
Impact of user demands on knowledge-based
systems

Autor(en): Andersen, Tom / Carlsen, Niels Vejrup

Objekttyp: Article

Zeitschrift: IABSE reports = Rapports AIPC = IVBH Berichte

Band (Jahr): 68 (1993)

Persistenter Link: https://doi.org/10.5169/seals-51845

PDF erstellt am: 21.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-51845


M. 89

Impact of User Demands on Knowledge-Based Systems
Impact des exigences des utilisateurs sur les banques de données

Einfluss der Benützeranforderungen an Entwurfsdatenbanken

Tom ANDERSEN Niels Vejrup CARLSEN
Assistant Professor Post doc
Techn.University Techn.University
Lyngby, Denmark Lyngby, Denmark

Born 1954, M.Sc
(1979) in Civil Eng.,
Technical Univ. of
Denmark. Since
1989 member of
staff, CAD Initiative.
Research interests:
knowledge-based
systems, design theory,
integration of software

applications.

Born 1963, M.Sc
(1987) and PhD
degree (1993) in Computer

Science at the
Technical Univ. of
Denmark. Research
interests: modelling of
user interface
software, user interface
design, CAAD and
virtual reality.

SUMMARY
When developing knowledge-based support systems for building design a query driven approach is
generally considered very efficient. It provides a simple framework for knowledge acquisition and
guides the modelling of the resulting knowledge-base. The identified queries define the structure of
the user interface which relieves the designer from many considerations. However, this linkage
gives certain system maintenance problems. Other issues in the design of knowledge-based design
support systems arise from user demands such as flexibility of user interface and the existence of
engineering strategies for logically separating the user interface software from the knowledge-base.

RÉSUMÉ
Le développement des banques de données basées sur les connaissances en matière de projet,
implique une approche qui, partant des demandes des utilisateurs, est considérée efficace. Elle
fournit un cadre à l'acquisition des connaissances et dirige la modélisation de la banque de données
en résultant. Les demandes identifiées définissent la structure de l'interface et évitent un grand
nombre de réflexions. Cette liaison soulève certains problèmes d'entretien. D'autres points de vue
découlent des désirs de l'utilisateur, comme p.ex. la flexibilité d'accès à l'interface et l'assistance
pour alimenter la banque de données par des connaissances personnelles. Ceci a pour conséquence
de devoir débattre des stratégies de l'ingénierie du logiciel, afin de pouvoir séparer logiquement
l'interface de l'utilisateur de la banque de données.

ZUSAMMENFASSUNG
Für die Entwicklung von wissensbasierten Datenbanken als Hilfsmittel zum Gebäudeentwurf wird
der Ansatz, von Benützeranfragen auszugehen, als besonders wirkungsvoll angesehen. Es ergibt
sich eine einfache Wissenseingabe und Strukturierung der Datenbank. Die Anfragen geben den
Aufbau der Benützerschnittstelle vor und entheben den Ersteller vieler Ueberlegungen. Diese
Verbindung führt zu einigen Unterhaltsproblemen. Weitere Gesichtspunkte ergeben sich aus dem
Wunsch des Benutzers nach Flexibilität im Zugriff und nach Unterstützung bei der Einspeisung
eigenen Wissens. Entsprechend müssen Strategien des Software Engineering erörtert werden, damit
die Benützerschnittstelle logisch von der Datenbank getrennt werden kann.



90 IMPACT OF USER DEMANDS ON KNOWLEDGE-BASED SYSTEMS

1 Introduction

BYGSYS is a knowledge-based system [9] which supports technical building design. The system
supports the design of roof structures and it includes textbook knowledge and personal experience
knowledge in its knowledge-base. The original aim of BYGSYS was to investigate to what degree
experience knowledge could be utilized by an knowledge-based system [1],

Our work comprises a domain analysis and knowledge acquisition and elicitation based on a rather
extensive survey of user demands [2]. Furthermore, we performed conceptual modelling, prototyping
and testing/evaluation of the BYGSYS system derived from this analysis.

Model Screens

subcomponents/materials Level 4

Figure 1. BYGSYS system structure and the corresponding screens.

In the following we will present in a little more detail the method with which we have designed
BYGSYS. Thereafter, we evaluate the system functionality and its structure. This leads on to a
discussion of software engineering issues that arise due to the development method and due to the impact
of user demands.



T. ANDERSEN - N.V. CARLSEN 91

1.1 Query Driven Knowledge Acquisition and Modelling

An analysis of the nature of technical design knowledge made it clear that the knowledge in this domain
refers almost exclusively to physical objects, ie. the components of the building and its roof.

