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On admissibility of séquences
and a theorem of Polya

R. Crbighton Btjck

1. Introduction. Le K be the space of entire functions which obey
the growth conditions f(z) 0(eAr) f(iy) 0(ec ly| for some A < oo
and c < n By a theorem of Carlson [7] any such function is completely
determined by its values at the positive integers. A séquence {an} of
complex numbers is said to be admissible for the séquence of functionals
Tn and the function space C if there exists f eC such that Tn(f) an
for n 0,1,.... [3] For the functionals Tn(f) f(n) and C K
admissibility is a délicate property ; if one term of an admissible séquence
is altered the resuit is inadmissible. More generally, if two séquences
agrée except for a non-void set of indices of density zéro, only one can
be admissible. A necessary and sufficient condition for admissibility in
this case has been given. [Buck 2, Theorem 2.3.] The présent paper
deals with the closely related problem of admissibility for the functionals

y*(/) Anf(O) and the class K Since T* (- l)n I(nk) (- l)k Tk and
n o

Tn Z(l) î7*, a séquence {an} is admissible for {Tn} if and only if
o

the séquence bn Ana0 is admissibility {î7*} In replacing {Tn} by
{î7*} much is gained. Admissibility no longer dépends as much on the
précise structure of a séquence but rather on matters of size and angular
distribution. For this reason, it is much easier to discuss many questions
relative to {Tn} admissibility in terms of {î7*} This approach has been
used with success in the characterization problem for integral-valued
entire functions. [Buck, 5] In the présent paper, we discuss several other
applications. In particular, Theorem 2 answers a number of questions
raised by the "even différence" theorem of Agnew and Fuchs. The last
section, which is somewhat independent, contains a new and extremely
brief proof of the classical theorem of Polya on functions of zéro type.

2. Admissibility {î7*}. The first theorem gives a convenient necessary
and sufficient condition for the {T*} admissibility of a séquence {bn}
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Since the proof follows closely the pattern of that for the corresponding
theorem for {Tn}, we omit most of the détails. (See [2].)

00

Theorem 1. Given a complex séquence {6n}, let g(z) £bnzn Then:
o

(i) {bn} is admissible {T*} if and only if g is analytic at zéro and
can be continued to the interval — 1 <£ x ^ 0

(ii) when {6n} is admissible, the interpôlating fonction / for which
Anf(O) bn is given by

-Z(n)bn (2.1)
0

where (*) z(z — 1) • • • (z — n + l)/w and ML dénotes Mittag-
Leffler summability.

(iii) g (z) is entire if and only if f(z) is of zéro type

(iv) if g(z) is a polynomial of degree N, so is f(z), and conversely.

Proof. If ftK then g(z) 2Anf(O) zn is given by

— (ew — l)«]-lrfw (2.2)

where 0(w) is the Borel transform of / and F encloses the indicator set

D(f) of / • [4] [2]. Let E be the image of the boundary of D(f) under
the map w-> (ew — l)-1. g(z) is then analytic at zéro and may be
continued via (2.2) to the component of the complément of E which
contains zéro; this set in particular contains the interval [—1,0]. If
/ is of zéro type, D(f) is the origin, and g is entire. Conversely, let
g(z) Ubnzn be analytic on [—1,0] and consider the fonction f(z)
defined by

ÀJ t)lt]z dt

where F is now a path enclosing the interval [— 1,0]. Calculation
shows that f eK and that Anf{0) bn Moreover, if g is entire, / is
of zéro type. Statement (ii) follows from a known theorem concerning
the expansion of fonctions into Newton séries [Buck 4, Theorem 4.3]
and implies (iv) immediately. As an illustration, ail "small" séquences
are admissible {î7*}. [18, p. 52, Thm. 10].

Corollary 1. If lim sup | bn l1^ < 1, {bn} is admissible {T*}
Any theorem Connecting the présence of singular points of a power

séries with its coefficients may be used to yield characterization theorems
for séquences {bn} and in turn for {an} At this point we insert a
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generalization of the familiar theorem concerning power séries with positive

coefficients. [15, p. 215].
n

Lemma. Let lim sup | cn | ^n l/R Let 8n(z) Zck zk and
o

suppose that there is a séquence of points zs approaching a point
P ReiS from outside the circle | z | R such that for each j, 8n(Zj)
approaches the point at infinity in an angle of openig less than n. Then,
j8 is a singular point for f(z) Ecnzn

If / (z) is regular at /S, it is regular in a cireular neighborhood N of j8

and (ML) — lim Sn(z) f(z) for ail z in N But, N contains a point zs,
and since Mittag-Leffler summability is totally regular, (ML) — lim

We note that Borel summability could hâve been used in place of
Mittag-Leffler, if N is slightly modified; also, the same method yields
an analogous resuit for Dirichlet séries and for Laplace transforms. In
the classical case, cn ^ 0 so that lim Sn(x) + °° for ail x > R

Corollary 2. Let {cn} be a complex séquence with lim sup | cw | 1/w 1,
and obeying the condition described in the lemma, with R 1 Then,
the séquence bn (— l)w cn is not admissible {T*}

Corollary 5. If lim sup | 6n |^n ^ 1 but (- l)n bn ^ 0, {6J is not
admissible {T*}

For bn AnaQ, the oscillation conditions (—l)n6w^0 and
(— l)n an ^ 0 are closely related; in fact, the latter implies the former.
In particular, we obtain again the following theorem for {Tn} admis-

sibility [2, Theorem 4.1].

Corollary 4. If a0 ^ 0 and (— l)nan ^ 0 then there is no fonction
f eK such that f(n) an for n 0, 1,...

