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Homotopy Groups of Maps and Exact Sequences

by B. EckMANN and P. J. HiLTon?)

1. Introduction

In [3] we described two exact sequences arising in homotopy theory, dual
to each other, which contain as special cases many of the familiar sequences
of algebraic topology (e.g., homotopy sequence, cohomology sequence, co-
homotopy sequence, coefficient sequences). Certain other sequences (e.g. the
homotopy and cohomology sequences of a triple and the homotopy sequence
of a triad) may be deduced as special cases of sequences involving objects and
maps in the category of pairs of pairs. It has seemed worthwile to make a
systematic study of the two exact sequences wn the category of pairs corresponding
to the two sequences mentioned above in the category of based spaces. We
should point out that the latter sequences are more accurately described as
functors of the product category I X PB(I), where T is the category of
based spaces and PB(T) is the category of pairs from I. Thus the two se-
quences we introduce in this paper (section 4) are functors of the product
category P(IT) x P*(T) and this explains the introduction of the category
of pairs of pairs P*(T) mentioned above.

The relative groups II,(A, B), II,(x, B) of [3] are essentially mixed con-
structions and cannot, without suitable conventions, be meaningfully regarded
as sets of homotopy classes of maps of 2”4 into f or « into 2" B. Because
of their hybrid nature we prefer in this paper to use a new symbol P, (4, ),
P, (x, B) for these groups, thus pointing the contrast with the groups 17, (4, B),
IT, (x, B), which are sets of classes of maps 2"4 — B or 2"x — f. It thus
appears in our formulation that the groups P,(4,f), P,(x, B) only re-
present as it were a halfway stage in the process of relativization, in that only
one of the variables is taken from the category B(I), the other variable re-
maining an object of T; and that full relativization of the basic construct
Il (4, B) leads to the groups I7,(x, ). In specializing such relative groups
one is led to define cohomology groups and homotopy groups (of pairs) whose
“coefficients” lie in a cohomology or homotopy operation.

If our object were just to derive the classical homotopy sequence in the
category of pairs we could have based ourselves on the KAN theory of cate-
gories with homotopy [7]. However not only have we wished to discuss far

1) This research was partly supported by the U.S.Department of Army through its European
Research Office.
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more general sequences but we have also wanted to bring out the additional
structure present in the categories P(T) and P2(IT). In P(T) the objects
have an obvious groupoid structure; that is, objects may sometimes be multi-
plied. Moreover the groupoid structure is associative and admits left and right
identities. In P2(T) we have two such groupoid structures: for an object
of P*(T) is a map P,

Ba

and so we have horizontal and vertical composition. In addition there is a
transposition operation in P2(I), converting ¥ into the map ¥7,

()
« —p .

N N

v
- —_— .

o,l

and there are obvious relations connecting transposition with the two com-
position operations. Our proof of the exactness of the sequences of a triple
(section 7) is designed to exploit this additional structure.

Section 2 consists of a review of those classical exact sequences described
in [3], together with a small amount of generalization of the sequences and
the groups which enter into them. Section 3, which is preparatory for the two
subsequent sections, describes certain canonical homotopy constructions whose
naturality enables them to do service both in ¥ and in PB(T); in particular
we use them in section 4 to prove the exactness of the two basic sequences in
P(T). Insection 5 we show how, just as for the familiar sequences in I, the
presence of a fibration or cofibration leads to the replacement of the hybrid
terms in the appropriate sequence by a pure term. It also turns out that the
mapping track functor and mapping cylinder functor lead, as one would hope,
to the replacement of arbitrary maps in P(T) by fibrations or cofibrations.
The mixed sequences of section 6 are specializations of the sequences of sec-
tion 4 and are, more precisely, functors of the product category T x P3(T).
The two homotopy sequences of a triad are special cases of one of the sequen-
ces of this section, the invariance of the groups P,(4, ¥) under transposi-
tion corresponding to the fact of the presence of the same triad homotopy
group in both triad sequences. In section 7 we study the transposition operation
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more closely and then proceed to obtain the two exact sequences of a triple,
generalizing the classical homotopy and cohomology sequences respectively.
The sequences of section 7 are further generalized in section 8 to sequences
more genuinely based on the category ‘PB(T) (i.e. not involving objects of
T and functors from I to P(I)). It turns out, perhaps a little surprisingly,
that the “missing” group in these sequences is not the likely looking candidate

IT, (x, B) but a different group IT,(x, ). We call the latter a twisted homo-
topy group because there are basic functions ¢, : P — P2, g,: P — P2 such

that II,(x, f) may be identified with I7, (¢, 0,8), while ﬁn(oc, p) is, by
definition, IT,_, ((t; )7, 0.8) = II,_; (ux, (0.8)F). Of course, the various
exact sequences discussed fit into a pattern of exact sequences; this pattern
often takes the precise form of an exact triangle of exact sequences and we
have usually displayed such connections between the sequences we define.

The last section is an appendix giving a combinatorial treatment of homo-
logy groups and their exact sequences intended to show a parallel with the
exact sequences involving cohomology groups which arose by specialization
from the general theory.

Throughout we have kept the dual aspects of homotopy theory in the fore-
ground. Thus every general result has its dual counterpart and all our notations
are designed to bring out the duality relations. A result and its dual are given
the same numerical index, one index appearing plain and the other with a
superscript star. In particular, the duality does not, of course, permit us to
regard a pair as an inclusion nor a triple as a system of two inclusions; thus a
pair 18, as in [3], just @ map and a triple is a system [4, u] of two maps

A
P5QLR.

Similarly, as indicated above, a pair of pairs is essentially just a commutative
square of maps, though it is also imbued with a sense in that one passes from
top to bottom (or left to right) across the square.

The homotopy and homology sequences of a triple were applied in [5] to
establish the homotopy and homology decompositions of a map.

2. Review of exact sequences in the category of spaces

We recall that ¥ denotes the category of spaces with base point and based
maps and P(I) — or just P — the category of pairs (i.e., maps) from T. The
base point will be written o, for any space X in T.

In this section we recall the definitions of the exact sequences in T given
in [3, 4]. This should assist the reader in passing to the corresponding se-
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quences in P = P(T); but it will also enable us to introduce certain changes
of notation which appear to us to be suitable to this broad treatment of exact
sequence theory, and to make certain auxiliary remarks.

The notations, then, are those of [3] with the following exceptions. The
map A — o will be written w(4), or just w, instead of o or 1;1 ; and the

map o —> A will be written &(4), or just ®, instead of & or fi . The
groups I1,(4,8), II,(x, B), which are mixed constructions, using both I
and B, we will now write as P,(4, ), P,(x, B), reserving the symbol I
for the pure constructions I7,(4, B), II,(x, 8). Thus, by definition,

P.(4,p) =1(,(4), f)

(2.1)
P,(x, B) = Il (%, ¢,(B)) ,

where ¢,(4) and p,(B) are the maps 4 - C2"» 14 and EQ"'B -+ B
respectively, also written ¢,4 and g, B.
The standard exact sequences are then

* J d
S*(A’ﬂ) e —>Hn(A: Bl)'ﬂ')Hn(A’Bz)épn(A!ﬁ)—)Hn—-l(A: Bl) >
and
a* J 0
S*(a, B): . —~II,(4,, B)—II,(A4,, B)~> P,(x, By~ 1T, ,(A,, B) — - - -

In the sequence S,(4,pB), B is a map B,— B,; the homomorphism J is
effected by identifying 17,(4, B,) with P, (4, &®(B,)) and applying the ob-
vious map &(B,) >f in P; and 0 is effected by restricting maps
t,(4) > to Z"1A (or, equivalently, by means of the obvious map
B~ w(B,) in P).