The following acquisition of knowledge where we initially focused on capturing key queries, ie. the
most important issues for the potential users, emphasized the importance of identifying the components
of the roof and their logical relations.

This query driven software design method applied to the BYGSYS system reflects the (simplified)
way building design is normally performed. The process can be decomposed into a sequence of tasks,
starting with the more abstract issues, ending with the detailed design. The sequence of queries was
carefully investigated and approved by a number of professionals, who acted as users. The acquisition
resulted in the model of the knowledge-base illustrated in figure 1. The links between queries and the
related input/output screens (implementing the user interface) will be presented and discussed in the
next section.

This BYGSYS model is equivalent to a product model [3] of the roof extended with some of the roof
'environment' such as the building. The model, shown in a simplified version, forms the core of the
system and it can be regarded as a static view of the domain.

Having defined the static structure of the domain through an analysis of user demands - the query
driven approach - we then gathered experience knowledge from professionals. This knowledge is
represented in the dynamic part of the system and is implemented as procedures and rules on top of
the static core structure.

1.2 User Demands

At this point it is important to recognize that user demands affect the system design in two separate
ways. Our query driven design approach utilizes the fact that many of the user demands either explicitly
or implicitly identify key queries that can direct the design of the knowledge base and the user interface
to the system. These demands define what the user wants to talk about in the context of the given
system.

Secondly, the user demands express how the user wants to communicate with this system. These
demands of course have a strong influence on the design of the user interface to the system, but as we
will see in the following they also have a profound impact on how the entire system should be
engineered. The most important of these user demands are listed in table 1.

The system must not constrain the user. The sequence of decisions in a system session must reflect
normal practice.

The dialogue should not be tedious and it must be flexible. The designer should be able to skip one
or more inputs and possibly changé the default sequence of screens (if this makes sense in the context
of the problem on hand).

The designer should be able to augment the system with personal experience.

Table 1. A summary of the most important user demands

As discussed in the above, we found that the sequence of user queries in this domain is (almost) fixed
and that it reflects the order of decisions taken in a building design process. We therefore designed
input/output screens according to the demands such that each of these correspond to one key query.
Thus, the levels in the model and the sequence of screens are strongly connected as the system structure
in figure 1 shows.



92 IMPACT OF USER DEMANDS ON KNOWLEDGE-BASED SYSTEMS

Please notice that screen 1 and 2 can be chosen randomly, that is, the users can change this particular
part of the sequence. This partly satisfies the second user demand of table 1.

The design of the individual screens also supports many of the user demands. The system was designed
to avoid too many screens and thus too many questions. A feature is the support for blank entries, so
the user only has to concentrate on those aspects relevant to the actual case at the given time of the
session. Figure 2 shows one of the major screens illustrating this.

1.3 Analysis

Our knowledge acquisition and modelling strategy has proven very successful. The query driven
approach is effective, it speeds up prototyping while retaining the quality of the final system.
Furthermore, the queries delimit the domain knowledge and helps focus attention. Using this approach
helps avoid the gathering and subsequent implementation of large amounts of irrelevant knowledge.
However, we must emphasize that identifying key queries is a time consuming process which has to
be performed very carefully.

Important factors for roof design. Fill in those applicable to your project:

Building type:

Teuain:

Location:

Geometry:

Height of building (in meter«]:

Office building r
r

City area I
Flat roof [Flat roof r

1 1

Low slope
High slope

Figure 2. Screen design

The separation between the static model and the associated dynamic experience knowledge supports
augmentations of the knowledge-base. More rules can easily be added to the system without revising
the entire model. So, user defined knowledge (see table 1) is accommodated.

BYGSYS lets the user augment the system with his/her own rules in a rather simplified way. The rules
can be added to the system without any programming skills, but the rules are 'passive' in that they do
not interfere or interrupt the actual knowledge processing of the system. They can only support the
user during a session, by sending messages and/or warnings to the screen concerning decisions to be
made at the actual time. This feature was judged by professionals to be very useful.

In general the BYGSYS user interface was rated as satisfactory by a chosen group of professional
users (ie. it met most of their demands). This success naturally lead to investigations into how the
knowledge domain could be expanded so that the system could address larger parts of the technical
building design process and how some of the more advanced user demands (in particular the possibility
for further user defined augmentations of the knowledge base) could be better accommodated.



ANDERSEN - N.V. CARLSEN 93

2 Software Engineering Issues

Some of the more general user demands dealing with flexibility of user interface and with the provision
for user defined system augmentations enhance a basic software engineering problem: how to design
a flexible and maintainable system. BYGSYS attempts to accommodate these demands to some degree
- but not fully. In the following we analyse what impact these demands have (or should have) on the

development of design support systems.

