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SUMMARY
Functional equations and basic engineering principles suggest that fatigue length of longitudinal elements may be
modelled using a Weibull distribution with a virtual length function entering as a scale parameter. When applied to

yarn data, a quadratic virtual length function is supported by both classical and Bayesian analyses. Related simplified
models and models exhibiting asympotic independence are also investigated.

RÉSUMÉ

Les équations fonctionelles et les principes technologiques fondamentaux permettent d'envisager une modélisation de
l'effet de la longueur sur la fatigue des éléments longitudinaux à l'aide d'une distribution de Weibull, en introduisant une
fonction de longueur virtuelle en tant que paramètre d'échelle. Dans le cas des données de fibres textiles une fonction
virtuelle quadratique peut être admise pour la longueur tant par l'analyse classique que par l'analyse bayesienne. Des
modèles simplifiés et des modèles qui mettent en évidence une indépendance asymptotique sont également étudiés.

ZUSAMMENFASSUNG
Funktionalgleichungen und grundlegende Ingenieurprinzipien deuten darauf hin, daß der Einfluß der Länge auf die
Ermüdung von Längselementen unter Anwendung einer Weibull-Verteilung mit einer virtuellen Langenfunktion als

Maßstabparameter modelliert werden kann. Auf Ergebnisse an Garnen angewandt, wird eine quadratische virtuelle
Längenfunktion sowohl durch traditionelle als auch durch Bayes'sche Analyse unterstützt. Ähnliche vereinfachte Modelle
und solche, die asymptotische Unabhängigkeit aufweisen, werden ebenfalls untersucht.
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1. INTRODUCTION

Longer wires are weaker than short ones of the same diameter. That much has been "obvious"
for centuries. How does this relationship between length and strength manifest itself? A standard
experimental paradigm involves the use of samples of the material in question of equal diameters
but varying lengths. The samples are subjected to repeated vibrational stress and failure times
are observed. There will be considerable variability but, in general, the short samples will have
longer survival times. Development of an appropriate stochastic model will be especially desirable.
A important use of the model will be to predict the strength (as manifested by failure times) of
elements of lengths different from those actually studied. Extrapolation will inevitably be involved.
Typically only short samples can be studied but, in fact, much longer elements are of interest. We
study one meter long samples of cable and try to predict how a bridge cable will behave. Such
enthusiastic extrapolation is risky. It is however inevitable. Small errors in the fitted parameters
have little effect on predictions for short samples but may result in enormous ranges of uncertainty
when we extrapolate to longer samples. This cannot be avoided. All we can do is provide the
engineer with the available information, sparse and uncertain though it may be. Basically our
goal is to provide predictions and estimated reliabilities of predictions for long elements based on
experiments using short elements. If the predictions are too crude, then it will be quite appropriate
to call for new experiments, undoubtedly involving longer samples. To illustrate these ideas, we
will reanalyze the Picciotto yarn data. Short lengths of yarn (less than or equal to a meter in
length) were studied. Extrapolation to longer lengths is desirable. In particular, it is of interest to
know whether an assumption of asymptotic independence is tenable; i.e. for long elements, if one
is twice as long as another, is it twice as weak?

2. DEVELOPMENT OF THE MODEL

The survival function for an element of length x will be denoted by F(t,x). It represents the
probability that an element of length x will survive at least t units of time (often measured in
cycles). An accelerated failure model would be one in which the distribution of failure times
depended on the length x only through a scale factor. That is

F(f, x) Fo(h(x)t) (2.1)

where JFo is the distribution of failure times for an item of unit length and so, by convention,
h(l) 1. Castillo and Ruiz-Cobo [5] use an argument involving functional equations to arrive at
(2.1) but many experimenters will be happy to accept such a model in which the scale of but not
the shape of the survival distribution depends on element length.

Bogdanoff and Kozin [2] suggest a model of the form

F{t,x) [F(t,y)flv-*> (2>2)

for some function N(y,x). Castillo et al [4] show that this necessarily implies that the model is of
the form

F(<,x) [/bW]î(l) (2.3)

for some base survival function F0(t) and arbitrary non-negative function g(x). This is recognizable
as a proportional hazards model in the sense of Cox [6].