Let B, be the kernel p-'(o) of f: B;— B,. There is then an excision
homomorphism :

&: Hn—l(A’ BO) _)'Pn(A’ ﬂ)

which is an isomorphism if 8 is a fibration. Then S, (A4, ) yields the absolute
sequence

-1y
Ty(4,B): - ~I,(4,B) 21,4, B) "5 I, (4, By ST, (4, B)—- -,

where v embeds B, in B,.
Dually let 4; be the cokernel A4,/xA, of «: A;— A,. There is then an
excision homomorphism

€. Hn-—-l(Aay -B) —)'P-n(o‘a B)
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which is an isomorphism if « is a cofibration. Then S*(x, B) yields the ab-

solute sequence
*

o* eJ v
T*(“:B): e éHn(Azy-B)»Hn(AI:B) - H’n——l(Aa’B) - n—l(AzaB) >y,
where » projects 4, onto A,.

By replacing A by a Moore space K'(G,m), Sy(4,B) and T, (4,pB)
yield exact sequences for homotopy groups with coefficients in G; by re-
placing B by an EmLENBERG-MACLANE space K(G,m), S*(x, B) and
T*(x, B) yield exact sequences for cohomology groups with coefficients in
G. Given a short exact sequence

06,560,560
we may realize it by a fibre sequence
o —> K(G,,m) > K(Q,, m)gK(Ga, m)
or by a cofibre sequence
K'(4,, m)—l{K’(Gz, m) - K'(G,, m) —o .

Then T, (A, @) is a coefficient sequence in the cohomology of 4 and T* (¥, B)
is a coefficient sequence in the homotopy of B. These coefficient sequences
may be generalized as follows. Let © be a primary cohomology operation of
type (q;, 9, Gy, @,) sothat we may identify @ with an element of I7 (K (G,, q,),
K (@,, q,)). It follows from Proposition 2.5 below that the group P,(4, B)
depends only on the homotopy class of 8 so that we may write P,(4, @) for
the group obtained by choosing any map in the class @. We thus obtain the
exact sequence

Qne
S*(.A. p @) s -—>Hq1-"(A;G1) —’; an_n(A;Gz)»Pn(A ’ @)_{H‘h—n.lpl(A;Gl)*' tt

Similarly a homotopy operation € of type (q,, ¢5, G, G;) determines a
group P,(@, B) and an exact sequence

2@
§*@, B): - - - _*”qﬁn(Gl;A) - n02+ﬂ(G2;A) —P,(0, B) "*“q1+n—1(G13A)"*’ .

Now let A: B,— B, be a map. We may then regard the pair-map (1, A)
asamap g —Af in B, 1
B, — B,
Bl = |8
A
B, — B; ’
and this induces a map from S,(4,p) to S.(4,Af). By applying the 5-
lemma we immediately infer
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Proposition 2.2. If i: B, - B, is a homotopy equivalence, then

(1,A)4:P,(4,8) = P,(4, 1), n>1.
Similarly

Proposition 2.3. If 1: B} — B, is a homotopy equivalence, then
(A,1)y: Po(4,BA) ~P,(4,8), n>1.
Dually, we have

Proposition 2.2%. If »: A] — A, is a homotopy equivalence, then
(2, 1)*: P,(x, B) >~ P,(x%, B), n>1.

Proposition 2.3*, If x»: A, — A, is a homotopy equivalence, then
(1, %)*: P,(%x, B) >~ P, (x, B), n>1.

Since any map B may be factorized as f,4A, where f, is a fibration and
A a homotopy equivalence it follows from Proposition 2.3 that P,(4, f) =~
~ P, (4, ) =1, ,(A, B,), where B, is the fibre of f,. Thus every rel-
ative group P,(A4,p) is an absolute group: from this we may infer, for
example,

Corollary 2.4. The universal coefficient theorem and the coefficient sequence
apply to the relative homotopy group?) =,(G; f).

Dually any map « may be factored as x«,, where «, is a cofibration and
» a homotopy equivalence. Then (Proposition 2.3*), P, (x, B) =~ P,(x,, B) =~
~ IT, ,(A4,, B), where A, is the cofibre of «,, and so every relative group
P, (x, B) is an absolute group. Thus

Corollary 2.4*. The universal coefficient theorem and the coefficient se
quence apply to the relative cohomology groups H"(x; @

As a further corollary of 2.3 we infer?)
Proposition 2.6. If gy~ §,: B~ B, then P,(4,6,) == P,(4,8,), n>1.

Proof. Let B: B, x I - B, be the homotopy and let u,: B, > B, x I
be given by u,(b) = (b,?), 1+ = 0,1. Then fu;,= B, and %, is a homotopy
equivalence. Thus

P.(A,p) = P,(4, Bug) = P,(4, ) = P, (4, fu,) = P,(4, B, .

Proposition 2.6*. If oy ~«,: 4, - A, then P,(x, B) >~ P,(x,, B), n> 1.

2) For the definition of the relative homotopy groups (with coefficients) and relative cohomo-
logy groups see [4].

3) It has been pointed out by C. R. CURJEL that 2.5 also holds if n = 1. -~ We write ™ for
“homotopic to’’, and I for the unit interval 0 <t << 1.
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3. Natural homotopy constructions

Our object in this section is to establish certain natural homotopy construc-
tions which will be valuable in proving the exactness of the homotopy se-
quences in B and in making applications.

We first systematize the notion of the (based) mapping cylinder. The cate-
gory ‘P has as objects maps y in ¥ and as maps “pair maps” (u,v):y =¥
such that the diagram

?ii iy’

for emphasis. We also introduce the category & of ‘‘triples”. An object of
L is a sequence

Y Y
[y1, y2] = 5>+ 5> -

of maps in ¥ and a map in £ is a triple of maps (u,v,w): [y, y.] >
— [¥4, y4] such that the diagram

71 V2

/ /

71 Va
is commutative. The based mapping cylinder is then a covariant functor
M:P Q. Thusif y: 4 — B is anobject in P then M (y) is the sequence

A% u 2B, (3.1)
where M, is obtained from (4 X I)V B by making the identifications

(a, 1) = ya,
(0,t) = o0, o0ikl1,
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and y,a = (a,0), y,(a,t) =ya, b =5b. If & = (u,v):y -9, then
M(¢) = (u’ Mdiav) : M(Y) _>M(‘y,) >

PRRANG TRRLNY

lu lMG, lv (3.2)

Ay,
where M,(a,t) = (ua,t), M4(b) = vb.

Now the map y, in (3.1) is certainly a cofibration; we shall improve this
result now by showing that the homotopy extensions from 4 to M, may
be constructed canonically.

Suppose given a diagram

M,

" To (3.3)

» Q

fe

with goy, = f,. We then call 4 = (f,,y,9,) @ triangle and a homotopy
g¢: M,—Q with g,y, = f, alift of 4. We prove

Proposition 3.4 (Naturality of lifts). There is a function L, defined on the
set of triangles, with L(4) a lift of 4, and satisfying the conditions

(i) if k:Q — R isamapin X then L(kf,,y, kgo) = EL(f,, 7. 9);
(11) lf ¢: (u,v):y’-—>y isa'ma’pin “B t'hen L(ftuxyl’gon))=L(ft:y’g0)M¢'
Proof. Let x:1I xI —>1 X 0vl xI be a fixed retraction. For any
triangle 4 = (f,,7,9,) define H: 4 x (I x 0vI X I) ->Q by
H(a,t,0) =g,(a,t),
H(a,0,t) = },a ,
H(a,1,t) = gyya ,
and then define g,: M, —@ by
gi(a,ty) = H(d, % (b, t))
g.b = gob .
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Certainly g, lifts 4 and we set L(A4) = g,.

