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Homotopy Groups of Maps and Exact Séquences

by B. Eckmann and P. J. Hilton1)

1. Introduction

In [3] we described two exact séquences arising in homotopy theory, dual
to each other, which contain as spécial cases many of the familiar séquences
of algebraic topology (e.g., homotopy séquence, cohomology séquence, co-
homotopy séquence, coefficient séquences). Certain other séquences (e.g. the
homotopy and cohomology séquences of a triple and the homotopy séquence
of a triad) may be deduced as spécial cases of séquences involving objects and
maps in the category of pairs of pairs. It has seemed worthwile to make a
systematic study of the two exact séquences in the category of pairs corresponding
to the two séquences mentioned above in the category of based spaces. We
should point out that the latter séquences are more accurately described as
functors of the product category Ixfî {%), where % is the category of
based spaces and *P (%) is the category of pairs from %. Thus the two
séquences we introduce in this paper (section 4) are functors of the product
category ^J(Ï) X ^$2(£) and this explains the introduction of the category
of pairs of pairs ty2(X) mentioned above.

The relative groups IIn{A, /?), i7n(<%, B) of [3] are essentially mixed
constructions and cannot, without suitable conventions, be meaningfully regarded
as sets of homotopy classes of maps of EnA into /? or oc into Q^B. Because
of their hybrid nature we prefer in this paper to use a new symbol Pn (A, /?),

Pn (a, B) for thèse groups, thus pointing the contrast with the groups IIn (A,B),
nn{<x, /S), which are sets of classes of maps £nA -> B or Enoc -> /?. It thus
appears in our formulation that the groups Pn(A,(5), Pn((x,B) only re-
present as it were a halfway stage in the process of relativization, in that only
one of the variables is taken from the category ^ (%), the other variable re-
maining an object of % ; and that full relativization of the basic construct
IIn(A, B) leads to the groups i7n(<%, /S). In specializing such relative groups
one is led to define cohomology groups and homotopy groups (of pairs) whose
"coefficients" lie in a cohomology or homotopy opération.

If our object were just to dérive the classical homotopy séquence in the
category of pairs we could hâve based ourselves on the Kan theory of
catégories with homotopy [7]. However not only hâve we wished to discuss far

*) This research was partly supported by the U.S. Department of Army through its European
Research Office.



272 B. Eckmann / P. J. Hilton

more gênerai séquences but we hâve also wanted to bring out the additional
structure présent in the catégories ty(X) and ^52(ï). In ty(X) the objects
hâve an obvious groupoid structure; that is, objects may sometimes be multi-
plied. Moreover the groupoid structure is associative and admits lefb and right
identities. In ^}2(3;) we hâve two such groupoid structures: for an object
of <$*{%) is a map W,

and so we hâve horizontal and vertical composition. In addition there is a

transposition opération in S$2(X), converting W into the map WT,

M

and there are obvious relations Connecting transposition with the two
composition opérations. Our proof of the exactness of the séquences of a triple
(section 7) is designed to exploit this additional structure.

Section 2 consists of a review of those classical exact séquences described
in [3], together with a small amount of generalization of the séquences and
the groups which enter into them. Section 3, which is preparatory for the two
subséquent sections, describes certain canonical homotopy constructions whose

naturality enables them to do service both in X and in ty (X) ; in particular
we use them in section 4 to prove the exactness of the two basic séquences in
*P (X). In section 5 we show how, just as for the familiar séquences in %, the
présence of a fibration or cofibration leads to the replacement of the hybrid
terms in the appropriate séquence by a pure term. It also turns out that the
mapping track functor and mapping cylinder functor lead, as one would hope,
to the replacement of arbitrary maps in ^J(Ï) by fibrations or cofibrations.
The mixed séquences of section 6 are specializations of the séquences of
section 4 and are, more precisely, functors of the product category ïxfî2 (X).
The two homotopy séquences of a triad are spécial cases of one of the séquences

of this section, the invariance of the groups Pn(A, W) under transposition

corresponding to the fact of the présence of the same triad homotopy
group in both triad séquences. In section 7 we study the transposition opération
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more closely and then proceed to obtain the two exact séquences of a triple,
generalizing the classical homotopy and cohomology séquences respectively.
The séquences of section 7 are further generalized in section 8 to séquences
more genuinely based on the category S$(X) (i.e. not involving objects of
X and functors from X to ty (X)) It turns out, perhaps a little surprisingly,
that the "missing" group in thèse séquences is not the likely looking candidate

TIn{(x, /?) but a différent group nn(oc, /}). We call the latter a twisted homotopy

group because there are basic functions ix : ^} -> *JJ2, qx : *p -> *P2 such

that IIn(<x,(5) may be identified with IIn_1{t1oc, qxP) y while nn(ot, (}) is, by
définition, Iln-iiih0^^ QiP) Iln-iih^AQi^)' Of course, the various
exact séquences discussed fit into a pattern of exact séquences ; this pattern
often takes the précise form of an exact triangle of exact séquences and we
hâve usually displayed such connections between the séquences we define.

The last section is an appendix giving a combinatorial treatment of homo-

logy groups and their exact séquences intended to show a parallel with the
exact séquences involving cohomology groups which arose by specialization
from the gênerai theory.

Throughout we hâve kept the dual aspects of homotopy theory in the fore-
ground. Thus every gênerai resuit has its dual counterpart and ail our notations
are designed to bring out the duality relations. A resuit and its dual are given
the same numerical index, one index appearing plain and the other with a
superscript star. In particular, the duality does not, of course, permit us to
regard a pair as an inclusion nor a triple as a system of two inclusions ; thus a
pair is, as in [3], just a map and a triple is a system [A, fi] of two maps

Similarly, as indicated above, a pair of pairs is essentially just a commutative
square of maps, though it is also imbued with a sensé in that one passes from
top to bottom (or left to right) across the square.

The homotopy and homology séquences of a triple were applied in [5] to
establish the homotopy and homology décompositions of a map.

2. Review of exact séquences in the category of spaces

We recall that X dénotes the category of spaces with base point and based

maps and ty(X) - or just ^J - the category of pairs (i.e., maps) from X. The
base point will be written o, for any space I in ï.

In this section we recall the définitions of the exact séquences in X given
in [3, 4], This should assist the reader in passing to the corresponding se-
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quences in *p *P (X) ; but it will also enable us to introduee certain changes
of notation which appear to us to be suitable to this broad treatment of exact

séquence theory, and to make certain auxiliary remarks.
The notations, then, are those of [3] with the following exceptions. The

map A->o will be written eu (A), or just co, instead of oc or A ; and the
o oo o

o
map o -> A will be written â>(A), or just co, instead of oc or A. The

groups IIn(A, /?), IJn(oc, JS), which are mixed constructions, using both X
and *p, we will now write as Pn(A, /?), Pn(oc, B), reserving the symbol 77

for the pure constructions IJn(A, B), IIn(oc, /}). Thus, by définition,

A

where in(A) and Qn(B) are the maps A-+CZn~1A and
respectively, also written inA and QnB.