Assuming that we find the accelerated risk paradigm, (2.1), and the proportional hazards paradigm,
(2.3), to both be compelling we are forced to conclude that a Weibull model is appropriate with
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some function of length entering as a scale parameter. Specifically our model is of the form

F(t,x) — [e-iC]'(r' (2.4)

where q(x) is a non-negative function. Finally a parametrically parsimonious model might assume
that q(x) is a low degree polynomial.

3. INDEPENDENCE, ASYMPTOTIC INDEPENDENCE AND VIRTUAL LENGTH

The simplest model for fatigue strength corresponds to the choice 9(1) mi in (2.3). In this
model an element of length x behaves as if, when it divided into k subelements of length x/k,
the subelements act independently and the full element survives if and only if all k subelements
survive. This is the independence model. It undoubtedly only applies to long elements and then
only approximately. Following Arnold, Castillo and Sarahia [1] we will say that the model exhibits
asymptotic independence if

Jimj9(A:c) — Aq(x)] 0 V A > 1 (3.1)

and exhibits strong asymptotic independence if

lim q(x)/mx 1 for some m > 0. (3-2)

Both cases correspond to situations in which, for large x, q{x) behaves like mi.

The function q{x)/q{ 1) will, under independence, correspond to the length of the element (namely
x). We will call this function the virtual length function. An element of the material of length x
acts as if (under an independence assumption) it were of length q(x)/q( 1). A key restriction on
q(x) is that it be non-negative over the range of observed values of x. More importantly it should
remain non-negative over the range of x values to which we wish to extrapolate.

4. THE PICCIOTTO DATA; LIKELIHOOD ANALYSIS

Yarn samples of length's 0.3(0.1)1.0 meters were studied by Picciotto [7], A total of 797 observations
were made; 99 or 100 for each value of x. The full data set is reported in [1) and [4] as well as in
Picciotto [7], The previous discussion suggests a model of the form

P(T > t\X x) exp[-(a + ßx + 7x2)t5] (4.1)

where a convenient normalization has been invoked so that T (# of cycles to failure)/1000 and
X corresponds to length measured in meters. The virtual length function is

q(x) a + ßx + 7£z. (4.2)

Our observed levels of x cover the range 0.3 - 1.0. Our interest is in extrapolation to large values
of x. Consequently it is reasonable to restrict a,/?,7 in (4.2) so that q(x) remains positive over
the range (0-3,00). A more stringent requirement that q(x) remain positive over the half line
(0, 00) would require a 0 and ß — 0 so that 9(1) would assume the particularly simple form
712. This quadratic virtual life model is appealing in its simplicity but we must be wary, since this
simplicity may be bought at a high price of reduced explanatory power in the region of interest
for extrapolation. If, for some reason we were very interested in small, rather than large, values
of x then of course a restriction that q(x) remain positive for small values of x would be essential.
For our present purposes, it is judged to not be essential. The model (4.1) may be fitted to the
Picciotto data by standard maximum likelihood routines. Using a BMDP package the following
estimated values of the four parameters were obtained.
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asymptotic
parameter estimate standard error estimate/s.e.

a -6.21 18.98 -0.33
ß -6.84 86.03 -0.08

7 320.23 101.29 3.16
6 1.97 0.05 37.99

The corresponding value of the log-likelihood is 1413.27. Note the negative values of a and ß. If
these are kept in the virtual length function then, for very small values of x (less than 0.3 - 1, the
observed range), the virtual length will be negative. Note also that the estimated value of 6 namely
1.97 is remarkably close to 2, the value corresponding to a Rayleigh distribution.