To prove (i), let H, 'g; be constructed as above from the triangle (kf,, y,
kg,). Then H = kH so that g, = kg,.

To prove (i), let H, g, be constructed as above from the triangle (f,u,y’,

goM ). Then it is easy to verify that H = H(u x 1), where 1 is the identity
on I x0UI x I, sothat

—g_t(“’:to) =E(ala "(to: t)) = H(ua',a ’C(to, t)) = gt(ua’,7 to) = gthi(a": tO)’
g:b' = goMpb' = g, Mpb",
whence g, = g, M, and (ii) is proved.
A case of special interest is that in which y = w(A4): A —-o0; then
=u(d4): A >CA andamap @: w(4') > w(A4) isjustamap u:4"—>A4.

Moreover M, is Cu:CA'—~ CA. If we write (f,, 4,g, for (f;,, (4),g,)
we have

Corollary 3.5. The function L, restricted to the triangles (f,, 4, g,) satis-
fies

(i) if k:Q - R isamapin I then L(kf,, 4, kg, = kL(f,, A, g,);
(ii) if w:A'—> A isamapin I then L(f,u,A',g,Cu) = L(f,, A, g,)Cu.

Our second naturality theorem concerns nullhomotopic maps @ = (f,, ¢,)

x . 4

lzl(X) loc

ox 2, B

with «f, = 04). More precisely we consider nullhomotopies (f,,g,) of such
maps and call them admzissible.

Proposition 3.6. There is a function N, defined on the set of admissible
nullhomotopies (f,,g,) whose value N(f,,g,) is a pair (h,g,) consisting of
amap h:CX - A and a homotopy g, of g, with g,;; = 0, ah =g,. The
function N has the following properties

(i) if @ = (u,v):a —>a then N(uf,,vg,) = (uh,vg,);
)

(ii) if &:X'— X then N(f,&,g,C8) = (hCE,g,0&);
(iii) if fy =0 then h¢y = 0.

4) We use the symbol 0 for the zero map Y — Z, 0(y) = o, for any Y, Z.
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Proof. Given f,,g, we define
9.,:CX - B
by g,(x,to)r—gmo(x,to(l —1)), 0<t <4,
= g:(z, 8, — (1 —1t)t), <t <1,
and we define h: CX — A4 by

h(x,to)zfzto(x), 0<t <4,
=0 ’ %<t0\<\1°

It is a straight-forward matter to verify that N (f,, g;) = (h, g,) is a function
satisfying conditions (i), (ii) and (iii).
Finally we need

Proposition 3.7. Any map @ = (u,%'): C§ — o« is nullhomotopic.
Proof. We have the diagram
u
CX — 4

| ) |

CX'—— A’
and we define a nullhomotopy by

ut(x,to) _ u(x,to“'—t(l '—‘to)) ) wEX,
wy (@', b)) =u' (&', + (1 —1t)), « eX'.

We leave to the reader the formulation of the propositions dual to those
enunciated in this section.

4. The exact sequences in [ (I)

We now proceed, by direct analogy with the corresponding notions in sec-
tion 2, to describe the basic exact sequences S, (x, ¥) and S*(®, ) in P.
To do this we have of course to introduce the category P2 = P(B), whose
objects @ are maps in P and whose maps are pairs of maps of P (and hence
quadruples of maps of T) satisfying certain evident commutativity relations.

/
Thus a map from @ to ¥, say, is a quadruple (f / ,), representing the
diagram 79
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/

. u l\ / - I\l ]lyf

— g
SN

We will be particularly concerned with the case @=1¢,(x); thenif x: 4 —>A4’,
& is the map (¢,(4),,(4")): 27« - C2*1x. The group P,(x, ¥) is, by
definition, the group I7(:,(x), ¥),

P,x,¥)=1(,(x), ¥), (4.1)
and, dually,

P.(®,B) =11(D, ¢.(B)) - (4.1%)

We now describe the sequence S, (x, ¥); we suppose ¥: g, — B, so that
the sequence reads

p, J )
S*(“a W) e _>Hn(“3ﬁ1)_> Hn((x’ ﬂ2)—+Pn(o‘a T)ﬁﬂn—l(a’ ﬂl) B

the homomorphism @ is induced by restricting maps ¢,(x) > ¥ to 27 1(x),
and the homomorphism J by identifying I7,(x, §,) with P, (x, &(8,)) and
applying the evident map & (8,) - ¥

.
’

ler

v
ﬁ)Bg 3 B}

We have now described the sequence and introduced all necessary notations.
We prove

Theorem 4.2. The sequence S, (x, ¥) 18 exact.
Proof. 1t is clearly sufficient to look at the stretch

v, J d Y,
II) (x, By) = I} (x, B;) = Py(x, ¥)—> I (x, By) — 1l (x, B,)

and prove exactness at the three middle sets.

20 CMH vol. 84
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Ezactness at II,(x, B,).
We identify IT,(x,B,) with P,(x,@&(B;)), i =1, 2. Then if (‘f" ‘;’) re

presents x eIl (x, f,), J P4 x is represented by (O?f a?f’) Dy (x) > . But

ot )= (1 7) (e 0)

the factorization being through the identity map of B8,. It follows from 3.7

that (‘; ]S)go so that J¥, = 0.
Now let A eIl (x, p,) with JA =0 andlet A be represented by (;’ ;‘j)
0 Y0
thus there is a nullhomotopy (ft ;‘) of (g ;) L) >¥. By 3.6 we
g: gt 0 y

obtain homotopies ¢,,¢; of ¢o,9, and maps h:CA — B,, ¥ :CA' — B,
such that g, =0, gyt =0, oh=Tg,,0'h' =7¢g,. Moreover, by 3.6 (i, ii),

N (Bifsr Boge) = (Bih, Bogy)
N(fix, 9,Cx) = (h'Cx, g;Cx) ;

but B,f, = f;‘x, B.9: = glto"‘s so that

pih = h Cx, (4.3)
ﬂz-at = EQCOC . (4.4)

It follows from (4.4) that (.f.o f,) is a homotopy of (w co/) . Thus 1 is
ge 9t 90 90

represented by (Z]' 3.’,) From (4.4) and 3.6 (iii) we infer that
1

g1
( wow) [0 0) ®w o
g1 91 \o o'J\n W
so that A = ¥,(x), where x is represented by ((Z ;;) ‘
Ezactness at I, (x, V).
The relation dJ = 0 is trivial. Suppose now that ueP,;(x, ¥) with
du = 0. Thus if x is represented by (f" f ‘:): 4 (x) > ¥, there is a null-

homotopy (f,, f;) of (fs,fs). We apply 3.5 to “extend” f,, f; to homotopies
ge> 9: of go, 9. Thus

9. = L(of;, 4, go) , g;=L(o"f:,A’,g{,) .



Homotopy Groups and Maps of Exact Sequences 283

Then, by 3.5 (i), B,9: = L(B,0f:, 4, Bags) and, by 3.5 (ii), ¢;Ca =
= L(d'fix, 4, 9oCx); but o frx = o' ff, = fr0f, and g;Cx = f;g,. Thus

B29: = g,tC“

fe fe\ . fo fo : 0 0
so that ,) is a homotopy of ( ,). This means that ,) also re-
g: gt 9o 90 g9 N

presents u so that u = J A1 where A is represented by
v o0
g, 91/

Let (f,f'):« — B;. Then to assert exactness at II(x, ;) is just to assert
that the map (of, of):« — B, is nullhomotopic if and only if it may be
extended to C«; this, of course, is clearly true. This completes the proof of
the theorem. —

The dual sequence is, explicitly

Ezactness at I (x, ;)

D* J 0
S*(¢? ﬂ) st ‘>Hn(‘x2’ ﬁ) - Hn(‘xl’ ﬂ) - Pn(¢’ ﬂ) —> n—-l(‘xz, ﬂ) >
Theorem 4.2*%. The sequence S* (D, B) is exact.

