Suppose that {fn}, w 1, 2, isa
séquence of real numbers such that

00

n-1 "~ (1.1.1)
g.c.d. {n:/n>0}= 1.

Define another séquence, say {un}, by setting

(1.1.2)
un — £ fk Un-k> n > 1 •

It is easy to see (recursively) that 0 < un < 1. It is known [5] that

lim un —

where the right hand side is interpreted as zéro if the sum in the demonimator
diverges.

Our problem is to study the manner in which un -> 0, under certain addi-
tional hypothèses which we shall impose on the séquence {fn}. The main
results are summarized in the following

Theorem 1.1. Suppose that, in addition to 1.1.1, the séquence {fn} satisfies

E fk L(n)n~« (1.1.4)

where 0 < oc < 1 and L(n) is a slowly varying function2). Then

lim inf n1-" L(n) un ^^ (1.1.5)
n—x» 7ï

x) In carrying out this work the first mentioned author was supported by Contract Nonr-220(31)
between the Office of Naval Kesearch and the California Institute of Technology; the second
author (part time) by a National Science Foundation grant to Dartmouth Collège.

2) A function L{x) is said to be "slowly varying" or "of slow growth" if it is positive, mea-
s.urable and for every A > 0, L{Xx)jL{x) -> 1 as x ->- oc.
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// i < a < 1, this assertion can be sharpened to

lim n1-* L(n) un (1.1.6)

whïle for 0 < oc < \ this limit does not, in gênerai, exist. However, for 0 < oc < \,
1.1.6 does hold provided that ihe limit is taken exclvding a set of integers having
density 0.

1.2. The probabilistic interprétation of séquences {fn} and {un} satisfying
1.1.2 in ternis of "récurrent events" is explained in [6]. Hère we shall put
the matter in the setting of "renewal theory". Suppose that {Xt}, i 1, 2,...
is a séquence of independent positive integer valued random variables each

satisfying
Pr{Xi À;} /,.

Let {8n} be the partial sums of the Xt, with So 0. Then it is easy to see

that the quantities un defined in 1.1.2 hâve the interprétation

un Pr {lk:Sk n} S Pr {Sk n} (1.2.1)

The latter equality holds since the events {Sk n} are disjoint as k varies.
The significance of the assumption 1.1.4 can now be seen in that it implies

that the random variables {X{} belong to the "domain of attraction of a stable
law" (see for instance [9]). This fact has many conséquences in the theory
of renewals and Mabkov chains; in addition to [6] see [14] and the références
cited there.

We shall first approach the study of {un} by applying certain probability
limit theorems together with the représentation 1.2.1. This will yield the
resuit in 1.1.5 with ">" in place of "=". Some Tafberian theorems then
provide the estimate

£ sinnoc na

jfc-i Tzot L(n)

A comparsion of thèse two results yields the equality in 1.1.5 and also the
existence of the limit 1.1.6 except for a set of density 0; we can not obtain
1.1.6 itself in this way, however.

In the last section a separate attack is made to obtain in a self-contained
fashion 1.1.6 and 1.1.5. Although in this treatment probability does not
figure explicitly, the methods are related to those used in the proofs of limit
theorems for sums of independent random variables. Also in this section is
the explanation why 1.1.6 is in gênerai false for a < \.
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The problem of the asymptotic behavior of {un} when S Je fk oo has

already attracted some attention. The paper that is most closely related to
the présent one is that of De Brfijn-Erdos [2], Thèse authors obtain among
other things a resuit from which 1.1.6 can easily be deduced. However, they
do so only under much more restrictive conditions than ours. Namely, in
addition to 1.1.1 and 1.1.4 they assume the condition

/ / *!^ t for ail *yi *^> 1

Other related works are those of Garsia, Orey and Rodemich [8], Garsia [7]
and Orey [15]. Thèse papers study conditions under which

lim -^L i; (1.2.3)

1.1.1 is assumed but the other hypothèses are not similar to 1.1.4. Our
results hâve the obvious.

Corollary. Under the hypothesis of Theorem 1.1, for \<<x< 1 we hâve

1.2.3, while for 0 <oc < \, 1.2.3 holds when n is restricted to vary outside a
set of integers of density zéro.

