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SUMMARY
A survey of random factors influencing the reliability and lifetime of structural components is presented with an emphasis
on the initial flaws distribution and specific difficulties in the extrapolation of laboratory data to in-service conditions of
full-scale structures. A far-reaching generalization is suggested of the probabilistic models of fatigue taking account of
sets of initial and newly-created flaws as well as loads and actions randomly varying in time. Special attention is paid to
the prediction of the fatigue life of ropes and cables consisting of a large number of wires. The influence of the wires'
interaction on the size effect in ropes and cables is discussed.

RÉSUMÉ

Une approche des facteurs aléatoires qui interviennent sur la fiabilité et la durée de vie des composants structurels est
ici présentée en mettant l'emphase sur la distribution des défauts initiaux et sur la difficulté particulière d'extrapoler les
résultats obtenus en laboratoire aux structures réelles en conditions de service. On propose une généralisation des
modèles probabilistiques de fatigue en tenant compte des défauts initiaux et des défauts d'apparition ultérieure. On prête

une attention spéciale à la prédiction de la vie de fatigue des filins et des câbles formés d'un grand nombre de fils
A ce sujet, une discussion est engagée sur l'influence de l'interaction des fils sur l'effet d'échelle des différents câbles.

ZUSAMMENFASSUNG
In einer Übersicht der zufälligen Einflüsse auf die Zuverlässigkeit und Lebensdauer von Traggliedern werden die
Verteilung anfänglicher Fehlstellen und die besonderen Schwierigkeiten bei der Extrapolation von Labordaten auf die
Betriebsbedingungen in wirklichen Strukturen hervorgehoben. Eine weitreichende Verallgemeinerung der probabilistis-
chen Ermüdungsmodelle berücksichtigt Gruppen bestehender und frischer Fehlstellen sowie stockastische
Einwirkungen. Besondere Aufmerksamkeit gilt der Vorhersage der Ermüdungslebensdauer von Seilen und Kabeln mit
zahlreichen Drähten. Dabei wird der Einfluß der Drahtinteraktion auf den Maßstabseffekt diskutiert.
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1.INTRODUCTION

Fatigue failure is a phenomenon not easy to describe and predictquantitatively in a precise and reliable way even in the frameworkof the modern fracture mechanics. This phenomenon consists of
several stages: dispersed microdamage accumulation, initiation ofnuclei of macroscopic cracks, development of short cracks and thefurther formation of macroscopic cracks propagating up to the finalfailure. In wires, ropes and cables composed of thin fibers,fatigue failure is a result of fracture of a certain number of
neighbouring fibers. Interaction between the fractured and wholefibers during the damage process is a complicated phenomenon fromthe viewpoint of structural mechanics, too. Additional complications

arise due to the large statistical scatter of laboratory andfield data, and that makes the application of probabilistic models
necessary for the prediction of reliability indexes and lifetimefor full-scale engineering systems.

Experimental analysis helps only partially since only comparativelyshort specimens could be tested meanwhile wires and cable used
in large engineering systems are many times longer. Probabilisticmodels based on simple and transparent concepts often fail to
predict more or less precisely reliability indexes for much lonqerstructural components. The same situation takes place in predictionof the service lifetime using results of short time testing.The problem of reliable extrapolation of laboratory tests data on
much longer structural components and much longer times is in factthe central point of this Workshop.

Random factors influencing on fatigue failure can be divided inthe three groups: randomness of material properties; random fiawsand imperfections of structural components; random loads, actionsand enviromental conditions. In turn, each group consists of several
subgroups. For example, it is expedient to distinguish therandomness inherent to the microstructure of materials, and thebatch-to-batch scattering of properties of commercial materialsborn from instabilities and imperfections of the manufacturing

process. Flaws and imperfections of different origin and variousshape, size and position enter in the second group of random
factors. At last, loads and actions form a broad variety with randomand/or uncertainly defined parameters.