Physical considerations do suggest that we set a 0 (so that g(Q) 0). The maximum likelihood
estimates subject to this restriction are found to be

asymptotic
parameter estimate standard error estimate/s.e.

a 0

0 -34.56 17.22 -2.01
7 347.84 • 59.32 5.86
6 1.97 0.05 38.26

The corresponding log-likelihood is 1413.21, only a tiny reduction from the value obtained for the
four parameter model. Setting ß — 0 (to guarantee ^(x) > 0 on (0, oo)) is a bit more costly. We
find

asymptotic
parameter estimate standard error estimate/s.e.

a 0

0 0

7 247.52 23.66 10.47
6 1.91 0.04 45.40

with a corresponding log-likelihood of 1410.70. This is a barely significant reduction and the gain
in parsimony and in the ability to extrapolate to small values of x may be judged to be worth the
price. Over the observed range (0.3-1.0), the two fitted virtual length functions -34.56x+347.84x2
and 247.82x2 are very similar.

If we set a 0 and 6 2 and fit the resulting Rayleigh model, our maximum likelihood estimates
of ß and 7 are given by
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asymptotic
parameter estimate standard error estimate/s.e.

a 0

ß -41.98 13.03 -3.22

7 380.60 27.70 13.74
8 1

with a log-likelihood of 1413.04. This is remarkably close to the value 1413.27 obtained for the full
four parameter model. Based on the available data, such a parsimonious Rayleigh model would
be recommended. Further simplification by setting ß 0, though desirable in that it forces g(x)
to be positive over (0, oo), will be bought at a significant reduction in the log-likelihood (down to
1408.23). This extremely parsimonious model, namely

P(T > t\X x) exp[—302.13(x<)2],

merits reporting and would gain in stature if some physical interpretation could be found for the
belief that (xT)2 should be exponentially distributed. Further comment on this model will be found
in Section 7.

5. BAYESIAN ANALYSIS

In practice it is to be expected that, not only would the engineer be able to argue in favor of a
particular parametric model such as (4.1), but also he would have some insights into plausible values
for the parameters in the model. If we denote the elicited prior for (a,ß,y,6) by ip{a,ß,f,8) (most
likely of the form <Pi(a)<p2(ß)<p3(7)<p4(ä)), then our posterior will be proportional to the following
expression

797

fi(a,ß,y,S) p(a, ß,-y, 6) ]J(a + ßzj + jxfjStf'1 exp[-(a + ßzi + yxl)if], (5.1)
f=i

Posterior means will serve as reasonable point estimates of the four parameters. Thus we would
need to evaluate, for example

ô f ah(a,ß,y,6)dadßdfd6/ h(a,ß,i,8)dadßd-/d6 (5.2)
Je Je

where 0 {(c*,/î,7,d) : 8 > 0,a + ßx + ~/x2 > 0 V x > 0.3}. Such four dimensional numerical
integrations may use up considerable amounts of computer time, which may be expensive. An
alternative approximate approach involves iterative one dimensional averaging. Provided that the
posterior is unimodal this will provide a reasonable approximation to the posterior means. In this
approach admissible initial values (op,ft),70, ^°)e® are chosen and are updated as follows

<*i J afc(Q»ft>»7o,Äo)<W J h{<*,ßo,7o,80)da

ßi J ßh(ai,ß,jot80)dß! J h{a1,ß,j0,6o)dß

7i J 7h(Qi,/ft>7,ft)M7/ j h(ai,ßu-r,80)d-(

81 - J 6h(a1,ßi,-ri,8)d8l J h(a1,ß1,yu6)d6 (5.3)
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Then the process is repeated, now using [a\,ß\,71,^1) as initial values. The integration in (5.3)
is over the ranges of values for which the integrands are positive. The process is continued until
stable values are obtained.

Implementation of a simplified version of the scheme (5.3) (in which we set a 0) with the Picciotto
data, assuming improper uniform priors, yielded estimates of the form

As expected these are good approximations to the maximum likelihood estimates. More disparity
would be encountered if a more precise prior were to be used.