It would be interesting to discover if the latter conclusion is true under
conditions weaker than 1.1.4.

2. Probabilistic approach

2.1. One method of attack is based on the random walk interprétation
outlined in 1.2, together with probability limit theorems associated with sums
of independent random variables which are "attracted" to a "stable law" [9].
For Je large, we can apply thèse theorems to obtain good estimâtes for
Pr {Sk n} ; by summing thèse, a lower bound for un is obtained. An upper
bound seems difficult to obtain this way, since the limit theorem does not
yield useful information about some of the terms (with small Je) making up un.

The local limit theorem which we shall use [9, p. 236] asserts that
Km [Bk Pr{£fc n} - ga{n/Bk)] 0 (2.1.1)

where the limit is uniform in n. The assumptions hère are that 1.1.1 and 1.1.4
hold and that the séquence {Bk} is chosen so that

lim Pr{Sk < x Bk) O^x) ; (2.1.2)
Ar->oo

Oa(x) is a stable law and has the continuous derivative ga{x) which appears
in 2.1.1. From [9]1) we learn that {Bk} may be chosen in such a way that

*) It appears that in certain statements in [9], concerning the attraction of sums of random
variables to stable laws, the constants defining the limit laws are slightly in error. Thèse things
are given accurately in a convenient form for our purposes in [6].
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lim k Z fl 1 (2.1.3)
Ar-X» l>Bk

and that the corresponding ga{x) is characterized by

Perhaps we should also mention some properties of fonctions of slow growth
which will be relevant in our subséquent arguments. First of ail any fonction
of slow growth L(x) can be given a représentation (see [12]) of the form

L(x) c(x) exp J e(t) —

where c (x) is convergent to a number différent from zéro and s (t) -> 0 as t->oo.
We also hâve that the limit L(Ax)IL(x)-> 1 is uniform whenever X stays

X

away from zéro and infinity. Furthermore the fonction A(x) — exp J e(t)dt/t
o

has the property that, for any s > 0, x8 A (x) and x~e A (x) are eventually
monotonie, increasing and decreasing respectively.

2.2. Using thèse results we shall first prove

Lemma 2.2.1. Under the conditions of Theorem 1.1,
nn CX—1 00

Prooj. From 1.2.1 and 2.1.1 we clearly hâve

un> $ BpgJ-^-) + "s fiï1 o(l), (2.2.2)

where the two limits an and bn can be anywhere between 0 and n. We should
choose them in such a way that the fîrst term in 2.2.2 approaches the first in
2.2.1, and the second term in 2.2.2 is negligible. This can be achieved by
setting B

The conditions in 2.1.3 and 1.1.4 then imply that
bn

and from the uniformity of o(l) we obtain

fë]



Â Discrète Renewal Theorem with Infinité Mean 225

Using 2.1.3 and basic properties of slowly varying functions we deduce that

n L(n)~\ -V« \kL(n)~] -1"
« J ~ [ « J_L(Bk) n« J L ^ J

bn, so that setting xk —
2.2.2 aftermultiplication by £ (w) w1"" can be transformed into the Riemann sum

uniformly for an <k <bn, so that setting xk ~- the fîrst term in
7b

Substituting this resuit in 2.2.2 and taking account of 2.2.4 and the arbi-
trariness in the choice of A and JB, we can easily obtain 2.2.1.

The assertion in 1.1.5 with > in place of is a conséquence of lemma
2.2.1 and the identity

(2.2.5)

2.3. Some of the further conclusions of the theorem can be established by
means of the following

Lemma 2.3.1. Under the hypothèses 1.1.1 and 1.1.4

(2.3.1)
*-i Ttoc L(n)

Proof. We shall use generating functions. We set

U(t)= S unr, B(t)= E rnt"= S Z fk)t«. (2.3.2)
n—O n—0 n—O *—n+1

From 1.1.4, we find by an Abelian theorem that

B(t)~r(l -«)(1 -tr^L^-jY (2.3.3)

The définition 1.1.2 can be expressed in the form

^) tî4w (2-3-4)

so that from 2.3.3 we obtain

U(t)~ (1 ~ K x • (2.3.5)

Karamata's Tauberian theorem applied to 2.3.5 then yields the conclusion

2.3.l1).
x) We should mention that 2.3.1 can also be obtained, with an équivalent amount of labor,

from a resuit of De Bruijn and Erdôs [2] (cf. Theorem 2, p. 161).