We mention certain immediate and obvious consequences of theorems 4.2
and 4.2%,

Proposition 4.3. The map ¥:f;— f, induces isomorphisms I7,(x, §,) =2
~ I, (x, B, forall n if and only if P, (x,®) =0, all n.

Proposition 4.4. If ©,, ©, are homotopy equivalences then P,(0,90,, B)
>~ P, (D,f), n>1.

Proposition 4.6. If & ~ @' then P, (P, )~ P,(D',8), n> 1.
The reader may provide the duals of these propositions.

b. Fibrations and excision

In this section we prove excision theorems corresponding to those in T
(see section 2). In the notation of the preceding section let B,, B; be the
kernels of ¢, 0’, so that B, induces B,: B,— B, and let »,%' embed B,,
B, in B,, B;. We refer to f, as the kernel of ¥. Then (v,»') serves to
induce the excision homomorphism

e:Hn—l(o"ﬂo)éPn(“:yj) d (5‘1)
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We call the map ¥ a fibre map if it has the lifting homotopy property:
the precise definition simply translates the standard definition from I to P.
If ¥ is a fibre map B, is called the fibre of ¥.

Theorem 5.2. If ¥ is a fibre map ¢ 18 an isomorphism.

Proof. The proof, of course, closely resembles that of the corresponding
theorem in T and need only be sketched. We need only look at the case
n=1.

4
s is epimorphic. Consider & map (g’ g‘,’): L (x) > ¥. By 3.7 there is a
o Jo

nullhomotopy of (g,, gs); since ¥ is a fibre map we may cover this null-

/

homotopy with a homotopy of (fy,fs). Thus there is a homotopy ( ; ¢ ; f)

t Yt

with g, = 0, g/ = 0. Thus (f,,f,) factors through (»,%') so that ¢ is
onto P,(x, ¥).

& 18 monomorphic. Suppose given (f,, fs):« — f, and a nullhomotopy

/
(o0 o) a2,

where w, = vfy, ug = v'f3, go =0, go = 0. We must show that (f,, fy) = 0.
We have then a diagram

AxI v » B
‘Xl \ﬁl‘
A’ x I U » B
I,IAX].
L]_A,X]. 7 G,

v c v
CA x1 p B, ¢
0:x><\‘v Q' % ,
CA'x I > B,

where 1 i8 the identity on I and U, U’, @, @’ arethe homotopies u, u}, g, g;.
An easy extension of the argument of Proposition 3.7 establishes the
ekistence of a nullhomotopy of (@, G')rel (CA X I,04' x1I ). We define
V:Ax (I x0vI xI)—>B, by

V(a,t,0) = Ufa,t),

Vi(a,0,1) = u(a),

V(ie,1,t) =0 ;
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and define V'’ similarly. Then (V, V') is a partial cover of the nullhomo-

topy of (G, @'). Since the pair I x I, I X 0v I xIis homeomorphic to
the pair I x I, I x 0, it follows from the fact that ¥ is a fibre map that

the partial cover (V, V') may be extended to a total cover (7, 17’). Define

(W, W):a x1—>8
by
W,t)=V(a,t 1), W@,t)=7VI(,t1).
Finally observe that W(a, 0) = u,(a), W(a, 1) = 0, and similarly for W’;
and that ¢W = 0, ¢'W' = 0 since (I—;, f/'-’) covers & nullhomotopy. Thus
(W, W’) factors through g, and thereby determines a nullhomotopy of

(fo, f(,)) .

Corollary 5.3. If ¥ is a fibre map there is an exact sequence
Y. e1J r,
T*(o" T) s> n(o" ﬂl) = Hn(“’ ﬁz) -> Hn—l(‘x’ ﬁo) - Hn—l(‘x’ ﬂl) > e
Here we have written I' for (v, #'); it is obvious that de = I'.
We state the dual situation for completeness. The dual excision homo-

morphism is e 1T,y (0, B) > Po(®, ) . (5.1%)
Here A,, A, are the cokernels of o,: 4, A4,, of: A > A4; and o:
A, — A} is the map induced by «,.
We call @ a cofibre map if it has the descending homotopy (homotopy ex-
tension) property. If @ is a cofibre map «; is called the cofibre of @.
Theorem 5.2*%. If @ is a cofibre map ¢ is an 1somorphism.

Corollary 5.3*. If @ is a cofibre map there is an exact sequence

P e1J r+
T*(Q, ﬁ) N "‘"Hn(o‘z’ ﬂ) - Hn(o‘l’ ﬂ) - Hn-—l(“a’ ﬂ) -> n—1(°‘z: p) —> e

We close this section by an important example of a cofibre (and one of a fibre)
map. Let us revert to (3.2) and consider the map (y,,y;): 4 — M,.
Theorem b.4*. The map (y,,¥;) s a cofibre map.®)

Proof. We are given the diagram
M,

(1> 71) Tw 90)

U el (|
(ft’f;)

§) This consequence of 3.4 was first observed by G. A. HUNT.
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and must lift this triangle to obtain (g,, g;). Following 3.4 we set

gtzL(ftayago)> g:*—:L(ﬂ,y’,g{,)
and it remains to show that qg, = g, M,. But

99: = L(qf:, 7, 99) by 3.4 (i),
giMo = L(fyu,v,9,Ms), by 3.4 (ii),
and gf, = fiu, qgo= gsM4; thus the theorem follows.

There is, of course, a dual story in which the mapping cylinder functor is
replaced by the mapping track functor. Thus given @ = (u,v):y —> 9" we
apply the mapping track functor E to obtain

v? .

A——> FEF —>» B

ul lE'q, lv (3-2%)
’)”2 n

A ey Ey~———> B’
and have

Theorem 5.4. The map (3!, ') is a fibre map.

6. Mixed sequences and weak fibrations in ‘B (T)

We revert to the exact sequence S, (x, ¥) and consider the special case
in which &« = ; A. We define

P,(A,¥)=P,,(4b4,?) (6.1)
and so obtain the exact sequence
S (4, W): - > Po(d, B) 2 Py(d, )5 Po(4, 9) 5P y(4, ) > -
Dually we replace § by g, B in the exact sequence S* (@, 8); if we define
P, (P, B) =P, (P, 0, B) (6.1%)
we obtain the exact sequence
8*(@, B): --- — Py(ag, B) D> Po(0yB)> P,(®, B)> P, 1(0g, B) — -

Notice that the sets P,(4, ¥), P,(®, B) are defined for n > 2, have
group structure if » > 2, abelian if n > 3.

We may immediately infer analogues of Propositions 2.2, 2.3. Thus if
@:8,—>p; then (1,0): ¥ -BOo¥ and we infer from Propositions 2.2,
2.3 and the exactness of S, (4, ¥)



Homotopy Groups of Maps and Exact Sequedces 287

Proposition 6.2. If & = (4, A’) where 4,1’ are homotopy equivalences,
then

(1,0),:P,(A, V)~ P,(4,0-.¥), n>2.
Similarly,

Proposition 6.3. If @ = (4, A'): 8, —B;,, where 1,1 are homotopy
equivalences, then

(@,1): P (A, PoO)=P,(4,¥), n>2.
Dually,

Proposition 6.2*. If O = (x, »'): ] —>a,, where x,s% are homotopy
equivalences, then

(@,1*: P,(®, B)~P,(®o60,B), n>2.