The standard exact séquences are then

and

5*(oc, B): >nn(A2, B)^nn(A1,B)^Pn(oc, B)Xnn_1(A^ £)-?•••
In the séquence 8* (A, fl), /8 is a map B1-> B2; the homomorphism J is
effected by identifying IIn(A, B2) with Pn(A, ct>(J52)) and applying the ob-
vious map cô (B2) -> j8 in ^J ; and d is effected by restricting maps
in(A) -> jî to Zn"1A (or, equivalently, by means of the obvious map
p^co(Bt) in<P).

Let jB0 be the kernel /H (o) of jS : Bt ~> B2. There is then an excision

homomorphism :

which is an isomorphism if /3 is a fibration. Then 8* (A, /3) yields the absolute

séquence

where v embeds JB0 in B1.
Dually let Az be the cokernel A2jocAx of oc: AX~->A2. There is then an

excision homomorphism
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which is an isomorphism if a is a cofibration. Then S* (oc, B) yields the ab-
soluté séquence

T*(*,B): ¦ ¦ ¦ ^nn(A2,B)^nn(A1,B)e~^nn_1(As,B)V-tnn_1(A2,B) ->•••,
where v projects A2 onto Az.

By replacing A by a Moobe space Kf(G,m)f 8*(A,f}) and T*(A,{})
yield exact séquences for homotopy groups with coefficients in G; by
replacing B by an Eelenberg-MacLane space K(G,m), S* (oc, B) and
î7* (a, B) yield exact séquences for cohomology groups with coefficients in
G. Given a short exact séquence

0 ->(?!-> G2 4- G,->0

we may realize it by a /i&re séquence

o -+ K(Glym) ->K(G2,m)%K(GZim)

or by a cofibre séquence

K1 (Gt, m)->Kr(G2fm) -+ K'(Gz, m) ->o
Then ï7* J. ,0) is a coefficient séquence in the cohomology of A and T* (ï7, jB)
is a coefficient séquence in the homotopy of B. Thèse coefficient séquences
may be generalized as follows. Let 0 be a primary cohomology opération of
type (qx ,q2iGXi G2) so that we may identify 0 with an élément of II (K (Gx, qt),
K(G2, g2)). It follows from Proposition 2.5 below that the group Pn(A, fi)
dépends only on the homotopy class of /? so that we may write Pn (A, 0) for
the group obtained by choosing any map in the class 0. We thus obtain the
exact séquence

Similarly a homotopy opération 0 of type (qx, q2, Gl9 G2) détermines a

group Pn(0,B) and an exact séquence

8*(B, B): >nqi^n(G1\A) -> nu+n(Q%\A)-*Pn(9, B^n^+^Q^A)-»...
Now let A: B2-> B2 be a map. We may then regard the pair-map (1, A)

as a map j5-> Aj5 in ^},
B1—+B1

p\ => hfi
x

B2 —? B'2,

and this induces a map from 8*{A,P) to 8*(A9X(I). By applying the 5-
lemma we immediately infer
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Proposition 2.2. If X : B2 -> B'2 is a homotopy équivalence, then

Similarly

Proposition 2.3. If A : Bx -> Bx is a homotopy équivalence, then

(A, 1)* : Pn(A,P*) Pn{A, p), n > 1

Dually, we hâve

Proposition 2.2*. If x : A[ -> Ax is a homotopy équivalence, then

(x, 1)* : Pw(*, 5) s P»(«*, J5), n > 1

Proposition 2.3*. If « : ^42 -> .4g is a homotopy équivalence, then

(1, «)* : Pw(««, B) s Pw(«, B) n > 1

Since any map /? may be factorized as p0X, where $> is a fibration and
X a homotopy équivalence it follows from Proposition 2.3 that Pn(A, /3) ^
g*Pn(A, p0) ^ II^A 9 Bo), where Bo is the fibre of j90. Thus every
relative group Pn (-4, j5) is an absolute group : from this we may infer, for
example,

Corollary 2.4. The universal coefficient theorem and the coefficient séquence
apply to the relative homotopy group2) nn{0 ; /S).

Dually any map a may be factored as xoto, where ^ is a cofibration and

k a homotopy équivalence. Then (Proposition 2.3*), Pn(«, B) ^ Pw(*0, B) ^
^ nn_x{A^, B), where AQ is the cofibre of <Xq, and so every relative group
Pn(oc, B) is an absolute group. Thus

Corollary 2.4*. The universal coefficient theorem and the coefficient se

quence apply to the relative cohomology groups Hn (oc ; 0).
As a further corollary of 2.3 we infer3)

Proposition 2.5. If p0 e± pt : Bt-> B2 then Pn(A, p0) ^ Pn(^4, px), n > 1.

Proo/. Let /3 : Bt x / -> £2 be the homotopy and let ut: Bt-^ Bt x I
be given by u^b) (b,i), i 0, 1. Then /?wt. & and u4 is a homotopy
équivalence. Thus

Pn(A, A) Pn(A, pu.) ^ Pn(4, jï) ^ Pn(^, /?%) Pn(^, px)

Proposition 2.5*. If o^ ex. ocx : ^4X -> ^42 then PnK, JB) ^ PnK, J?), n > 1.

*) For the définition of the relative homotopy groups (with coefficients) and relative cohomology

groups see [4].
») It has been pointed out by C. R. Cubjel that 2.5 also holds if n «= 1. - We write C^ for

"homotopic to", and I for the unit interval 0 < t •< 1.
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3* Natural homotopy constructions

Our object in this section is to establish certain natural homotopy constructions

which will be valuable in proving the exactness of the homotopy
séquences in ^J and in making applications.

We first systematize the notion of the (based) mapping cylinder. The cate-

gory ^J has as objects maps y in % and as maps "pair maps" (u,v):y-^yf
such that the diagram

i.
is commutative. We may write 0 (u, v),

u

for emphasis. We also introduce the category fi of "triples". An object of
fi is a séquence

of maps in % and a map in fi is a triple of maps (u,v,w): [yl9 y2] ->
-> [y[, yr2] such that the diagram

Yi Y2

[u [v w

ri /,
is commutative. The based mapping cylinder is then a covariant functor
M : SÇ -> fi. Thus if y : A ->• J5 is an object in *p then Jf (y) is the séquence

A?lMY^B, (3.1)

where M is obtained from (^4 X /) V B by making the identifications

(a, 1) ya

(<M) o} 0<*<l
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and yta (a, o), y2(a> 0 ?a> 7$ — b. If 0 (u,v) : y ->y', then

M{0) (u, M0, v) : if (y) » Jf (/)

U

V"

B

y'*

(3.2)

where M0(a, t) (ua, t), M0(b) vb.
Now the map yx in (3.1) is certainly a eofibration; we shall improve this

resuit now by showing that the homotopy extensions from A to My may
be eonstrueted canonically.