Similarly, Corollary 2 could be turned into a somewhat complicated
theorem concerned with admissibility {Tn} Some growth condition
in Corollary 2 is needed since bn (— l)n 2~n is an oscillating séquence,
achieved by the function 2~z The condition given says essentially that
infinitely many of the terms bn are "large", for example, bounded away
from zéro.

3. Yanishing différences. Agnew [1] proved that if {an} is a bounded

séquence such that Ana0 0 for ^ 0,2,4,..., then an 0 for
ail n 0, 1,... Pollard [11] gave a différent proof of this and assum-

ingthat an Q(nr) proved that an f(n) where f(z) is a polynomial.
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Fuchs [6] approached the problem from a différent direction and proved
the theorem. with a weakened assumption on the set of n for which
An a0 0, which in fact was shown to be best possible. We consider
the effect of relaxing both this condition and the growth restriction on

{an} We use a simple relation Connecting the fonctions g(z) Ubk zk
oo 0

and F(z) Zan zn namely

(l+z)-iF(zl(l + z)). (3.1)

This is easily established, assuming that F is analytic at the origin.
(See also [11].)

Theorem 2. Let lim sup | an | l!n ^ 1 and let An a0 0 for n € A
00

a set of integers of density d If d > ^, then the série £(*) <4na0
o

converges for ail z to a fonction /(z) of exponential type not exceeding
log (1 + 2 cos n d) such that f(n) an for w 0, 1, 2,... .In partic-
ular, if d ^ ^, / is of type zéro. The value ^ as a lower bound for d is
best possible.

oo

Proof. F{t) 2X r is regular for \t \ < 1 so that by (3.1) g(z)
oo 0

EAn a0 zn is regular in the half plane x > — ^. Let the radius of con-
o

vergence of this séries be R By Pôlya's density theorem for power
séries [12], every arc of \z\ R of opening 2jr(l — d) contains a

singularity of g(z) Combining thèse, we see that if d > ^ then R > 1

and by Corollary 1, bn Ana0 is admissible {T*}; it then follows
that {an} is admissible {Tn} and is therefore the séquence {f(n)} for
a unique fonction / eK When d ^ ^. i2 is infinité, g(z) is entire
and by Theorem 1, f is of zéro type. If J<d<^, jB^(2 cos n d)~x
and further calculation shows that the fonction &(w) of (2.2) is regular
at least for | w \ > log(l + R"1) The type of / does not exceed this
value, and in particular is less than log 2, so that the Newton séries (2.1)
is in fact convergent to /(z) [18, p. 52, Thm. 10]. That the number 1/3
cannot be improved follows from the fact that the séquence {6n} defined

by Ebn zn {z- 1)1 {z + 1) (z8 - 1) is not admissible {T*} so that
o

the corresponding séquence {an} has vanishing différences of density ^,
obeys the growth condition an 0(1) but is not admissible {Tn}

The effect of the weakened growth condition lim sup | an \ 1/n ^ 1 is

striking ; in contrast with the Agnew-Fuchs resuit, d may exceed ^ and
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may in fact be 1, without f(z) being a polynomial. Witness for example
00

f(z) £(zn%) (l/n In this connection, the following more detailed
o

information may be of interest. As we hâve seen, the région of regularity
of g (z) restricts the rate of growth of f(z), and when g(z) is entire,
f(z) is of growth at most order 1, type 0. In this case, the rate of growth
of g might be expected to impose further restrictions.

00

Theorem 3. Let g (z) ZAn /(O) zn where / e K If g is analytic
o

in | z | < R and R > 1 / is (at most) of order 1 type log(l + R-1) ;

if g is entire, and of infinité order, / is of order 1 type 0 ; if g is of finite
oder g, f is of order qI(1 + q)

Since the first two statements hâve already been discussed, we prove
only the last. From (3.1) F(z) Zf(n) zn (1 - z)-1 ^(z/(l - z)) If
f 1/(1 — z) this may be written as Çg(Ç — 1) which is of order q
as a function of £ By a theorem of Whittaker and Wilson [17] / is of
order qI(1 + q)

For the spécifie example, f(z) E{^%) (l/nl) g is of infinité order
and / of zéro type. In contrast, E (£») (l/n2 is of order ^ with d again 1.

4. The Theorem ofPôlya. The theorem in question is the following [13]:

Theorem 4. Let f(z) be of order 1 type 0 and suppose that f(n)
0(1) for n 0, 1, — 1, 2, —2,... Then, / is constant.

Many proofs of this hâve been given since it was first proposed. (See

Szego [14], Tschakaloff [16], Paley and Wiener [10, p. 81], Levinson
[9, p. 127], Korevaar [8]). The following proof is new and has the virtue
of extrême simplicity, involving no interpolation séries or délicate growth
estimâtes. We make the initial observation, as in [8], than nothing is

00

lost by the assumption that £\ f(n)\ <oo Since / is of zéro type,
— 00

g(z) is entire and is given by 2.2). Expanding the kernel [1 — (e™—- l)z]~\
we hâve

9(z) -±ïj $(w) (1+z)"1 Z e™ [z/(l + z)T dw

(1 + z-1) S fin) [2/(1 + z)T
0

valid for | z \ < \ 1 + z | (This is also another vérification of (3.1).)
From our assumption on Z\f(n)\, g(z) is bounded in the half plane
x > — ^. Expanding the kernel in the opposite fashion,
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g (*)

(- 1/2) f/(- n - 1) [(1 + z)/z]"
0

valid for | 1 -f- % \ < \ % | • Again, g (z) is bounded in the half plane
x < — ^. Combining thèse, gr and hence / is constant.
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