Proposition 6.3*. If © = (x, »'): &, —«,, where x,s%' are homotopy
equivalences, then

(1,0)*: P, (@o®, By~ P,(®, B), n>2.

We will also need the following elementary consequences of the mixed
exact sequences.

Proposition 6.4. (i) If B, is a homotopy equivalence, then
J:P,(4,8,)=P,(4, V).
(i) If B, is a homotopy equivalence, then
0: P, (4, V)= P, ,(4,p).
Proposition 6.4*. (i) If «, is a homotopy equivalence, then
J:P,(x, B) =~ P,(D, B).
(ii) If «, is a homotopy equivalence, then
0: P, (D, B)~P,_,(x,, B) .

To prove Proposition 6.4 (i), we have only to invoke the exactness of
Sx(4,B,) to infer that P,(4,p,) = 0. The other assertions are proved
similarly.

We will leave the main applications to subsequent sections. In this section
we are content to investigate the excision homomorphisms for the groups
P,(A,¥), P,(®, B). We will deal explicitly with the latter group but first
frame the appropriate dual definitions. We say that a map ¥ = (u,v) is a
weak fibre map if each of u,v is a fibre map; dually @ = (u,v) is a weak
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cofibre map if each of u,v is a cofibre map. It is easy to show that a fibre
(cofibre) map is a weak fibre (cofibre) map; on the other hand, the converse
is false. For example, if

&y

Al”"“’A;

ul lv
A, — A;

o2

is a commutative diagram of polyhedral inclusions with A4, s A] ~ 4,, then
(w,v) is a weak cofibre map but not, in general, a cofibre map. However,
we will prove

Theorem 6.6*. If @ is a weak cofibre map the excision homomorphism
€: Pn—-l(o‘a’ B) —>Pn(¢’ B)
18 an 1somorphism.

Proof. We have @ = (¢, 0'):a,—>x, with each of ¢,0’ a cofibre map.
We apply the mapping cylinder functor M to ¢ and o' obtaining the dia-

gram

0 O3
— s —»
ocll lcx laz (6.6)
—_— . — .
A A

Notice that the map o« is just Mgr, where OT = (x;,x5):0 —>0'; we
call @T the transpose of @ (but wait till later to develop special properties
of the transpose). Let @, = (0y,0}):a; > &, P, = (0,, 03) : &« >0,. Then
0,, 0, are homotopy equivalences and @ = &,d,. Thus by Proposition
6.3*.

(1’¢2)*:Pn(¢’ B)gpn(qjl’ B) . (6'7)

Now @, is a cofibre map (Theorem 5.4*) so that, by Theorem 5. 2%,
G:Pn—l(‘xo:B)%Pn(¢1: B) t (6'8)

where «, is the cofibre of @,. Now the map (1, ®,): D, - D clearly in-
duces a map @ from the cofibre of @, to the cofibre of @,

~

D:axg >0y .
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Moreover, the naturality of the excision homomorphism expresses itself by
the commutativity relation

(1, @)%z = £D*: P,_; (&, B) - P, (9y, B) . (6.9)

Thus, it remains, in the light of (6.7), (6.8) and (6.9), to prove

~

O*: P, (05, B) = P4 (%, B) . (6.10)

Consider the diagrams

/ /

g v g v
A~ M, 4, Al M, 5 Al
|l b
A, —> A, — A, A;——’> A;———;»A;

g 14 (o] 4

where »;,v are projections onto the cofibres of ¢,, 0 (and similarly for the
second diagram). Then = (6,0'):0p—>0; and (6.10) follows from Prop-
ositions 2.2*, 2.3* once we have proved that o,c’' are homotopy equivalences.
In fact we will prove the stronger statement

Proposition 6.11*. The map (1, 0,) is a homotopy equivalence in P.

Proof. We define go: 4, > M, by go(a,) =a,, a,e 4, and f,: 4, > M,
by f:(a,) = (ay,1 —t), a, e A,. Then f,=g,0 so that, ¢ being a cofibre
map, there exists g¢,: 4,—~ M, with f, =g,0. Then (1,g,):0 — o,, since
g,0(a,) = f,a, = (a,, 0) = 0,a,. We show that (1,g,) is a homotopy in-
verse of (1, a,).

First (1,0,) (1,9, = (1,0.91):0 >0. Now 0,9,0(ay) = 0,f,(a;) =
= d,(a,, 1 —t) = o(a,;). Thus we have a homotopy (1,,9,):0 -0 and
0,90 = 1 sothat (1,a,)(1,9,) =~ 1.

Second (1,g¢,)(1,0,) = (1, ¢,0,):0; > 0,. We may easily find a homo-
topy g0, ~1: M,— M_; namely, ©,: M,—~ M,, where

Oy(ay, u) = (a1, u + 2t(1 —u)) } 0<t <
O,(a,) = Gy sfst
0.(ay, u) = (a,, 2 — 21) } <tL1
O,(a;) = gg1a, RSES s

Then 6, =1, @, = g,0,; but the embedded subspace A, does not stay
fixed during the homotopy but slides down the mapping cylinder and up
again. We thus wish to replace @, by a homotopy which leaves A, (identi-
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fied with A4, x 0 ¢ M,) pointwise fixed. Let @: M, x I - M, be the
homotopy @,. Then @ | 4, x I is given by

@(alat)z (a’lyzt), 0<

t <}
:(a’laz""‘2t)7 %<t

<1.
Then, obviously, @4, X I~I:4,x1I—M,rel Ale, where I'(a,,t)=a,.

Let M:A4,xIxI—-M_, bethehomotopy.Define @,: M X (I xX0vIxI)—>M,
by 6,(b,t,0) = O(b,t), beM,, Oyb,1,t) = O(b,i), ¢ =0, 1. Clearly

O A, x I x 0l xI)=M|A4;, x (I x0vIxI).

We now use the facts (i) that the pair (I x I, x 0 oIl xI ) is homeo-
morphic to the pair (I x I, x 0); and (ii)that o x 1: 4, x I c M, x I
is a cofibre map, to infer that @, admits an extension &,: M x I x I > M,
with @,| A, X I x I = M. If we define

e, M,—~ M,

by ©,(b) = 0,(b,t,1), beM,, then Oy= 6y=1,0; =0, = g0, and
O)(a,) = 0,(a,,t,1) = M(a,,t) = I'(a,,t) = a,. Thus (1,0, is a homo-
topy from 1 to (1, g,0,) and the proof of the proposition is complete. With
it we also complete the proof of the theorem.

Corollary 6.12*%. If & is a weak cofibre map there is an exact sequence

e 1J I'*

p*
T*(@: B) e 9Pn(“2a B)"’ Pn((xl’ B) - Pn—l((xm B)_>'P'n—1(0‘2) B) —* ks
We will not enunciate the duals explicitly beyond

Corollary 6.12. If ¥ is a weak fibre map there is an exact sequence

L2 e1J ry
T*(A,T) "'éPn(Aaﬂl)épn(A:ﬂg - Pn—l(AsﬁO)éPn—l(A’ﬂl) —_ -

We close this section by pointing out that the groups P,(A4, ¥) constitute
a natural generalization of the triad homotopy groups. Indeed if we have
A =8° and
Z —Y%,
==
| ¥ |
Y,— X

where all maps are inclusions and Z=Y,~Y,, then P,(4,Y) =
=ux,(X;Y,,Y,), and the exact sequence S,(4,¥) is one of the exact
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sequences of the triad. To obtain the other exact sequence we consider the
transpose ¥7T of ¥ and invoke the isomorphism

P.(4,¥)=P,(4,¥T) (6.13)

which will be proved at the beginning of the next section (see Proposition 7.4).