Suppose given a diagram

(3.3)

with goyx /0. We then call J (ft,y,g0) a triangle and a homotopy
(7j : My->Q with gr#yx /^ a Zt#/£ of zl. We prove

Proposition 3.4 (Naturality of lifts). There is a function L, defined on the
set of triangles, with L(A) a lift of A, and satisfying the conditions

(i) if k : Q -> R is a map in X then L(kft, y, kg0) kL{fu y, gQ) ;

(ii) if 0: (u,v):y'->y isamapin ty then L(ftu,yr,goM0) L(ft,y,go)M0.

Proof. Let x:IxI-+IxO^IxI bea fixed retraction. For any
triangle A (/t, y, ^0) define £f:i x (/ X 0^/ x/)->$ by

and then define gt : My

H(a,Q,t) fta
H{a9l,t) =goya

by
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Certainly gt lifts A and we set L(A) gt.
To prove (i), let H, ~gt be eonstrueted as above from the triangle (kft, y,

kg0). Then H Je H so that ~gt Jcgt.

To prove (ii), let H, gt be eonstrueted as above from the triangle (ftu, y1,

g0 M0). Then it is easy to verify that H H(u x 1), where 1 is the identity
on I x OU/ x/, so that

~gt{a',h) H(ar, x(t0, t)) #(W, *«,, *)) gt(ua',tQ) gtM0(a', t0),

whence ~gt g'^if^ and (ii) is proved.

A case of spécial interest is that in which y= co(A) : A ->o; then
yx =z ix(A) : A ->CA and a map 0 : co(A') -> ct>(^4) is just amap u : A'-> A.
Moreover M0 is Cu:CA'-+CA. Ifwewrite {ft,AigQ) for (fty co(A), g0)

we hâve

Corollary 3.5. The function L, restricted to the triangles (ft, A, gQ) satis-
fies

(i) if k : Q -> R is a map in % then L{kft, A, kg0) kL(ft, A, g0) ;

(ii) if u:A'-+A is a map in X then L(ftu, A',g0Cu) L(ft,A,g0)Cu.
Our second naturality theorem concerns nullhomotopic maps 0 (/0, <70)

with <x/0 04). More precisely we consider nullhomotopies (ft, gt) of such

maps and call them admissible.

Proposition 3.6. There is a function N, defined on the set of admissible
nullhomotopies (fti9t) whose value N(ft,gt) is a pair (h, gt) consisting of
a map h : CX -» A and a homotopy ~gt of gQ with ^gtix o, ah ="g1. The
function N has the following properties

(i) if 0 (u, v) : oc ->ocf then N(ufti vgt) (uh, vgt) ;

(ii) if £:X'->X then N(ftÇ,gtCÇ) (hCÇ,ljtCÇ);
(iii) if /0 0 then hix 0.

*) We use the symbol 0 for the zéro map Y -»¦ Z, Q{y) o, for any Y, Z.
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Proof. Given ft, gt we define

"gf, : CX -> B

and we define h : CX -+ A by

<

It is a straight-forward matter to verify that N (ft, gt) (h, "^) is a function
satisfying conditions (i), (ii) and (iii).

Finally we need

Proposition 3.7. Any map 0 (u, uf) : C| ->a is nullhomotopic.

Proof. We hâve the diagram

CZ ?^l

and we define a nullhomotopy by

We leave to the reader the formulation of the propositions dual to those
enunciated in this section.

4. The exact séquences in ^3 (X)

We now proceed, by direct analogy with the corresponding notions in
section 2, to describe the basic exact séquences 8*(<x,W) and S*(0,/î) in ty.
To do this we hâve of course to introduce the category ^J2 ^}(^î), whose

objects 0 are maps in ^J and whose maps are pairs of maps of S$ (and hence

quadruples of maps of X) satisfying certain évident commutativity relations.

Thus a map from (î to !P, say, is a quadruple 1 ,1, representing the
diagram W 0/
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/

n
We will be particularly concerned withthe case 0 in(oc) ; then if oc : A ->Ar,

0 is the map (in{A), in(A1)) : J>~xoc -> C£n-Xoc. The group Pn(<%, W) is, by
définition, the group II(in(oc), W)

and, dually,

We now describe the séquence #* (a, !F) ; we suppose W : px -> /?2 so that
the séquence reads

the homomorphism 9 is induced by restricting maps tn(<%) ->ÎP to
and the homomorphism J by identifying i7n(<%,/?2) with Pn(a, ô>(/32)) and
applying the évident map w (j32) -> ï7

0\.
We hâve now described the séquence and introdueed ail necessary notations.

We prove

Theorem4.2. The séquence 8*(oc,W) is exact.

Proof. It is clearly sufficient to look at the stretch

and prove exactness at the three middle sets.

20 CMH vol. 34
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Exactness at nx (a, /?2).

Weidentify /T^ft) with Px(oc, fi (A)), t l,2. Then if (^ ®\ re-
/0 0 \ \t I I

présents x ell^a, &), JW^x is represented by : ^{o^-^W. But
W a tI

l/zvW
the factorization being through the identity map of /?!. It follows from 3.7

that (° ®\ -Oso that J^ 0.
\t î I\t î I (œ œ\

Now let Xell^tx, jS2) with JA 0 and Jet A be represented by I ;

If it\ /0 0\ ^° ^thus there is a nullhomotopy ,1 of : ix(<x) -> W. By 3.6 we
__ _ \9t 9tl Wo 9ol

obtain homotopies gt, g\ of g0, g'o and maps h:CA -* BX) h1 .GA' -> B\
such that ~gti 0, ^t 0, ah =~g1, a'h' =^{. Moreover, by 3.6 (i, ii),

but (}1ft f'ta, fi2gt g',C«, so that

ftfc =h'Coc, (4.3)

fà 7 (4.4)

It follows from (4.4) that (__ __,} is a homotopy of ,1. Thus A is

represented by (_ __, From (4.4) and 3.6 (iii) we infer that
Wi 9iJ

œ a) \ /0 0 \ /o> o>

v

that X W^(x), where x is represented byso

Exactness at

The relation 3J 0 is trivial. Suppose now that fi c P^a^W) with

n: hi*) -^^P, there is a null-
9o 9oJ

homotopy (ft, ft) of (/0, f0). We apply 3.5 to "extend" ft, f\ to homotopies
gug\ of go,g'Q. Thus

gt Haft9A,9.), ^ L{o'fti Af,grQ)
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Then, by 3.5 (i), p2gt L(p2aft, A, p2g0) and, by 3.5 (ii), grtCoc

but o'ftoc ofpift p2oft and g'QCoc p2gQ. Thus

so that is a homotopy of This means that .1 also re-
\9t g'tl Wo go) toi gi)

présents {/, so that jn J X where X is represented by

ct> co

9i 9i

Exactness at II{oc, /?x)

Let (/,/') : oc -> pt. Then to assert exactness at H(oc, px) is just to assert
that the map (af, of) : oc ->/?2 is nullhomotopic if and only if it may be
extended to Coc; this, of course, is clearly true. This complètes the proof of
the theorem. -

The dual séquence is, explicitly

Theorem 4.2*. The séquence 8*{<P,fi) is exact.
We mention certain immédiate and obvious conséquences of theorems 4.2

and 4.2*.