15 CMH vol. 37
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By comparing 2.3.1 with the lower bound 1.1.5 (with ">"), it is not
difficult to see that, for ail <xe(0, 1), the limit 1.1.6 holds except for a set
of integers of density 0. ïndeed, if this were not so, the right side of 2.3.1
would hâve to be increased. This justifies the equality in 1.1.5 as well as

establishing the last assertion of Theorem 1.1.

3. Ânalytic approach

3.1. The methods of this section are based upon a représentation of the
un's as Fouhier coefficients of an integrable funetion. To facilitate our exposition
we shall use the functions U(t), B(t) in 2.3.2 and two more functions

1/,««". (3.1.1)

The définition 1.1.2 then yields

We observe that the condition 1.1.1 implies that 0(6) 1 if and only if
eie 1. The funetion 1 — F(t) is thus bounded away from zéro when t
is bounded away from one. We deduce that U(t) is defined and continuous for
t ^ 1 and |*| < 1.

The next two lemmas give our basic tools.

Lemma 3.1.1. Under assumption 1.1.1, the funetion ~ReU(ew) is in
— tz, n) and

un -^ + -i- J er«" Re U(e«)dO (3.1.3)
ATI

J
ATI —

n=l

This resuit is not new; it has recently appeared in the probabilistic literature
in work of D.G.Kendall [13], but the basic idea goes back to work of Her-
GLOTZ [11] on functions analytic and with positive real part in the unit circle.
In our cases the formula can be written in the form

(3.L4)

3.2. Lemma 3.2.1. Let G(x) be the distribution funetion of a positive random
variable; suppose that

(3.2.1)
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where 0 < oc < 1 and L (x) is a function of slow growth. Then the characteristic

function

0(6) ] etx6dG(x) (3.2.2)
o

has near 6 O+ the asymptotic behavior:

1 - 0(0)— L(l/0)0a4-Je^ — (3.2.3)

Proof. A first resuit of this nature goes back to Hardy [10], and thèse things
hâve been discussed in the probabilistie literature (cf. [6]). For convenience
we shall give a proof, similar to that in [6] but slightly completed.

We first write 0(6) in the form

1 - 0(6) J(l - etxe)d0(x) (3.2.4)
o

Then for some fixed M > 0, we consider separately the two intégrais
M/0

] pi
/

f0 pix6\

i - ouïe) J
M/0

The second intégral présents no difficulty. In fact, by 3.2.1 we hâve

(3.2.5)

The first intégral requires more care. An intégration by parts yields
Mie Mie^ nGMdl [1-G{

i

[ {)]~ [T^wiWr J
0

J
0

and substituting xd a we get
M

lim I^OV/M^+l Hm f e- IL^M de (3.2.6)
o

By 3.2.1 we hâve that for each fixed a > 0, ~ „. -> —1 — G(lju) &*

Although the limit is not uniform, the passage to the limit under the intégral
sign can be justifîed by use of some properties of slowly varying functions.
Since similar steps will be necessary in later proofs, we shall carry out the
justification once in détail. The treatment of this point is not new with us [1],
but seems not to be too widely known.

Since L(x) is slowly varying, for a given e > O such that oc -{- s < l we

can find a X(e) such that for ail a < 1 and -^ > X(e) we hâve
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or better,
1 - O(a/d) <

1 + e 1

1 _ (?(l/0) - 1 - e &*-*

Also we observe that

foraU a: 0X{e) <a < 1 (3.2.7)

0X{e)

l-G(l/fl) 0(1). (3.2.8)

The fact that the integrand in 3.2.6 does converge uniformly to its limit for
1 < $ < M, together with the inequalities 3.2.7 and 3.2.8, permits the
passage to the limit under the intégral sign in 3.2.6. Thereafter by the arbi-
trariness of M we deduce 3.2.3.

3.3. The following lemmas furnish the key estimâtes for establishing formula

1.1.6.