7. Transposition and the exact sequences of a triple

We referred briefly in the previous section to the notion of the transpose ®)
of a map in P. If ¥ = (0,0’): fy— B, then the transpose of ¥ is the
map YT = (B,, B;): 0 = ¢'. Clearly there is a 1 —1 correspondence between
maps ® — ¥ and maps T — WT  the correspondence being achieved by

!
the transposition ( I ,) —>(ff, g,). This correspondence plainly induces an
isomorphism g9 g

7o I, (P, V) = I1 (DT, PT). (7.1)

Now consider the special case in which @ = ,(1; 4); it will be sufficient
to look at the case » = 0. In detail, then, @ = ;(;; 4) is the map

4
A——> CA

@ clAl lLIOA

CA—— CCA

ly

Let s:CCA —CCA be the homeomorphism given by s(a,t, u) = (a, u, t).
Then

Lemma 7.2. The map (i ;) is a equivalence from @ to @T.
Proof. Tt is only necessary to observe that soCy A =, CA and s =1.

Corollary 7.3. The map (i i) induces an isomorphism

1, I1,(D, V)= 1T (DT, V),
where @ = ,(1,4).
Putting together (7.1) and Corollary 7.3 we get

Proposition 7.4. There is a natural isomorphism 7 (= 7,7,)

7:P,(A,¥Y)>=P,(4,¥PT), n>2.

%) The equivalent notion in an exact category was exploited in [6].
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We will agree to identify the groups P,(4, ¥) and P,(4, YT) by means
of the isomorphism 7; weremark thatevenif n = 2, v is a 1 —1 correspond-
ence.

We have remarked that Proposition 7.4 yields, by specialization, the second
exact sequence of a triad. We also remark that it enables us to regard the se-
quence S, (4, ¥) as part of a network of exact sequences. Thus we have

v v ¥ v
-—>I,(A,B,) —-»1,(A4,B,) —~>P,(4,0) —>1I,(A,B) —~> ---
v v \ \
- =>1II,(4, B{) - Il (A, B;) - P,(A4,0") —>1II, (4, B{) —>
v v \ ¥
'"*Pn(A’ﬁl) —*Pn(A’ﬁz) ""Pn(A:qj) QPn—l(A’ﬂl) R
g \ ¥ v
- =1, ,(A, By) > 1I, ,(4, B)) > P, ,(A,0) >1I, ,(4, B,) -
\ ¥ v ¥

with exact rows and columns; this we may express more succinctly by the
exact triangle

Se(4,8) x84, 8)

N T

8x(4, V)
(or its transpose!)

Dually we have

Proposition 7.4*. There is a natural isomorphism
v: P, (P, B) = P,(P7, B) .
This yields an exact triangle of exact sequences

S* (a5, B) — 250 8% (a1, B)

NI

S* (@, B)

There is one other elementary deduction which may be drawn from Prop-
osition 7.4 and the exactness of the sequence S, (4, ¥), namely
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Theorem 7.5. ¥, :P,(A,B,) = P,(4, 8,), all n, if and only if
YI:P,(4,0) == P(A o'), all n.

The dual is obvious; we will not state it explicitly. But we remark that
7.5 and 7.5* yield results for the classical homotopy and cohomology groups.

We now turn attention again to the category £ of triples (see Section 3).
Given a triple [4, u], A
P->Q—->R,
write v = ui; then we may define four maps in P, namely

YV.=A1):iv—>u, YVo=1,u): 2>,
and their transposes. We have the exact sequence

S (A, B): > P, ) 5 P4, ) P, (4, V) 3P, (4, %) >

moreover by 6.4 (ii), applied to ¥ = (v, u): A -1, we obtain an isomor-
phism

9: P, (A, ¥]) == P,4(4, 7). (7.5)
Thus a unique homomorphism ¢: P, _,(4, 1) - P,_,(4,v) is defined by
=001, (7.6)

where we have written 97 for the boundary isomorphism (7.5).
Lemma 7.7. o0 = Wy = (1, p)x.

Proof. It is obviously sufficient to consider ¢: P,(4,4) - P,(4, ).

We consider an element « = {(f,9)} ¢ P,(4, 4), and seek to construct an
element & e P,(A4, ¥YT) with 97& = «. The problem then is to provide suit-
able maps CA — R, C*4 — R Yyielding a commutative diagram

A f WP
\A A
wAl ca__ 9 e
V4
v v
CA l’l CA ’R ‘”
Cud }
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We define the map C4 - R to be ug. Then ugoy A = v»f because
got; A=Af. It remains to describe a map u:C%*A4—R satisfying uoCi, A=ug,
%04, CA = ug. This is equivalent to the problem of extending to 4 x I x I
amap v: 4 X (I x Iy - R given by

via,t, 0) = pug(a,t) ;

v(a,0,0) = pgla, i)

v(a,t,1) =v(a,l1,t) =0.

Since the map v has an evident extension to 4 x I x I, such a map u

may be defined. Thus
f g } _
aT{(ﬂg u) =1tha,

(; gz)} = {f,9};

it follows that p(x) = @ [f ”g; = {f, ug} = (1, wx{f, 9} = (1, w)x(x), and
g su
the lemma is proved.

so that 3T ¢

Corollary 7.8. (The exact sequence of a triple.) Given a triple [A, u] with
v = ul, there is an exact sequence

Su(d; 0,0 P4, ) P4, P4, S P, 4, 1) >

The homomorphism d in the sequence S, (4; A, u) is, by definition, 97 zJ.
However we may easily show that

oTvJ =Ja, (7.9)

where, on the right hand side, @ is the boundary o: P,(4, u) > 11, ,(4, Q)
and J is the homomorphism J:I11, ,(4,Q) - P,_,(4,2). For (taking

n=2)if £eP,(A4, u) is represented by (C}) (;) LA —>ad(p), then Jé
is represented by <(; g), tJ& by (g gfs> and 9TtJé&¢ by (0,f):,A > 4;

while 0f is represented by (w,f): 4y 4 - 0@ and Jo& by (0,f):, 4 — 4.
Interpreting d then as Jo we get the final version of the sequence of a
triple ; notice that the exact sequence of a triple is valid without any special
assumptions on the nature of the maps 4, u,»

The dual sequence may be related to the same triple [4, u]. We have

Corollary 7.8*. (The dual exact sequence of a triple.) Given a triple [A, u]
with v = plA, there is an exact sequence

§%(h, 43 B): -+ > Py, B) 'S P, B) Y P, (4, BYS Py (u, B) >
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If we take A = 8° and A4, u inclusions the sequence S, (A4; 4, u) is just
the classical homotopy sequence of the triple (R,Q, P). More generally we
could take for A4 a MooRrEe space K'(G,m) and obtain the sequence

1, A1)y d
oo (@ 1) @) S (@ ) S (@5

an exact sequence of homotopy groups with coefficients for the triple. If in
the triple [A,u], 4 and u are both fibre maps then » = ud is a fibre
map. Moreover if 4, = A| (fibre of »), regarded as a map into the fibre of
p, then A4, is a fibre map whose fibre coincides with the fibre of A and
S, (4; A, u) may be identified with T, (4, 4,).

In the dual case we may take B to be an EILENBERG-MACLANE complex,
and apply the “singular polyhedron’ functor to A, x,». Then if A, u,» are
inclusions we get the classical (singular) cohomology sequence of the triple
(R,Q, P). Even if A, u,» are not inclusions we get the sequence

(A, 1)* (1, )
s Hr (s @) ) B @) B @) S B (4 @) >

Also we obtain the sequence T*(u°, B) from S*(4,u; B) if A, u are co-
fibre maps; here u® is the cofibre map from the cofibre of 4 to the cofibre
of » and the cofibre of u° coincides with the cofibre of u.