The discrepancy between the predicted fatigue life of structuralcomponents and that observed in field condition is born from
different sources. Among them is the difference in behaviour of shortlaboratory specimens and long structural components originated, inparticular, from the differnce in load transfer and the relativeinput of the anchorage into the resulting reliability. Enviromental

conditions are difficult to reproduce in laboratory tests,moreover, their long-time effects on mechanical properties. Non--stationary random loading influences on the fatigue life, and often
in a non—trivial way (as example, effects of overloadings maybe mentioned). Contrary to that, most laboratory tests are performed
in stationary, regular cycle loading. Another obstacle toperform a reliable extrapolation of laboratory data is born from theuse of oversimplified probabilistic models and nonadequate statistical

techniques. The trust in universality of Weibull's model andthe brave extrapolation of statistical data obtained from poor
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samples are, probably, the most evident examples of such oversimp-
1 ification.

Later on, the following items concerning the problem of strength,lifetime and reliability prediction of long structural components
are discussed: (a) probabilstic models of structural reliabilityin the presence of sets of randomly distributed flaws; (b)
probabilistic models of the fatigue crâck growth with the special
attention to various sources of scattering of results; (c) interaction

between single wires in ropes and cables and its account in
probabilistic models; (d) some aspects of the extrapolation of
short specimens and/or short-time fatigue tests.

2. RELIABILITY AND LIFETIME IN THE PRESENCE OF RANDOM SETS OF FLAWS

Consider a structural component or a specimen (later - a body)
under, generally, nonstationary cycling loading. The body contains a
number of cracks, cuts, pores, and flaws that can develop in macroscopic

cracks which growth results into the final failure of the
body. The flaws differ in origin (initial, new-born, detected and
admitted during inspection, non-detected), and in size, shape and
position. Later on, all crack-like flaws of macroscopic size, say,of the order of 1 mm and more are called cracks. Unite the cracks
with similar features in sets. To identify cracks in their position,

divide the body into domains M^, that are, generally,
may overlap. Dimension of this domains may be different. For
brevity, use the same notations for domains and their measures, e.g.for the length of one-dimentional domains, for the surface of two-
-dimentional ones, etc. Choose a standard measure Mq^ for each
domain, say, the unit of the corresponding measure. For simplicity,let cracks of each set are described with a single size parameter
aij> i l, ...,J where j is the number of j-th set, and J is the
total number of sets. Assume that the failure of the body occurs
when a£ least one of the cracks attains the corresponding criticalsize ® Then the reliability (survival) function is

f max a. .(x,t) < a* (x t ; x M. 1

R(t) P 4 13 13 1
J- (l)i. i—l, I; j =1, J J

Here P{ Ï is probability of the event in braces, x is reference
vector.

If the density of macroscopic cracks is sufficiently low, it is
possible to neglect their interaction. Then Poisson model is valid

for each set of cracks, for each domain, and for a body as a
whole. Eq.(1 resuits into

R(t) ex p
I

- S
1=1

J
s

3=1
^13(a135t) M? J (2)
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where t is the expected number of cracks from j-th set

Eq.<2) presents a far going generalization of probabilistic modelsof reliability against fatigue failure based on Weibull's or double
exponential (Gumbel's) distributions [10,il]. In particular,Eq.(2) takes into account nonhomogeneities that may be both continuous,

accounted with integrals, and discrete, accounted with thedivision of the body into domains. One can to present Jl. .(a. st)1 J 1 Jin the form

where ls the expected total number of cracks from the
considered sets, and F^^(a^ 15 the probability distribution function

of crack sizes up to the time t. Determination of and

FiJ^aU5 iS subject of the probabilistic fracture mechanics.
Many aspects of the reliability assessment can be taken into
account with this model since it includes the cracks initiation and
growth, inspection procedures, decision making, replacement ant
repair, etc. We do not go here into details that can be found inbook [5j and paper [6].