Proposition 4.3. The map W': /Sf-» /32 induces isomorphisms IIn(oc, f}x) ^
^IIn(oc, p2) for ail n if and only if Pn{oc, 0) 0, ail n.

Proposition 4.4. If 01,02 are homotopy équivalences then Pn(01002, p)

ç^Pn(0,P)9 n> 1.

Proposition 4.5. If 0c*0' then Pn(0, /?) ^ Pn{0', p), n > 1.
The reader may provide the duals of thèse propositions.

5. Fibrations and excision

In this section we prove excision theorems corresponding to those in %
(see section 2). In the notation of the preceding section let Bo, B'o be the
kernels of a,ar, so that pt induces /30: J30-> BfQ and let v,v' embed Bo,
B'o in B1,Br1. We refer to 0O as the kernel of W. Then (v,vf) serves to
induce the excision homomorphism

s:/7n_1(*,/S0)->Pn(a,¥'). (5.1)
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We call the map W a fibre map if it has the lifting homotopy property:
the précise définition simply translates the standard définition from X to *p.
If V is a fibre map p0 is called the fibre of S7.

Theorem 5.2. If W is a fibre map e is an isomorphism.

Proof. The proof, of course, closely resembles that of the corresponding
theorem in % and need only be sketched. We need only look at the case

n= 1.

/): *i(«) -*• ¥*• By 3.7 there is a

nullhomotopy of (gOiÇo); since F is a fibre map we may cover this null-

homotopy with a homotopy of (/o,/o). Thus there is a homotopy ('* *y\

with ^ 0,^ 0. Thus (/x,/i) factors through (v,v') so that e is
onto Px{ayW).

s is monomorphic. Suppose given (/0, fQ) : oc ~> /50 and a nullhomotopy

where u^ vf0, u'Q •/£, g0 0, g'o 0. We must show that (/0, f'o) ~ 0.
We hâve then a diagram

AxI * Bl -sj*l

C'A'xI
where 1 is the identity on I and U,U' ,Q,O' are the homotopies ut, u\, gt, g't.
An easy extension of the argument of Proposition 3.7 establishes the
existence of a nullhomotopy of (O, G') rel (GA x Î,CA' x /). We define

i
V(a,t,0)= U(a,t),
F(a, 0,«) «,(«),
7(0,1,0 0 ;
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and define V similarly. Then (F, F') is a partial cover of the nullhomo-

topy of (0,0'). Since the pair 1x1,1x0^1x1 is homeomorphic to
the pair 1x1,1x0, it foliows from the fact that W is a fibre map that
the partial cover (F, V) may be extended to a total cover (F, F'). Define

(W, W'):» X 1 ->&

W{a, t) V(a, t, 1) W'(a',t) Vr(a',t, 1)

Finally observe that W (a, 0) uo(a), W (a, 1) 0, and similarly for W;
and that aW 0, o'W 0 since (F, F') covers a nullhomotopy. Thus
(W, W) factors through /?0 and thereby détermines a nullhomotopy of
(/o,/o)-

Corollary 5.3. If W is a fibre map there is an exact séquence

T*(oc, W) : • • ^i7n(^, A) » /7n(*, jS.) -> 77^^, /?0) -> 77^(a, ^ ->

Hère we hâve written F for (v, v1) ; it is obvious that de /\.
We state the dual situation for completeness. The dual excision homo-

xnorphismis .:/7^,/ï)-P.(*,/») (5.1*)

Hère Az,Arz are the cokernels of ax: Ax-> A2, o^: A[ -+ Ar2 and (Xgi

-43 -> ^3 is the map induced by oc%.

We call 0 a cofibre map if it has the descending homotopy (homotopy
extension) property. If 0 is a cofibre map <x3 is called the cofibre of 0.

Theorem 6.2*. If 0 is a cofibre map e is an isomorphism.

Corollary 6.3*. If 0 is a cofibre map there is an exact séquence
0* e-ij r*

fl n(ii) n(p) nfap) n
We close this section by an important example ofa cofibre (andoneof a fibre)

map. Let us revert to (3.2) and consider the map (yl9 y[) : u -> Jf0.
Theorem 6.4*. The map (y^yi) is a cofibre map.5)

Proof. We are given the diagram

(/i./î)
•) This conséquence of 3.4 was first observed by G. A. Hunt.
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and must lift this triangle to obtain (gt, grt). Following 3.4 we set

gt L(ft,y,g0), gft L(f't,y' ,g'o)

and it remains to show that qgt gftM0. But

qgt L{qft,y,qg0) by 3.4 (i),

g'tM0 L(f'tu, y, g'oM0), by 3.4 (ii),

and gft ftu, qg0 gfoM0 ; thus the theorem follows.

There is, of course, a dual story in which the mapping cylinder funetor is
replaced by the mapping track funetor. Thus given 0 (m v) : y -> y1 we
apply the mapping track funetor E to obtain

y2 y1
A -!—> E ——> B

u

and hâve

Theorem 5.4. The map {y1, y11) is a fibre map.

6. Mixed séquences and weak fibrations in $ (X)

We revert to the exact séquence 8* (oc, W) and consider the spécial case

in which oc ixA. We define

and so obtain the exact séquence

8*{A, Y) : • • -^Pn{A
Dually we replace /S by qxB in the exact séquence 8*(&, fi) ; if we define

Pn(0,B) Pn_1(0,Q1B) (6.1*)

we obtain the exact séquence

S) :-..-* Pn(«2, B^P^B^PJQ, B)Xp^ti*%9 B) ->

Notice that the sets Pn(A, W), Pn(&, B) are defined for n > 2, hâve

group structure if n > 2, abelian if n > 3.
We may immediately infer analogues of Propositions 2.2, 2.3. Thus if

& ' h -> & then (l,0):î?->0o!? and we infer from Propositions 2.2,
2.3 and the exaetness of 8* (A, W)
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Proposition 6,2. If 0 (A, A') where A, A' are homotopy équivalences,
then

(1,0)* : Pn{A, W) ^ Pn(A,6oW) n > 2

Similarly,

Proposition 6.3. If 0 (A, A') : $ -> &, where A, A' are homotopy
équivalences, then

(0, 1)* : Pn(A, Vo 0) ^ Pn(^, ¥^) n > 2

Dually,

Proposition 6.2*. If 0 («, x1) : ocj -><%!, where x, xf are homotopy
équivalences, then

(0, 1)* : Pn(<2>, B) ç* Pn(<Z> o 0, £) n > 2

Proposition 6.3*. If 0 («, »') : <%2 ->ag» where «, «' are homotopy
équivalences, then

(1,0)* : Pn(0 o0,B)^ Pn(0, B), n>2.
We will also need the following elementary conséquences of the mixed

exact séquences.