Finally we remark (compare [1] or [2]) that we may topologize the groups
Hm(x; @) if @ is a topological group and then, by regarding H,(x;G) as
Char (H™(x; Char )), where G is discrete, we may deduce the correspond-
ing homology sequence of a triple

A, 1,
e B &) H, 0 0 L O S H (036 < -+ (1.10)

However, we will give an alternative, combinatorial, treatment for the homo-
logy sequence of a triple in the appendix (Section 9). The exact sequences of
homotopy and homology groups of a triple were exploited in [5] in obtaining
homotopy and homology decompositions of any arbitrary map.

8. The twisted homotopy groups I~I,,(oc, B)

If g: B, — B, there is plainly an induced homomorphism

By : Pple, By) - Py(x, By) . (8.1)

It is tempting, amid the plethora of exact sequences available, when we
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select suitable objects from the categories ¥ and 9P, to conjecture that it
should be possible to embed the homomorphism (8.1) in an exact sequence
and even to suppose that the group which appears in the sequence to measure
the failure of B, to be an isomorphism is I7,(x, ). This last turns out to
be false; in fact we will show that the group which does appear is obtained
by going into the ‘“higher” category by means of the functions ¢, ¢, and
there submitting ¢, (x) or g,(f) to a twist.
Let us write 1 (x), 0,(8) for ¢ ()7, 0,(8)T. Then, in particular

Ql(ﬂ):Eﬂ'—)ﬁ)

01(B): 01(By) = 01(By) .

so that

Notice that p, cannot be regarded as a functor from I to P, since we
would then have confused p,(8) with @,(f); we have reserved the symbols
4,0, to refer to certain canonical processes for associating objects of the
category B(€) with objects of the category €, for any suitable €.

We then have the exact sequence

By (o, B) = 8 (x, €:1(B)):
+ > P, (x, BI)E;Pn(“! Bz)iﬁn—-l(‘x: ﬂ)iPn—-l(‘x’ By) > .-,

where, by definition,
H,,((X, ﬂ)=Pn(“:§1(ﬁ))' (8.2)

We now clarify the relation of ﬁ,, (x, B) to IT,(x, B); in the course of doing
so we will hope to justify our convention in assigning the dimension n rather
than (n + 1) to the group defined in (8.2) as P,(x, 9,(8)). We point out
the following evident relations.

Proposition 8.3. P,(4,0,B) >~ 1I,(A, B), P,(x,0,(f)) == Il (, ).
Proposition 8.3*. P,(,,4, B)=>~=1II,(4, B), P,(,(x), ) == II,(x, ).

Proof. Since g, B is a fibre map we may apply excision to P,(4, g, B),
getting II, ,(4,QB)~ P,(A,o,B); but II, ,(4,2B)=1I,(4, B).

Similar arguments justify the other four statements. Thus in particular we
see that the difference in the definitions of I7,(x, ) and ﬁ,, (x, f) may be
described by saying that we pass from the former to the latter by twisting

0:1(8).
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Now P,(x,,(8)) = T,y (u(®), 3:(8), by definition. Applying the iso-
morphism 7, (7.1) we find

Pn(“» El(ﬂ)) %Hn—l(a(“)’ Ql(ﬂ)) = Pn(Tl(‘x)’ ﬂ) .

We thus see that, if we identify groups connected by the canonical iso-
morphism 7,, the definition of I7,(x, ) is self-dual,

I,(x, B) = P, (0(®), B) - (8.2%)

Thus the group ﬁ,, (x, B) also figures in the exact sequence

8% (o, B) = 8* (1), B)
o* ~ d
<o > Py(dy, S P4y, H) Sy (o, B)>Pyy(4y, B) >

In fact the sequences S, (x,f), S*(x, f) may be fitted into the network
of exact sequences which we may represent as

S*(“,Bl S* (x .B

\/

S (Az, —+S (A1> ﬂ)

NS

Sy (x, B)

and

Certain obvious consequences may be drawn from the exact sequences
Sy(x,B) and S*(x, ) and results of section 2. Rather than list them in
detail we sum them up by saying that the groups ﬁ,, (x, ) are unaffected
(up to isomorphism) by composing « or B with a homotopy equivalence or
by replacing « or B by homotopic maps. We know no such theorems for the
groups IT,(x, ). On the other hand we should record

Proposition 8.4. IT,(x, ) = II,(x,p) if « =y A or f=o,B
For, as pointed out in Lemma 7.2, %, A is equivalent to ¢,¢, 4. Of course,
if x=4A then IT,(x,p) is just P,,,(4,p).

21 CMH vol. 34
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The introduction of the groups ﬁﬂ (x, B) gives the clue to the generaliza-
tion of the sequence S,(4; 4, x) in which we replace A by an arbitrary
map. We have no reason to believe that an exact sequence can be obtained
by replacing P,(4,0) by II,(x,0), ® = A, u,v, but an exact sequence
can indeed be obtained by replacing P,(4, @) by ﬁ,, (¢, ). Our proof of
this fact will use the mapping cylinder functor and an excision theorem for

the groups ﬁ,,.
Lemma 8.5. If «: A, — A, is a cofibration, so is 7 (x): ;4;— 1, 4,.

Proof. Let K, be the space formed from the disjoint union (A4;X1I)v(4,X0)
by means of the identification (a,, 0) = (xa,, 0). It evidently follows from
the fact that « is a cofibration that there is a map

r=ry:d, X I > K, (8.6)

such that r(a,, 0) = (a,, 0), r(xa,,t) = (a,,t). Conversely the existence of
such a map r implies that « is a cofibration. For if (f,, «, g,) is a triangle?)

N
4, —p X
fe
we define h:K,—~ X by h(a,,t)=f,a,,h(a,,0)=geas,a,eA;,a,eA,;
then we lift f, by ¢,: 4,—> X where g,(a,) = hr(a,,t).
Now suppose given the commutative diagram

X
fe

9o &

Al i > A2 '
/

ud, <

u4, }"
t ’

7) This is an abuse of the terminology of section 3.
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We have to show that we may “lift” f,, f; to g,,g; such that g;o 4, = &g,.
Using the map r,: A, X I - K, we have already defined ¢,. Similarly we

define rou - CAy X I - K,
b
y rClx(u?a'2’t)= (u’ra(a’zat)) )

notice that here we have found it convenient to regard CA,,CA4, as ob-
tained by identification from I x 4,,I X A,. Then r,, is the map giving
the cofibre structure of the map C«x, and we define A': K,, - X' by

h,(u’al’ t) = f:(u» a’l) ’
h’(u, Ay, 0) = g(,)(u’ a2) s

and ¢,:CA,— X' by g;(u,a,) = h'rg,(w,a,,t). A straightforward com-
putation establishes the required commutativity relation.

Theorem 8.7. If « ts a cofibre map with cofibre A, then there is an excision
1somorphism
£:P,(4;, p) = 11, («, B) .

Proof. II,(, B) = P,(1;(x), B). Since « is a cofibre map so is 7, (x), and
8o there is an excision isomorphism &:17,_;(i; 45, B) gﬁn(ex, p); it is only
necessary to observe that the cofibre of 7;(x) is plainly ¢ A,. Finally
II,_,(,4,, B) = P,(4,, ) and the theorem is proved.