Lemma 3.3.1. If 0(x) is the distribution function of the jyrevious lemma,
then as A -? oo

f xdG(x)~ -
* X1~OiL(X). (3.3.1)

o 1 — oc

Proof. We hâvexx x

jxdG(x) - J xd[l - G(x)] - X[l - G(X)]+ J (1 - G(x)dx
0 0 0

Thus, making the substitution x Xa and using 3.2.1 we get

xdO(x)= - fL(Xa) da m
This resuit implies 3.3.1.

Lemma 3.3.2. // 0(6) is defined as in 3.2.2 and 3.2.1 holds, then there

exists a constant M such that for ail 6X ^= 02

ML

Proof, We start by writing the différence 0(6X) — 0(62) in the form
N oo oo

9x) _ #(02) — J [eixei _ e<*02] dG(x) + J eixeHG(x) — J

(3.3.3)

j
n

where N\01 — 0a| 1. Then estimate as follows
N

sin^- 62\-)\dG(x) + 2(1 ~
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Using lemma 3.3.1 we deduce that for ail sufficiently large N we must hâve

In other words, for ail sufficiently small | 0x — 02\ we obtain

The conclusion of the lemma follows then from the boundedness of 0(6).

3.4. We are now in a position to establish 1.1.6. For the purposes of this
section we set G(x) E fk and then observe that, if we assume 1.1.1 and

1.1.4, lemmas 3.1.1,3.2.1,3.3.1 and 3.3.2 become applicable. In particular,
the représentation 3.1.3 holds; we shall use it in the form 3.1.4. To study
the behavior of un we shall consider separately the two intégrais

a/n

a/n

Our aim is to first let n -> oo and then let a -> oo.
The first intégral always behaves in the desired fashion, according to the

following

Lemma 3.4.1. Under the hypothèses 1.1.1 and 1.1.4 we hâve

f e-iCTor-a da
lim nx~«L(n)*n(a) i^ (3.4.3)
n^c f e" (7~a da

Proof. By the change of variables nO a we can write n1"0LL(n) ocn(a)

in the form
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Note that by lemma 3.2.1 we hâve

na

L(n)
o

Therefore passing to the limit under the intégral sign in 3.4.4 we get 3.4.3.
We can proceed further towards 1.1.6. In fact, from 3.4.3 and the formula

we obtain

noc noc
— oc) | cos — t sin —

lim [ lim n1~0LL{n) ocn(a)] sin noc — i cos noc. (3.4.5)
a—xo n—x»

Combining this resuit with 3.1.4 and 3.4.1 we deduce that 1.1.6 will neces-
sarily hold whenever we can conclude that

lim [lim sup n^L(n) \ fin(a) |] 0 (3.4.6)
n—>oo

It turns out that we can always draw this conclusion only when \ < oc < 1.
For 0 < oc < \, we can still show that

This is very near to a best possible estimate. In fact, any improvement beyond
changing 0[ ] into o[ ] is bound to fail for the foliowing reason. From
1.1.4 we can deduce that

(^) (3.4.8)

and it can be easily shown by examples that this order condition cannot be

further improved. On the other hand, by 1.1.2 and lemma 3.4.1 we hâve
that

l^ + \^(a)\. (3.4.9)

Thèse considérations show why 1.1.6 fails, in gênerai, for oc < \. When
oc \ the estimâtes are more complicated since then the behavior of L(n)
plays a rôle. We do not know whether our results in this case canbe improved
in any significant way.

3.5. We proceed to estimate f}n(a). To this end we write it in the form
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- 0(6 - „/»)! dO (351)

n+njn

a/n

This identity may be obtained by first making the substitution 0 -> 0 — rc/w

in 3.4.2 and then averaging out the resulting intégral with its original
expression. We shall consider each of the terms in 3.5.1 separately.