Proposition 6.4. (i) If /?x is a homotopy équivalence, then

J:Pn(A,f}2)ç^Pn(A,V)-
(ii) If jS2 is a homotopy équivalence, then

a:P.(i,P)sPn-i(^ft).
Proposition 6.4*. (i) If <x2 is a homotopy équivalence, then

J:Pn("i,B)ç*Pn{0,B).
(ii) If <xx is a homotopy équivalence, then

To prove Proposition 6.4 (i), we hâve only to invoke the exactness of
8% (A, /?x) to infer that Pn (A, px) — 0. The other assertions are proved
similarly.

We will leave the main applications to subséquent sections. In this section
we are content to investigate the excision homomorphisms for the groups
Pn(A, W), Pn(#, B). We will deal explicitly with the latter group but first
frame the appropriate dual définitions. We say that a map W (u, v) is a
weak fibre map if each of u, v is a fibre map; dually 0 (u, v) is a weak
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cofibre map if each of u, v is a cofibre map. It is easy to show that a fibre
(cofibre) map is a weak fibre (cofibre) map ; on the other hand, the converse
is false. For example, if

x x

«2

is a eommutative diagram of polyhedral inclusions with Ax =£ A[r\ A2, then
(u,v) is a weak cofibre map but not, in gênerai, a cofibre map. However,
we will prove

Theorem 6.6*. If 0 is a weak cofibre map the excision homomorphism

e:Pn_x(ocz,B)-+Pn(0,B)
is an isomorphism.

Proof. We hâve 0 (or, a1) : ax-xx2 with each of cr, a1 a cofibre map.
We apply the mapping cylinder functor M to a and a' obtaining the
diagram

\* \oc2 (6.6)

Notice that the map oc is just M#T, where 0T (<%l9 <x2) : a -> a' ; we
call 0T the transpose of 0 (but wait till later to develop spécial properties
of the transpose). Let 0X (al9 a[): a1-><x,02= (a2, a2) : a -+<x2. Then

02,02 are homotopy équivalences and 0 020t. Thus by Proposition
6.3*.

(1, 02)* : Pn(0, B) g* Pn(0lf B) (6.7)

Now 0X is a cofibre map (Theorem 5.4*) so that, by Theorem 5.2*,

e:P^1(*%9B)g*Pu(*l9B), (6.8)

where «<, is the cofibre of 0X. Now the map (1, 02) :0x->0 clearly
induces a map 0 from the cofibre of 0X to the cofibre of 09
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Moreover, the naturality of the excision homomorphism expresses itself by
the commutativity relation

(1, 02)*e e0* : P^ioz, B) ->Pn(01} B) (6.9)

Thus, it remains, in the light of (6.7), (6.8) and (6.9), to prove

** • Pn-i («s, #) £ë Pn_x («o, JB) (6.10)

Consider the diagrams

f

ij \a% \ô l\ [/. \a'

(TV O1' V7

where vx, v are projections onto the cofibres of al9 a (and similarly for the
second diagram). Then 0 (a, o') : ocq-> o^ and (6.10) follows from
Propositions 2.2*, 2.3* once we hâve proved that a, af are homotopy équivalences.
In fact we will prove the stronger statement

Proposition 6.11*. The map (l,a2) is a homotopy équivalence in ?p.

Proof. We define g0 : A2 -> ifa by gro(a2) a2, a2 € A2 and /t : Ax -^ Jfa
by /t(ax) (ax, l — t), ax € Ax. Then /0 ^0<7 so that, a being a cofibre

map, there exists gt : A2 -> Jfa with ft gto. Then (1, gfx) : a -^- o1!, since

(^(aj f1a1 (al9 0) 0iax. We show that (1, gt) is a homotopy
inverse of (1, a2).

First (1, a2) (1, flrx) (1, <t2^i) : a -> a. Now ^^^(aj a2/f («J
^a(ai> 1 — 0 ^ ^(^î) • Thus we hâve a homotopy (1, a2gt) : cr ~> cy and

^2^0 so that (1, <72) (1, gx) c* 1.
Second (1, gt) (1, (T2) (1, ^icr2) : (Tx -> <rx. We may easily find a homotopy

gta2 ex. 1 : ifa-^ifa; namely, 0t:Ma->Ma, where

Then 0O 1, 0! ^i^î ^u^ ^e embedded subspace ^4! does not stay
fixed during the homotopy but slides down the mapping cylinder and up
again. We thus wish to replace &t by a homotopy which leaves Ax (identi-
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fied with ijXOc Ma) pointwise fixed. Let 0 : Ma X I -> Ma be the
homotopy 0t. Then 0 \ Ax x I is given by

0(a1,t)=(a1,2t), 0<*<£
(al52 -2t), J<*< 1

Then, obviously, 0\AX x Ic^F: Atxl ->Ma rel Ax xi, where Jn(a1,^) a1.

Let .M : Axxlxl-+Ma be the homotopy. Define <90 : Max(I xO^Î xI)-+Ma
by 0o(b,t,O) 0(b,t), be Ma, 0o(b,i, t) 0(b, i), i O,l. Clearly

©olij X (/ X Ou/ x I) I|4! X (/ X Ou/ x I)
We now use the facts (i) that the pair (1x1,1x0^1x1) is homeo-

morphic to the pair (/ x /, / X 0) ; and (ii) that ax X 1 : At x I c Ma x I
is a eofibre map, to infer that 0O admits an extension 0± : Mo x I X I -> Ma
with 01\A1xI X I M. If we define

®'t(b) 01{b, t,l), be Ma, then 0'o 0O 1, ©i 0X ^a, and

i) 0i K, «, 1) If (alf 0 r(a1? t) at. Thus (1, 0^) is a homotopy

from 1 to (1, ^1o>2) and ^he proof of the proposition is complète. With
it we also complète the proof of the theorem.

Corollary 6.12*. If 0 is a weak eofibre map there is an exact séquence

0* e~xJ F*
T*(0,B): .••->Pn(*%9B)-+Pn(*1,B) -> Pn_1(as,B)->P^1{"2,B)-+ ••¦

We will not enunciate the duals explicitly beyond

Corollary 6.12. If W is a weak fibre map there is an exact séquence

T(AY)P{AP)ÏP{AP) P{A{i)ÏPMP)
We close this section by pointing out that the groups Pn(A, W) constitute

a natural generalization of the triad homotopy groups. Indeed if we hâve
A 8° and

Z—,YX

m
where ail maps are inclusions and Z= Yt^ 72, then Pn(A, W)

nn (X ; Yx, Y2), and the exact séquence 8* (A, W) is one of the exact
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séquences of the triad. To obtain the other exact séquence we consider the
transpose WT of W and invoke the isomorphism

(6.13)

which will be proved at the beginning of the next section (see Proposition 7.4).