The software structure of the existing BYGSYS system does for example not facilitate the introduction
of new key queries as discovered by a new analysis of user demands or developments within the field
of expertise covered by system. Also, user demands that radically change the sequence of screens can
cause system maintenance problems.

2.1 Maintenance of Knowledge-Base

When designing software, the demands of the users are very important, in particular when dealing
with interactive decision support systems. The BYGSYS system is heavily influenced by user demands.
This is only natural since query analysis was a major factor in the development process. But also user's
expectations on screen design and other user interface aspects had an important impact on the system
structure.

We have been able to satisfy these demands within BYGSYS. But this is under the condition that the
hierarchy of major elements (classes like 'roofing material') is correct and exhaustive and thus that
the levels of 'communication' shown in figure 2 are the only ones to address in the domain. That is,
in a somewhat narrow domain like roof design the functional core can be defined correctly, once and
for all, if this is done carefully.

However, if the knowledge of a domain is more general and/or comprehensive and widespread, a pure
query driven approach can be dangerous. It will be very difficult to ensure that all queries are in fact
captured before an initial design and system implementation has been completed. It is very likely that
unexpected demands will be discovered after this implementation and this might require quite
substantial system modifications.

If a new key query is introduced, more functionality of the system is required. The user needs access
to a level of knowledge which is not in the current basic structure of the system. In the BYGSYS case
we might imagine a future need to include knowledge about a brand new class of roofs with a different
breakdown as compared to traditional roof structures. This would cause an extra layer in the model,
as visualized in figure 3.

BYGSYS propagate knowledge down the hierarchy in a fashion similar to knowledge propagation in
the building design process. Overall decisions are preserved through the stages of design and are
strongly connected to detailed decisions. A choice of type of roofing such as tile will for example
affect later decisions on many detailed aspects of the roof. BYGSYS reflects this process, and general
decisions will have an influence on lower level decisions later in the design session.

One can think of this as knowledge links. High level knowledge, represented in 'high level' objects,
are linked to lower level objects. The choice of tile roofing will for example propagate knowledge and
information to the "material" objects of the model. These knowledge links are among other things
essential in a system that attempts to eliminate trivial and redundant user input by introducing relevant
and intelligent options for the users decisions.

BYGSYS has several of these knowledge links which presents a problem when modifying the system
by introducing extra layers. All the links have to be maintained when cutting and pasting yet another
key layer into the model. Depending on the actual case, it may require a substantial amount of work
to introduce this extra key query.



94 IMPACT OF USER DEMANDS ON KNOWLEDGE-BASED SYSTEMS

Figure 3. Adding key queries and screens to the system.

2.2 Flexibility of User Interface

If users demand that the dialogue flow, the sequence of screens, be radically changed or be made more
flexible, these links again present a problem since all knowledge is propagated top down in the system.
If for example we wish to comply with the fact that users may wish to work bottom up, or 'middle
out' in certain design sessions we need to change the dynamics of the knowledge base and the screens
must be able to deal with the fact that they may be invoked under different circumstances.

So, both the underlying knowledge-base and the associated user interface must be revised in response
to these types of user demands. This is complicated by the fact that the user interface is tightly coupled
to the structure of the knowledge-base. As illustrated in figure 4, some of the objects in the
knowledge-base (UI objects) contain both functionality defined on the given type of knowledge and
code dealing with the user interface. Also, calls to the user interface is often a product of the knowledge
itself.

2.3 User Driven Augmentations

Both of the above problems have been discussed under the assumption that any changes to the system
are the responsibility of a system manager/programmer. However, one general user demand was that
user's should be given facilities for defining such changes themselves. It should be possible for users
to change the dialogue flow of the user interface and they should be able to augment/modify the
underlying knowledge-base. This makes things worse. If the system is not easily maintained by a
system programmer then imagine trying to construct an easy to use tool for letting users do the job
themselves!



T. ANDERSEN - N.V. CARLSEN 95

3 Separation of User Interface Software

BYGSYS' problematic lack of separation between its user interface code and its functional core, ie.
the static knowledge-base plus rule dynamics, is actually evident in most knowledge-based design
support systems. The reason being that software development traditionally focuses on the design of
system functionality. The input/output actions defining the system's user interface are seen as
(unfortunate) side-effects of computation.

This tight coupling has important advantages such as efficiency of system development and of run-time
performance. However, as shown, it does give certain system maintenance problems. These problems
are further enhanced by the fact that the development of a user interface for a given system must be

an iterative prototyping process due to the diversity of human users and of their work situations.