3. RANDOMNESS OF MATERIAL PROPERTIES AND FATIGUE CRACK GROWTH

To estimate functions Hi:)(t) and entering into Eqs.(2)
and (3), solution are to be found of certain stochastic equationsdescribing the evolution of cracks and crack-like flaws. A numberof studies have been performed during the last decades dedicatedeither to the randomization of the known (deterministic) equationsof fatigue crack growth or to the use of (also already known)
mathematical models describing such irreversible stochastic processesthat may be interpreted in terms of fatigue damage. A veryimportant question of the real origin of randomness, as a rule,remains out of the area of these studies. Meanwhile, it is necessary

to make difference between the inherent randomness of thematerial s microstructure which we call within—a—specimen scatter,and batch-to-batch or even specimen-to-specimen scatter. In addition,
there is such an important factor as randomness of initialconditions - that of the size, position and shape of flaws at thebeginning of the considered time segment. This factor tales anintermediate position between the two kinds of randomnesses. In

our opinion, since the initial flaw distribution varies signifi—cally between specimens (and, moreover, between components of realstructures), this type of randomness is to be attributed to speci-men—to-specimen randomness. In fact, the crack tip blunting due tocorrosion or overloading in the previous life can effect essentially
on the duration of the initiation stage and on the earlycrack growth rate.

in i-th domain which size a
at the time t.

(3)
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The influence of initial conditions on the fatigue life has been,
generally, underestimated and almost not investigated. Consider,
for example, the papular experimental data by Viraler et al. [12]
(see Fig.1„a where sample functions of fatigue cracl growth are
shown schematica11 y). One cannot miss a striking point! the lines
corresponding to specimens cut from the same sheet with the same
initial crack size and tested under strictly controlled conditions
intersect rarely. It means that the scatter of crack growth is born
not only from the point-to-point randomness of mechanical properties,

but also, and not in a lesser degree, from the specimen-to-spe-
cimen scatter. It is strange that, to the author's knowledge, it
has not been emphasized by those who made the comparison of
theoretical models with experimental data. For example, in book [1]
where a Markov type model was proposed for damage accumulation
processes, both Virkler's and the correspponding simulated sample
functions are presented. The latters are shown schematically in
Fig.l.b. There is an evident difference in the behaviour of sample
functions: opposite to the experimental curves, the simulated ones
intersect violently. It means that Fig.l,a and b represent quite
different random processes although the single-point cumulative
distribution functions F(N|a) and F(a|N) fit the experimental data
satisfactorily.

N

a) b)
N

Fig_. 1 Schematic comparison of experimental (a) and simulated
(b) sample functions of fatigue crack growth

A special analysis is required to understand this phenomenon more
profoundly. A large volume of numerical simulation has been performed

recently by author and his associates with the use of equation
[4,8]

da A.r Ak - Al
ÎÛ Î (4)

dN [(1 - I2 /I 2 )1/Ct - U.(a.N) I

max Xc x

Here Afc is stress intensity factor ranges ^th. and ^sIc are
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terial properties parameters, i.e. fatigue toughness, threshold
fatigue toughness and fracture toughness, respectively; \ is scale
parameter of the order of material's local nonhomogeneities, m anda are positive power exponents; ü)f(a,N) is the measure of microda-
mage accumulated in the far field, before the material s particlesapproach to the crack front. Eq.(4) tales into account the microda-
mage accumulation both in the far field and in the processing zone.In addition, the energy balance in the system cracked body —

loading is included into Eq.(4). Thus, the equation is valid as atthe low stresses, near the threshold fatigue toughness, as well as
on the terminal stage when a crack advances in an accelerated way.

Some numerical results are presented in Figs.2-4. They were obtained
in assumption that the fatigue toughness is a random function

along the path of the crack given in the form h f >: IQ + I,u(x)
Here I, f-"' ~0 M"

*q is the minimal toughness, 1^ is a measure cvf toughness
fluctuations, and u(x) is a stationary ergodic function of the
coordinate y. measured along the crack trajectory. A normalized Ray-leigh function with a broad-band power spectral density has been
used for modelling the point-to—point randomness. As to the otherparameters of Eq.(4), the magnitudes of A«.. and «' have beentil Icassumed connected deterministically with Kf, and for m and a
deterministic magnitudes have been taken. Since no information isavailable on the properties of the material at the tips of initiating

cracks, the stationary distribution has been taken for k^la^)
where aQ ls the initial crack size. Computations were made for
central opening mode cracks in specimens of the given fixed width.

sa.
eu

B
à
Si

so--

x( m
^*•9 • 2 Sample function of fatigue toughness along the crack path
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N-lcr6, cycles