7. Transposition and the exact séquences of a triple

We referred briefly in the previous section to the notion of the transpose6)
of a map in ^}. If W (a, a') : &-> /?2 then the transpose of W is the

map WT — (px, /?2) : a -> a'. Clearly there is a 1 — 1 correspondence between

maps 0 ->• W and maps 0T -> WT, the correspondence being achieved by

the transposition ,)->{{, |. This correspondence plainlv induces an
isomorphism w y J v/ y J

r0 : nn{0, W) s nn(0*> WT) (7.1)

Now consider the spécial case in which 0 ^(^A); it will be sufficient
to look at the case n 0. In détail, then, 0 ^(^A) is the map

ixAA-^CA
0

CA CCA
ChA

Let s : CGA -> CCA be the homeomorphism given by s (a, t, u) (a, u, t).
Then

Lemma7.2. The map j j is a équivalence from $ to $T.

Proof. It is only necessary to observe that s oCixA ixCA and s2 1.

Corollary 7.3. The map 1 induces an isomorphism
\1 s/

where 0 ^(^^4).
Putting together (7.1) and Corollary 7.3 we get

Proposition 7.4. There is a natural isomorphism t(=
n>2

e) The équivalent notion in an exact category was exploited in [6],
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We will agrée to identify the groups Pn(A, W) and Pn(A, WT) by means
of the isomorphism t; we remark that even if n 2, x isal — 1 eorrespond-
ence.

We hâve remarked that Proposition 7.4 yields, by specialization, the second
exact séquence of a triad. We also remark that it enables us to regard the
séquence 8* (A, W) as part of a network of exact séquences. Thus we hâve

bè) -> pn_M, a)

with exact rows and columns; this we may express more succinctly by the
exact triangle

(or its transpose!)

Dually we hâve

Proposition 7 A*. There is a natural isomorphism

x:Pn(*,B)çzPn(W,B).
This yields an exact triangle of exact séquences

<f>*
S*(oc2,B) JL+ S*(«X,B)\ /,

S*(&,B)
There is one other elementary déduction which may be drawn from

Proposition 7.4 and the exactness of the séquence 8* (A,W), namely
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Theorem 7.5. W* : Pn (A, &) g* Pn (A, fa), ail n, if and only if
WZ:Pn(A,<x)ç±Pn(A,o'), ail».

The dual is obvious; we will not state it explicitly. But we remark that
7.5 and 7.5* yield résulta for the classical homotopy and cohomology groupa.

We now turn attention again to the category Q of triples (see Section 3).
Given a triple [A, /*],

P^Q^R,
write v fi X ; then we may deftne fotir maps in ty, namely

Wl {k,l):v^-fi, yi (l,/i):A-*.i-,
and their transposes. We hâve the exact séquence

moreover by 6.4 (ii), applied to iPf (v, fj) : X -> 1, we obtain an isomor-
phism

ÏPn-i(A,l). (7.5)

Thus a unique homomorphism q : Pn_x (A, A) -> Pn_x (A, v) is defined by
d QdTr, (7.6)

where we hâve written dT for the boundary isomorphism (7.5).

Lemma7.7. g W& (l?iw)*.

Proof. It is obviously sufficient to consider g : P^-4, A) -> Pt(^L, v).
We consider an élément oc {(/, g)} € Pt(A, A), and seek to construct an

élément f €P2(A, ÎPf with dTè <x. The problem then is to provide suit-
able maps 0^4 ->i?,(72-4 ->JS yielding a commutative diagram

C*A
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We define the map CA-+R to be fig. Then jug o ivA vf because

goi1A Àf. It remains to describe a map u:C2A->M satisfying uoCi1A=fxg,
uo ixCA iig. This is équivalent to the problem of extending to A x I X I
a map v : A x (/ X /)• -> R given by

v(a9t,0) fig(a,t)
v(a,O,t)

Since the map v has an évident extension to A x I X I, such a map
may be defined. Thus

it follows that e(«) 3 (' ^} {/, M) (1, /!)*{/, flr} (1, ^M*),
the lemma is proved.

^ '

Corollary 7.8. (The exact séquence of a triple,) Given a triple [A, ju,] with
v — pX, there is an exact séquence

S*(A; X,p) : • • • ->Pn(A, X)^*Pn(A,v)^*Pn(A,^Pn-i{A, X) -> • • •

The homomorphism d in the séquence 8*(A ; A, (i) is, by définition, dTxJ.
However we may easily show that

dTrj^jd (7.9)

where, on the right hand side, d is the boundary d : Pn(A, fi) ->77n_1(^4, Q)
and J is the homomorphism J : i7n__! (A, Q) -> Pn_! (^4, A). For (taking

n 2) if |€P2(^4,/a) is represented by {°ï j: ^^il->$(/*), then Jf
/O 0\ /O / \ ^ ' ^ ^

is represented by I 1, rJ| by I I and dTxJ£ by (0, /) : ixA -> A;
\/ 9/ \Q 9SJ

while 3| is represented by (a>, /) : ixA -><wÇ and J9f by (0, /) : ixA ~> A.

Interpreting d then as J3 we get the final version of the séquence of a

triple ; notice that the exact séquence of a triple is valid without any spécial
assumptions on the nature of the maps A, /*, v,

The dual séquence may be related to the same triple [A, /â] We hâve

Corollary 7.8*. (The dual exact séquence of a triple.) Given a triple [A, ju,]

with v /iA, there is an exact séquence

PJv, B)^* Pn(X, B)Xpn_^, B) -> • • •
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If we take A 8° and A, [i inclusions the séquence 8% (A ; A, fi) is just
the classical homotopy séquence of the triple (B,Q, P). More generally we
could take for A a Moore space K' (G, m) and obtain the séquence

(1,/*)* W,i)* d

an exact séquence of homotopy groups with coefficients for the triple. If in
the triple [A, fx\, A and jbt are both fibre maps then v ju X is a fibre
map. Moreover if Xq X | (fibre of v), regarded as a map into the fibre of
fi, then Xq is a fibre map whose fibre coincides with the fibre of X and
8* (A ; X, jit) may be identified with T* {A, Xq)

In the dual case we may take B to be an Eilenberg-MacLane complex,
and apply the "singular polyhedron" functor to X, jn, v, Then if X, /lc,v are
inclusions we get the classical (singular) cohomology séquence of the triple
(R, Q, P). Even if A, //, v are not inclusions we get the séquence

(A,l)* (M)* d
-*H™{ii\G) -> H™(v;G) -V #™(A; G)->H™+1 (jm;G)->

Also we obtain the séquence î7*(/j°, S) from 5*(A, /* ; jB) if X, /u, are co-
fibre maps ; hère fi° is the cofibre map from the cofibre of A to the cofibre
of v and the cofibre of fi° coincides with the cofibre of p.

Finally we remark (compare [1] or [2]) that we may topologize the groups
Hm(oc; if G is a topological group and then, by regarding Hm(<x; G) as
Char (Hm(tx', Char where G is discrète, we may deduce the correspond-
ing homology séquence of a triple

...*-Hm(n;G)a'"*Hm(v;G){1£)*Hm{X;G)iHm+1((*;G)^ ••• (7.10)

However, we will give an alternative, combinatorial, treatment for the homology

séquence of a triple in the appendix (Section 9). The exact séquences of
homotopy and homology groups of a triple were exploited in [5] in obtaining
homotopy and homology décompositions of any arbitrary map.