Boundary of Knowledge-Base

Figure 4. The coupling between knowledge-base and user interface. Within the shell used [7], 'image
objects' handle the linkage between screens and knowledge-base objects.

First of all, even minor changes to the flow of dialogue, like the ordering of screens in our BYGSYS
interface, will most likely require substantial changes to the entire system. This makes prototyping
prohibitively expensive and obstructs maintenance and augmentation in the later stages of the system
life cycle. Secondly, the fact that there is no separate explicit and manipulable representation of the
user interface (except for the layout and local interaction control handled within the screen controlling
image objects) makes it very difficult to construct tools for user defined adaptation and augmentation
of the system.

3.1 The Separation Strategy

This motivates the goal of placing the user interface software of an interactive system into a separate
module. This module must be used by the functional core for any desired communication with the
user. The most important design goal here is to achieve dialogue independence for the functional core
of a system so that user interface design modifications do not affect it as long as they do not require
additional computations. Also, the user interface software should be isolated from changes to the
functional core that do not affect the end users view of the system.

In addition the communication bandwidth required between the two modules should be minimized as
much as possible. This will further reduce the interdependencies that compromise maintainability and
it will allow the system to be integrated more easily within a networked environment.



96 IMPACT OF USER DEMANDS ON KNOWLEDGE-BASED SYSTEMS

The user interface software & technology (UIST) community has been researching this issue intensively
for the last 10 years [6]. The main problem with achieving separation is the need for semanticfeedback
[4], Feedback on the semantic effects of user inputs requires the user interface to have knowledge of
or access to the state of the functional core. In more advanced graphical user interfaces where the user
can manipulate data directly and where feedback on this must be given continuously, this becomes a
serious problem.

In the more traditional query based interfaces that are most applicable to the design of a design support
system like BYGSYS this is fortunately not a real problem. Here it is sufficient to exchange semantic
information between the user interface and the functional core at closure points in the dialogue. This
means that ft should be possible to come up with a sensible development strategy for such systems!

The strategy for separating user interface from functional core must deal with 1) how the inevitable
exchanges of information across the separation interface are to be coordinated and 2) how information
is distributed between the two modules so as to minimize this communication. These two aspects are
covered by the global control model and the information distribution model.

3.2 The Global Control Model

The global control mechanism governs the flow of control between the two domains whereas local
control mechanisms handle dialogue flow within the user interface domain and the algorithmic flow
within and across functions of the functional core. The global control model must define which
component is in charge of the information exchange and whether this control may shift between
components. Three distinct strategies have been proposed [4]: the computation dominant control, the
dialogue dominant control and the mixed control models.

Systems like BYGSYS that employ the computation dominant control model let the user interface
software be controlled by the functional core. The user interface is implemented by a set of abstract
interaction devices controlled by the functional core. The image objects used in the BYGSYS
implementation for controlling the screens exemplify such abstract interaction devices.

The computation dominant model has two basic problems. First, the overall dialogue sequencing is
only implicitly defined by the local control flow of the functional core. This compromises dialogue
independence and consistency and it furthermore discourages modifications of a given user interface
design to a functional core.

Second, user interfaces constructed with systems employing this separation strategy tends to exhibit
a highly moded structure. The functional core decides when the user may input a certain piece of
information according to its internal control flow, eg. when the problem solving mechanism needs
new data to continue processing the knowledge base. Since its execution is temporarily stopped until
this information is returned a moded structure is forced onto the dialogue.

The dialogue dominant control model is a better approach to system design. Here the functional core
is accessed by a set of functions controlled strictly by the user interface module. This avoids the above
problems but introduces new ones. These functions must be atomic. During their execution they may
not communicate with the user, eg. to retrieve missing data or to communicate error conditions arising
within the functional core.

The mixed control model is therefore (in principle) the best solution. This model extends the dialogue
dominant model by allowing functions in the functional core to call the user interface during execution.
This is the model assumed by most contemporary user interface toolkits such as the X toolkit [10].

3.3 The Information Distribution Models

The second and generally most tricky problem in defining the separation interface is to specify the
distribution of data across the interface so as to minimize communication bandwidth while still
achieving dialogue independence.



T. ANDERSEN - N.V. CARLSEN 97

This information distribution model must specify the kinds of information residing in each module,
how and at what level of abstraction the two domains exchange information. It must define how output
objects from the functional core are handled within the user interface and must decide whether or not
user interface mechanisms that handle semantic feedback have direct access to the internal data of the
functional core.