Corollary 8.8. Given a triple [4, u] and a map « there is an exact sequence

S*(OC; A, ,u) s —>Hn(0‘a l)ﬁ’;nn(‘x’ v)-—;Hn(oc, ;u)'—)ﬂn-—l('x: 2’) > e

(Here we have been deliberately imprecise in our notation for the homomor-
phisms.)

Proof. We first apply the mapping cylinder functor and the remark pre-
ceding 8.4 to replace the sequence S, (x; 4, u) by the isomorphic sequence
Sy (o3 A, n). We next apply Theorem 8.7 to replace S, (x; 4, u) by the
isomorphic sequence Sy (4,; 4, 1), where A, is the cofibre of «,. But the
sequence S, (d4,; 4, u) is exact.

Corollary 8.8*. Given a triple [4,u] and a map B there is an exact se-

quence
A%~ *

S¥(, s ) e — alu, B> I, (0, BYS T, (A, B) ST y(u, B) = - - - .
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We remark that the homomorphism d of the sequence S, (x; A, u) has
simply been defined so that the diagram

*

~ .4 ~ &
II(x, p) —> I, (0y, p) ~—— P,(4, 1)

~ xr e
Hn—l(o‘i A) —"—" Hn—l(o‘l’ ;') D Pn—l(AD» }‘)

be commutative (all the horizontal maps are isomorphisms). A direct defini-
tion of d would have involved a discussion of exact sequences in P2(T)!
It is not difficult to see that this definition of d suffices to yield the network
of exact sequences expressed by the exact triangle

*
Sy (dgs 2, 1) —= g Sy (dy; 2, )

N
Sy (o5 2, )
Similarly we have the exact triangle

S* (4, u; By Py 8%, u; By

N

S* (4, u; B)

9. Appendix: The combinatorial homology groups

In this appendix we describe how the cohomology groups and homomor-
phisms discussed in previous sections have their parallels for homology groups
based on chain complexes. Our main concern is the homology sequence of a
triple, but we begin with an observation on the usual coefficient sequence for
homology. We observe, namely, that if C = (C,, d,) is a chain complex and
@:@Q,—~ @, a homomorphism, then we may define the homology groups of
C with coefficients in @ to be the homology groups of the chain mapping
cylinder of the chain map C ® G,—~ C ® G, induced by @. With this defi-
nition of H, (C; @) we have the exact sequence

& J )
oo > H,(C3Gy) = Hy(C;Gy) > Hy(C5 ) > Hy 1 (C3G) > -+ . (9.1)
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In particular if C is the singular chain complex of the space X, we have

the notion of the singular homology group of X with coefficients in @ and
the exact sequence

(1)) J d
oo > H(X;0) 5 H (X;0,)>H, (X;0)>H, (X;0)~>---. (9.2

Given any chain map @ :C — D, we may define the chain complex of @
to be the chain mapping cylinder of @. In particular if §: B,— B, is a
(continuous) map the singular chain complex of g, C(f), is by definition
the chain complex of the singular chain map induced by B and so we obtain,
for any such B, an exact sequence

Bx J 9
- > H,(B,)—> H,(B,) > H,(f) > H, 4(By) > -+ ; (9.3)

this may, of course, be generalized to arbitrary coefficient groups.

Let us now pass to the category 9B2. Following on (6.1) and (6.1*) we
might have defined

7,(G;¥Y) =P, (K'(G,m —n), ¥), (9.4)
H"(®;G) =P, (D, K(G,m +n —2)); (9.4%)

and so specialize S, (4, ¥), §*(®P, B) to homotopy and cohomology se-
quences.

We do not however stress these definitions because they are based on tra-
ditional conventions which serve to obscure the duality. However, we will
now introduce the singular homology groups H,,(¥) based on the singular
chain complex C(¥). Let ¥ be the map

Then clearly ¥ = (0, ¢') induces a chain map ¥,: C(B,) - C(8,), and we
define C(¥) to be the chain mapping cylinder®) of ¥,. We will make this
definition quite explicit, allowing ourselves to write pB,, f,, 0,6’ for the
chain maps they induce. Then

C,(¥)=0C,_,(B)® Com1(By) ® Cpo_y (By) @ Cn(By) , (9.5)

%) This definition may plainly be generalized to any commutative square of chain maps.
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and the boundary operator is
d (g, Uy, Uy, ug) = (duy, — By — duy, ouy — du,, o' uy + Byu, +duy) . (9.6)

One certainly then has a homology sequence

Y, J 0
' _>Hn(ﬂ1) -l Hn(ﬂz)_"Hn(T)")Hn—l(ﬁl) >t (9'7)

It is worth remarking that a HurEwIczZ homomorphism %:x,(¥) - H,(¥)
is easily defined. For if we take @ = ;¢,8"2, then H,(0) is cyclic infinite
and we may orient @ by picking a generator 7 e H,(®). Now an element
o« of m,(¥) is represented by a map a:® — ¥ and we define

However, there is no immediate generalization of the HUREWIOZ isomor-
phism theorem to the category PB2. For the exactness of S, (A4, ¥) implies
that =, (¥Y) =0 if and only if ¥, :=,(8,) == n,(B,); and the exactness of
(9.7) implies that H,(¥) = 0 if and only if ¥, :H,(8,) =~ H,(f,). But it
is well-known (in the case of inclusion maps) that ¥, may induce homology
isomorphisms but not homotopy isomorphisms. It seems possible that a HURE-
wicz theorem in B2 may involve homology and homotopy groups with rel-
ativized coefficients.

If we look at (9.5) and (9.6) we see that the map

71 O (V) = 0, (¥7)
given by
T(ul’u{’uwu;)=("—'u1!u2,u;’u;) (98)

is a chain-isomorphism and so induces a homology isomorphism
Tyt Hy (W) = Hy (PT) . (9.9)

We exploit (9.9) in studying the homology sequence of a triple » = x4
(see (7.10)). In the light of (9.7) we have the exact sequence

(A1) J d
* —>H”('V) -> Hn(lu)_*Hn(Y’)_)Hn—l(v) >ty Y= (A‘s 1)

and the isomorphism
0= oT: Hn(!pT) = Hn—-l(z) d
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Using (9.9), we get the exact sequence

(4, 1) e ¢
ot _>Hn(v) - Hn(/“')»Hn—l(z)%Hn—l(v) >,

A
where ¢ = 3T7,J, 00Tt — 9. Given P>Q5 R, let 9,: H,(u) > H,_,(Q)

be the boundary in the exact sequence of u and let J,: H, ,(Q) - H,_,(4)
be the J-homomorphism in the exact sequence of 4.

Lemma 9.10. ¢ = J,9,.

Proof. The reader may verify that 0T7,J and J,d, are both induced by
the chain map

(u"u,) -—>(O,’LL), u€0n_1(Q), ‘uIGOn(R) .
Lemma 9.11. 6 = — (1, u)«.
Proof. 0: H,(¥) - H,_,(v) is induced by the chain map

(u1> u;a uzy u;) - (uly ui) ’ U,y € 0n—2(P): u; € On—-l(R) ’
Uy e Cry(Q), ugeC,(R).

On the other hand, (1, u), 9T 7, is induced by the chain map
(g, Uy, g, Ug) > (— Uy, LUy) .

Nowif (uy, u|, u,, uj) is a cycle it follows from (9. 6) that w; + pu, + du; =0.
Then (0, u| + pu,) = d(0, — uz) so that

0= —(1, u)x 0T 7y ,

from which the lemma immediately follows.
We have now proved

Theorem 9.12. If [A, u] 8 a triple with v = ul, then there is an exact

sequence

1, Al d
ol ) W S S H (1) > -

where 0 = J,0, (see 9.10).
A direct proof of this theorem would, of course, have been available but
we have preferred to parallel the arguments of section 7.
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