8. The twisted homotopy groups i7n(<%, /?)

If /? : Bt -> B2 there is plainly an induced homomorphism

j8Jlt:Pn(«,51)-*Pll («,£,). (8.1)

It is tempting, amid the plethora of exact séquences available, when we
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select suitable objects from the catégories X and $P, to conjecture that it
should be possible to embed the homomorphism (8.1) in an exact séquence
and even to suppose that the group which appears in the séquence to measure
the failure of /?* to be an isomorphism is IIn(<x, fi. This last turns out to
be false ; in fact we will show that the group which does appear is obtained
by going into the "higher" eategory by means of the functions ix, qx and
there submitting ix(<x) or Qx(fi to a twist.

Let us write ^(ot), Qx(fi for ix((x)T, Qx(fiT. Then, in particular

so that
Qi(fi'-Qi(Bx)-*Qx(B2).

Notice that qx cannot be regarded as a functor from % to ^}, since we
would then hâve confused qx (fi with qx (fi ; we hâve reserved the symbols

h>Qi to refer to certain canonical processes for associating objects of the
eategory ^$((£) with objects of the eategory (£, for any suitable (£.

We then hâve the exact séquence

where, by définition,

We now clarify the relation of J7n (a, /?) to IIn (oc, /?) ; in the course of doing
so we will hope to justify our convention in assigning the dimension n rather
than (n + 1) to the group defined in (8.2) as Pn(oc, 5i(/?)). We point out
the following évident relations.

Proposition 8.3. Pn(AiQlB) ^nn(At B)f Pn(oc, Ql(p)) g*IIn(<x, fi).

Proposition 8.3*. Pn{ixA, B) g*IIn(A, B), Pn(ix(*), fr^nj*, fi.
Proof. Since qx B is a fibre map we may apply excision to Pn (A, gx B),

getting nn^x(A, QB) ^Pn(At 6xB) ; but n^x(A, QB) IIn(A, B).
Similar arguments justify the other four statements. Thus in particular we

see that the différence in the définitions of i7n(<%, fi and i7n(<x, fi may be

described by saying that we pass from the former to the latter by twisting
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Now Pn(oc, Qi(P)) nn_x{ix(oc), Qi(p)), by définition. Applying the iso-
morphism t0 (7.1)wefind

We thus see that, if we identify groups connected by the canonical iso-

morphism t0, the définition of J7n(oc, /?) is self-dual,

ïïn(ot,lî) Pn(h(<*),P)- (8.2*)

Thus the group 77n (oc, /?) also figures in the exact séquence

In fact the séquences 8* («, /5), S* (a, /?) may be fitted into the network
of exact séquences which we may represent as

and

\ /8*(ccfp)

Certain obvious conséquences may be drawn from the exact séquences
*(#, 8) and S*(oc, 8) and results of section 2. Rather than list them in

détail we sum them up by saying that the groups i7n(#, 0) are unaffected
(up to isomorphism) by composing oc or /? with a homotopy équivalence or
by replacing oc or /? by homotopic maps. We know no such theorems for the
groups IIn(oc, ($). On the other hand we should record

Proposition 8.4. IIJoc, P)^nn(oc, p) if <% ixA or j8 QlB.
For, as pointed out in Lemma 7.2, 71i1A is équivalent to ixixA. Of course,

if a vxA then i7n(a, /3) is just Pn+1(A, fi).

21 CMH vol. 34
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The introduction of the groups IIn(oc, {}) gives the clue to the generaliza-
tion of the séquence 8% (A ; A, fj) in which we replace A by an arbitrary
map. We hâve no reason to believe that an exact séquence can be obtained
by replacing Pn(A, 0) by nn(oc, 0), 0 A, p, v, but an exact séquence

can indeed be obtained by replacing Pn(A, 0) by nn(oc, 0). Our proof of
this fact will use the mapping cylinder functor and an excision theorem for
the groups IIn.

Lemma 8.5. If oc : Ax -> A2 is a cofibration, so is 1x{oc) : ixAx-> ixA2.

Proof. Let Ka be the space formed from the disjoint union Ax X /) ^ (A2 X 0)

by means of the identification (al9 0) (<xal9 0). It evidently foliows from
the fact that oc is a cofibration that there is a map

r rM:A. X / -> Kn (8.6)

such that r(a2, 0) (a2, 0), r{xal91) (al91). Conversely the existence of
such a map r implies that oc is a cofibration. For if (ft,oc,go) is a triangle7)

^2

¦ÎX
we define h:Ka->X by h(al9 t) ftal9 h(a29 0) goa29 ax eAl9 a2 * A2;
then we lift ft by gt : A2-> X where gt(a2) hr(a291).

Now suppose given the commutative diagram

u

7) This is an abuse of the terminology of section 3.
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We have to show that we may "lift" ft, f\ to gt, g\ such that g\ o ixA2 fgt.
Using the map ra : A2 x I -> K^ we have already defined gt. Similarly we
define _, T T_

rCo( :CA2xI -> KCa

i>y

notice that hère we have found it convenient to regard CAl9 CA2 as ob-
tained by identification from I x A1} I x A2. Then rc<x is the map giving
the cofibre structure of the map Coc, and we define hr : KCa -> X' by

A'(w, a2J 0)

and gr^C^a-^X' by gft(u, a2) hfrCa(u, a2,t). A straightforward com-
putation establishes the required commutativity relation.

Theorem 8.7. // oc is a cofibre map with cofibre Az then ihere is an excision

isomorphism

Proof. lJn(<x, fi) Pn(Tl{a), /S). Since oc is a cofibre map so is T^oc), and

so there is an excision isomorphism s : Zrn_1(t1^43, /?) ^ IIn(oc, ft) ; it is only
necessary to observe that the cofibre of T^oc) is plainly i±Az. Finally

5 /S) Pn(Az, (}) and the theorem is proved.

Corollary 8.8. Given a triple [A,//] and a map oc there is an exact séquence

S*(*; X,p): •-. ->îln{a, xfënn(a, v)h£[„{*, /jL^iï^i*, X) ->-...
(Hère we have been deliberately imprécise in our notation for the homomor-
phisms.)

Proof. We first apply the mapping cylinder functor and the remark pre-
ceding 8.4 to replace the séquence 8*(oc; A, /x) by the isomorphic séquence
#*(<*i; A,//). We next apply Theorem 8.7 to replace S+fa; A,//) by the
isomorphic séquence 8* (Ao ; A, fi), where Ao is the cofibre of ocx. But the
séquence 8* (Ao ; A, fi) is exact.