As briefly discussed in the above, this model is not critical in the design of a query/answer system like
BYGSYS where information only needs to be exchanged in relatively small units (slot values in
knowledge objects) and at clearly identified closure points (each time a level in the hierarchical
knowledge structure is processed). Nevertheless, the approach taken will have an effect on the
maintainability of the system.

BYGSYS employs the shared data information distribution model. All information within the
functional core that is relevant to the user interface is placed in a shared data structure. In casu BYGSYS
this is actually the knowledge base itself, the image objects can retrieve slot values in the knowledge
base directly (eg. for displaying legal choices in a screen). Also, they have direct access to the rules
and procedures triggered by the various choices made by the user within the screen.

This approach ofcourse facilitates the user interface management of semantic feedback and it relieves
the functional core from considering user interface aspects such as text formatting etc. However, the
model obstructs system maintenance - all the direct references must be maintained.

The distributed data information distribution model seems to be a better approach. It tries to address
these problems by suggesting that the internal data be distributed. The functional core defines a relevant
view of its internal database through a set of mapping functions. Updates in the view are explicitly
communicated between user interface and functional core. Low bandwidth across the separation
interface can be achieved so this is an ideal model.

4 Guidelines & Conclusions

This discussion of separation strategy leads to some guidelines for constructing maintainable, flexible
and user augmentable design support systems. Traditionally, aknowledge acquisition phase is followed
by a conceptual modelling phase whereupon the system can be constructed.

4.1 Guideline

The query driven approach provides a good starting point for performing domain analysis and
knowledge acquisition. It may also be put to good use in the context of the actual system design.
However, it is at this point that we should take the above separation issues into account

Instead of focusing solely on the construction of the knowledge-base and postponing most user interface
considerations, these should be developed more or less in parallel. This is actually supported by many
contemporary knowledge-base shells where eg. image objects and screens can be defined and used
within the scope of the shell.

However, the shells do not directly support the construction of systems with a clean separation between
user interface and functional core. The overall flow of dialogue and the presentation of data must still
be handled within the functional core.

We recommend the introduction of a separate linkage module [5] between the knowledge-base and
the user interface functionality. This module must contain an explicit and manipulable representation
of the dialogue, it must implement the chosen global control model and information distribution model.

This linkage module may just be a conceptual entity - representing the fact that the designer does strive
for separation - or it may be realized as a physical entity. Intelligent user interfaces [8] may employ
user modelling techniques in order to adapt to users. Others may embody handwriting/voice recognition
and/or natural language understanding. In these contexts a blackboard architecture with three separate
knowledge-bases could be a sensible implementation strategy.



98 IMPACT OF USER DEMANDS ON KNOWLEDGE-BASED SYSTEMS

4.2 Conclusions

One important conclusion of the above is that not only does the user demands impact knowledge-base
design and user interface design but they also impact the approach to software design that must be
taken when designing the given design support system.

User (query) driven modelling and design does without doubt imply incremental prototyping. However,
in the case of larger systems and/or complex knowledge domains, this is only feasible if care is taken
to have optimal separation between the user interface and the functional core. An initial prototype can
easily be developed without separation (as supported by most shells) but later revisions of this design
will most likely be prohibitively complex.

So, user demands must be taken seriously when designing decision support systems. We recommend
user (query) driven knowledge acquisition and modelling but combined with an overall strategy for
software separation.

5 References

1. T. Andersen; A. Gaarslev, Building faults - preventing future faults by utilizing past experience,
in: V.Ireland (ed), Proceedings of CIB90 vol.7, 1990.

2. T. Andersen, BYGSYS technical report, Dept. of Construction Management, June 1992.

3. B.-C. Björk, Basic structure of a proposed building product model, CAD-journal, vol 21(2), March
1989.

4. N.V. Carlsen, Towards a Common Context for User Interface Management System Design, in:
C.Unger & J.A.Larson (eds) Engineering for Human-Computer Interaction, to be published by
Elsevier Science Publishers, 1993.

5. G. Cockton, A New Model for Separable Interactive Systems, Proceedings of INTERACT'87,
Elsevier Science Publishers, 1987.

6. H.R. Hartson; D. Hix, Human-Computer Interface Development: Concepts and Systems for its
Management, ACM Computing Surveys, volume 21(1), March 1989.

7. Intellicorp, User's Manual, KAPPA-PC, 1991.

8. J.W. Sullivan; S.W. Tyler (eds), Intelligent User Interfaces, ACM Press, Addison-Wesley, 1991.

9. D.A. Waterman, A Guide to Expert Systems, Addison-Wesley, 1986.

10. D.A. Young, The X Window System - Programming and Applications with Xt (OSF/MOTIF
Edition), Prentice-Hall, 1990.


	Impact of user demands on knowledge-based systems