6. WHAT SHOULD THE VIRTUAL LENGTH FUNCTION BE?

Data driven analysis suggested that a quadratic virtual length function is appropriate. For predictive

purposes that may be adequate but, since many non-quadratic functions on the real line are
well approximated by quadratic functions on the interval (0.3,1), extrapolation will be dangerous.
Existence of a plausible physical explanation for quadratic virtual length would lessen the dangers
of such projections. One possible explanation argues that failures occur at faults and that faults
are distributed along the element according to a possibly non-homogenous Poisson process. An
element with k faults will have a survival time function given by [Gq(()]'c. If the non-homogenous
fault generating Poisson process has rate function A(x) then the expected number of faults in an
element of length x will be fg A(y)dy. This will be quadratic if A is a linear function. Under
such a scenario a Weibull model with a quadratic virtual length function might provide a good
approximation to reality. The problem with this model is that our elements of length say j were
not made that length. They were cut from a longer piece. The fault generating process model is

difficult to justify under such circumstances.

Quadratic virtual length has another negative feature. It manifestly fails to exhibit asymptotic
independence. Yet asymptotic independence is surely a reasonable requirement for a model. A
long element will fail if it fails in the first or second half of its length. These events should have

equal probabilities and should be (roughly) independent. It doesn't take much arguing to convince

yourself that at least asymptotic independence is appriopriate. Consequently the correct virtual
length function will behave for small lengths in an approximately quadratic fashion and will be

approximately linear for large x. In fact many researchers (see e.g. Castillo and Fernandez-Canteli
[3]) argue that our main task is to determine a threshhold beyond which the linear virtual length
model can be assumed to hold.

A three parameter virtual length function of the following form

was considered in Arnold, Castillo and Sarabia [1]. They assumed a Rayleigh distribution so the
survival model was of the form

ß -34.49

7 349.94

« 1.973

g(x) — ax -f b(ecx — 1) (6.1)

P(T > t\X x) exp j-[ax + b(ecx - l)]t2] (6.2)
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This virtual length function behaves roughly as a quadratic for x < 1 but, for large x, behaves
like ax. For extrapolation purposes, particular interest will be focussed on the parameter a. If we
apply this model to the Picciotto data, the likelihood surface exhibits a ridge. The likelihood can
be made large by picking very small values of c together with appropriate large values of a and b.

Three sets of parameter values which yield approximately equal values of the likelihood (and which
are consequently essentialy equally plausible) are

a b

1011.5 1089.90
7859 79048

76290 7633183

ç log-likelihood

-1.00 1412.63
-0.10 1413.05
-0.01 1413.07

The data based on lengths in the interval (0.3,1) support the plausibility of arbitrarily large values
of a. Perhaps predictably, they are unable to assist us in determining the appropriate asymptotic
slope.

7. THE SIMPLE MODEL

The simplest model with explanatory power corresponds to the choice a 0, ß 0,tf 2 in (4.1).
For this model, as remarked in Section 4, Y — {xT)2 will have an exponential distribution. The
sample c.d.f. of the 797 Vj's from the Picciotto data should look like 1 — e~*v. Consequently a plot
of log Fn(y) (the log of the empirical survival function) vs y should be a line through the origin
with negative slope —A). The actual situation for the Picciotto data is as shown in Figure 1.

-7.5 - -

0.BUBO O.007Q 0 .0140
1-

0.0210 0.0280 0.0350

Figure 1: Plot of the logarithm of the empirical survival function (logF„(y)) versus y(= (zT)2)
for Picciotto data.
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Elimination of the 8 largest V,'s, regarded as potential outliers, improves the picture considerably.
The empirical plot of the remaining 789 points, shown in Figure 2, might be judged to be acceptably
linear. This may be advocated as a simplistic straw-man model for small values of the length x.
We are still lacking a theoretical argument in favor of the quadratic virtual length which is implicit
in such a model. We recognize that extrapolation to large lengths using such a model will be

questionable since it will fly in the face of our belief of the plausibility of asymptotic independence.

9,0

"X.

lu J

-5,0 T

i tr
i J

0,0003 0,3935 0.0970 0.0105 0.0140 0.0175

Figure 2: Plot of log Fn(y) versus y for the 789 Picciotto points remaining after deleting eight
outliers.
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