Corollary 8.8*. Given a triple [A, ju] and a map {} there is an exact
séquence

S* (A, p\ fi) : • • • -* Ôni/t, fi)^nn(v, p)^nn(X, fiïXfi^b*, fi)
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We remark that the homomorphism d of the séquence $*(«; A, fi) has

simply been defined so that the diagram

u

be commutative (ail the horizontal maps are isomorphisms). A direct définition

of d would hâve involved a discussion of exact séquences in *J32 (X)
It is not difficult to see that this définition of d suffices to yield the network
of exact séquences expressed by the exact triangle

X /'
Similarly we hâve the exact triangle

X />

9. Appendix: The combinatorial homology groups

In this appendix we describe how the cohomology groups and homomor-
phisms discussed in previous sections hâve their parallels for homology groups
based on chain complexes. Our main concern is the homology séquence of a

triple, but we begin with an observation on the usual coefficient séquence for
homology. We observe, namely, that if C {Cn, dn) is a chain complex and

0 : -> (?2 a homomorphism, then we may define the homology groups of
G with coefficients in 0 to be the homology groups of the chain mapping
cylinder of the chain map C ® Ox -> C ® O2 induced by 0. With this
définition of JB* {C ; 0) we hâve the exact séquence

>..-+Hn(O;GJ%Hn(OiGjZnn(O;*)XH^1(OiGJ ¦+.-.. (9.1)
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In particular if C is the singular chain complex of the space X, we hâve
the notion of the singular homology group of X with coefficients in 0 and
the exact séquence

?irw(J; Gj ?Z Hn(X;G2)^Hn(X,0)iHn_1(X; Gt)-*.--. (9.2)

Given any chain map 0 : G -> D, we may define the chain complex of 0
to be the chain mapping cylinder of 0. In particular if /? : Bx -»¦ J32 is a
(continuous) map the singular chain complex of /?, O(/3), is by définition
the chain complex of the singular chain map induced by j8 and so we obtain,
for any such /?, an exact séquence

>HAB1)?+Hn(Bt)^Hn(p)XH^1(B1)-*..- ; (9.3)

this may, of course, be generalized to arbitrary coefficient groups.
Let us now pass to the category *P2. Following on (6.1) and (6.1*) we

might hâve defined

nm{G;V) =Pn(Kf(G,m~n),W), (9.4)

H"{0;G) Pn(*, K(G, m + n-2)); (9.4*)

and so speciaUze 8#(A,W), 8*(0,B) to homotopy and cohomology
séquences.

We do not however stress thèse définitions because they are based on tra-
ditional conventions which serve to obscure the duality. However, we will
now introduce the singular homology groups Hm(W) based on the singular
chain complex C(W). Let W be the map

P2

Then clearly W (a, a') induces a chain map WQ: Ctf-à ->O(/92), and we
define G(W) to be the chain mapping cylinder8) of Wo. We will make this
définition quite explicit, allowing ourselves to write fil9 j82, a, a1 for the
chain maps they induce. Then

Cm{W) Cm^(Bt) @ Gm^(B[) ® Cm^(B2) ® Cm(B'2), (9.5)

•) This définition may plainly be generalized to any commutative square of chain maps.
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and the boundary operator is

d{uly u[,u2,u2) (dulf — p1u1 — du[, aux — du2, afu[ + p2u2 + du2). (9.6)

One certainly then has a homology séquence

¦¦•-*Hn(f)1)^Hn((iJ^Hn(V)iHn_1(P1)^--- (9.7)

It is worthremarkingthat a Hurewicz homomorphism h:nn(W) ->Hn(W)
is easily defined. For if we take 0 — e^S71"2, then Hn(0) is cyclic infinité
and we may orient © by picking a generator rj e Hn(0). Now an élément
oc of nn(W) is represented by a map a : 0 -» W and we define

h (oc) ==a^(rj)

However, there is no immédiate generalization of the HuitEWicz isomor-
phism theorem to the category $P2. For the exactness of S* (A, W) implies
that 71% (W) 0 if and only if W* : n* (Px) ^ n* (fi2) ; and the exactness of
(9.7) implies that H*(W) 0 if and only if W* : H^(px) ^ 27* (A)• But tt
is well-known (in the case of inclusion maps) that W* may induce homology
isomorphisms but not homotopy isomorphisms. It seems possible that a Httre-
wicz theorem in $P2 may involve homology and homotopy groups with rel-
ativized coefficients.

If we look at (9.5) and (9.6) we see that the map

given by
t(%, u[,u2,u2) — u1,u2,u[,u2) (9.8)

is a chain-isomorphism and so induces a homology isomorphism

(9.9)

We exploit (9.9) in studying the homology séquence of a triple v

(see (7.10)). In the light of (9.7) we hâve the exact séquence

• • -> Hn(v) {X^*Hn(fi) 4. Hn(V) X Hn_x(v) -*..., W (A,

and the isomorphism
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Using (9.9), we get the exact séquence

where q drT*J, od^t* d. Given P-^Q^R, let do:Hn(/*) -+Hn_x{Q)
be the boundary in the exact séquence of p and let Jo : Hn_x{Q) -» JEfn_1(A)

be the J-homomorphism in the exact séquence of A.

Lemma 9.10. q Jodo.

Proof. The reader may verify that dT t*J and Jo d0 are both induced by
the chain map

(u, u')-+(0,u), ue C^iQ) u' c Cn(R)

Lemma 9.11. a —(1,^)*.

Proof. d : Hn(W) -> Hn_x{v) is induced by the chain map

(uv, t*i, w2, <) -> (i*!, u[) wx c Cw_2 (P), wj € Cn_x (R)

On the other hand, (1, /j)* dTx* is induced by the chain map

Now if (^i, t^, w2, u'2) is a cycle it follows from (9.6) that u[ + pu2 + du2 =0.
Then (0, u[ + fzu2) d(0, — u2) so that

from which the lemma immediately follows.
We hâve now proved

Theorem 9.12. If [A, /*] is a triple with v /uX, then there is an exact

séquence

¦•'-*Hn(X)(1^*Hn(v)HUHndx)iHn_AX) ->•••,

where d Jodo (see 9.10).
A direct proof of this theorem would, of course, hâve been available but

we hâve preferred to parallel the arguments of section 7.



304 B. Eckmann / P. J. Hilton Homotopy Groupa of Maps and Exact Séquences

REFERENCES

[1] B. Eckmann, Groupes d'homotopie et dualité. Bull. Soc. Math, de France, 86 (1958), p. 271.

[2] B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualité. Groupes absolus. C. R. hebd.
Acad. Sci. Paris, 246 (1958), p. 2444.

[3] B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualité. Suites exactes, ibid.1 p. 2555.

[4] B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualité. Coefficients, ibid., p. 2991.

[5] B. Eckmann and P. J. Hilton, On the homology and homotopy décomposition of continuous
maps. Proc. Nat. Acad. Sci., USA, 45 (1959), p. 372.

[6] P. J. Hilton and W. Ledebmann, Homology and ringoids II. Proc. Cambridge Phil. Soc,
55 (1959), p. 149.

[7] D. M. Kan, Abstract homotopy II. Proc. Nat. Acad. Sci., USA, 42 (1956), p. 255.

(Received May 24, 1960)


	Homotopy Groups of Maps and Exact Sequences.