The third term is easiest to estimate. When 0 is bounded away from zéro,
0(6) is bounded away from one; we therefore hâve

L (n) n>- /8g> (a) 0 [L (n)n^ "J^dd] 0 \^P\ ¦ (3.5.2)

For the second term we make the substitution nO a and use lemma 3.2.1
to obtain

Jïmjp Un) »« \ff W| 0 [fc. J*M £j _ O [/^] (3.5.3,

a

Finally, using lemmas 3.3.2 and 3.2.1 we get the estimate

We shall now distinguish the cases o <<x < \, \ <<x < 1 and oc ^.
In the fîrst case the intégral in 3.5.4 is convergent as n -> oo. This yields
3.4.7. In the second case we multiply 3.5.4 by n1-°LL(n) and make the
substitution a nd to obtain

I - 0

This inequality together with 3.5.1,3.5.2 and 3.5.3 implies 3.4.6. Therefore
1.1.6 is established in this case.

Concerning oc \ we want to mention only that when the intégral in 3.5.4
converges we obtain again 3.4.7, and when L(x) approaches a nonvanishing
limit, we obtain

o teltel.
L Vn J
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Remark. Before closing we would like to sketch another way of estimating
a). Holdeb's inequality, lemma 3.2.1 and the substitution a nd yield

a+n

Assuming that q was chosen so that 2ocq > 1 we obtain

p )llP n**11* f 7 do
de) %{/£

This implies that an estimate such as

is sufficient to guarantee 3.4.6, and hence the limit 1.1.6.
It is worth noting that 3.5.5 can actually be established in several interesting

cases. For instance, for i<a<|, if we assume that fn 0[i(n)/n1+a],
then 3.5.5 holds for p 2.

3.6. We shall terminate with a self contained proof of the lower bound for
un ; i.e. 1.1.5 with ">". First note that if an is any séquence of integers and
we set

then we shall necessarily hâve

%>^(nn)- (3.6.1)
On the other hand, under our assumptions we can establish the formula

_ (3.6.2)
ô

It is thus easy to see that, in view of 3.6.1, the lower estimate in 1.1.5 is a

conséquence of the following
Theorem 3.6.1. // the conditions 1.1.1 and 1.1.4 hold and the séquence

{an} is chosen so that for some a > 0

an~~JL-.n* (3.6.3)

then we hâve

lim^-2i(») /«-«" J^W'9-T / e-c—a ^-, (3-6.4)
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where
00

1 f do _,_ r noc tzoc
c jje"' rQ [C0S lsm

Proof. The contribution to the limit in 3.6.4 can only corne from an interval
[0, e], and this no matter how small is e. This is because in any interval
[e,7t],0(d) is necessarily bounded away from one. We shall therefore study
the quantity

yn nM» L{n)Je~™ ^^ dO (3.6.5)

for some suitable choice of e.
We make the substitution a nO in 3.6.5 and write the resuit in the form

yn Je-^kn(a)da (3.6.6)
o

with

Using 3.6.3 and lemma 3.2.1 we obtain that for each a > 0 we hâve

L(n)lim kn(a) — lim L(n) / Tl
/cr\a\-|kl 1

--V— (1 — cL(n) — 1 I —

Thus ail we hâve to do to obtain 3.6.4 is to show that we can carry out the

passage to the limit under the intégral sign in 3.6.6.
To this end, in view of lemma 3.2.1, we observe that because Re c> 0

it is possible to choose ô > 0 and e so small that, for ail 0 < 6 < e,

\0(O) | < | exp [- ei8c 1(1/6) 0a]| e"6i(1/e)da

where we assume that b Re [e~i8c] > 0. Thus we obtain
-anbL{nlo)(aln)a

e for ail 0 < — < e

On the other hand, by lemma 3.2.1, there exists a constant M such that
L(n) L(n) M f n o

f* — n ~~
n° 1 -

Combining thèse last two inequalities and 3.6.3 yields

e (3.6.8)
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Choose y > 0 such that a + y < 1. Note then that, when n is sufficiently
large,

Thus 3.6.8 gives

kn(a) 0 H-t-^ —JJ for ail 0 < a < 1 (3.6.9)

When a > 1, w/a < w so that for a sufficiently small s

Un) <l±Zay
L(nja) ~ 1 — y

This with 3.6.8 gives

forall l<a<ne.

kn(a) O U~Z-^-—^ forall 1 < a < ne (3.6.10)

The inequalities 3.6.9 and 3.6.1.0 permit the use of Lebesgue's dominated
convergence theorem in 3.6.6; this complètes our proof.
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