Fig. 3 Scatter of the crack size versus cycle number due to the
influence of the point-to-point variability of mechanical
properties and of the initial conditions

0
&
1

i

F'ig • 4 Scatter of fatigue crack growth rate as function of the
range of stress intensity factor
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Fig.2 shows the variability of along the crack trajectory. At
the assumed nonhomogeneity scale of the order of 1 mm, sample
functions kj(x) appear to be well-mixed. Nevertheless, the sample
functions a(N) display a significant scatter (see Fig.3). This result
appears unexpected. More minute analysis shows that the curves go
apart at the earlier stages of crack growth. Hence, random initial
conditions are mostly responsible for the large lifetime scatter
at the later stages. Note that the "worst" and the "best" of 15
samples functions are plotted in Fig.3. At last, Fig.4 presents
the relationship between the crack growth rate da/dN and the range
Af of the stress intensity factor. Scatter of these sample
functions is hidden due to the log-log scale, and becomes very
significant on the terminal stage.

To close this brief discussion, we have to stress once again that
not only sizes, shapes and positions of initial flaws but also
material properties near the flaws can effect essentially on the
crack growth rate and the fatigue life.

4. STRUCTURAL MODELS OF FLOWS INTERACTION IN ROPES AND CABLES

Wires and cables are longitudinal items, and for a given cross section
a single scale parameter, the length L enters into the size

effect analysis. Therefore, it may be awaited that the size
strength effect is easier to describe and predict for wires and
cables than that for structural components of more arbitrary shape.

But in fact, ropes and cables consist, as a rule, of a large
number of thin fibres, strands, etc. interacting in a rather
complex way. In some aspects, fatigue and fracture of such composite

structures are more difficult to model analytically and
numerically than of monolithic bodies, even of complicated shape.

When single wires begin to fail, the load redistribution takes
place,and that influence on the fatigue life of neighbouring wires.
Moreover, the strength size effect is inherent not only to strands
and cables, but, in a larger degree, to single wires. The tensile
strength of single wire specimens of a comparatively short length
is higher than that of wires working jointly in a strand of the
same length. But on larger length, say, of the same order as that
in an actual structure, one can observe that the strength of a
strand is much higher than that of the summed strength of the
jointed long wires. This is an effect of interaction of wires,
when, due to the friction between wires, a Ilnd of redundancy
occurs increasing the load carrying capacity of long structural
components. The same conclusion concerns the fatigue life and the
reliability of wires and cables against fatigue failure. A rather
close situation takes place in fiber composite materials where
high performance fibers are connected in a monolith with a polymer
or metal matrix that redestrlbutes stresses around the ruptured
fibers. Statistical models were suggested in [3,73 to predict the
strength and fatigue life of unidirectional fiber composites under
tension along fibers. Analogous models were used [5] to assess
reliability of the core of the nuclear reactor composed of a large
number of fuel elements. Later on a preliminary discussion is
presented how to extend these models upon ropes and cables.
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V

—1

—-Jl

Fig. _5 Interaction of single fibre rupture in a parallel bundles
X triB transfer length of load re-distribution

For simplicity consider a parallel strand composed of n wires where
n 1 (Fig.5). Denote with G the nominal normal stress uniformly
distributed upon the summed cross section of wires and with the
ultimate friction stress between wires. When a wire is fractured,
its load is to be redistributed among the neighbours, and the
half-length of the redistribution domain may be estimated with the
order of magnitude as [3]

\r " <5>

Here r is radius of wires. The stress in neighbours becomes X O
where SB is stress concentration factor.

The transfer length X^ plays one of the main parts in the interaction
between wires or fibers in threads, ropes and cables. Let,

for example, the short-time strength G of single wires satisfy the
three-parameter Weibull distribution

r * r° - °o ia iF(O) 1 - exp - (6)
L *0 I» °c J i

Here X is the half-length of the wire segment, Xg is scale parameter,

e.g. Xg r, and Gg, (X are material parameters of wires.
At G ^ Og we put instead of Eg.(6) F(O) s 0.

It is very probable that when parallel wires interact in a strand,
their individual input into the «-trand strength is characterzed
with Eq.(é>) where X is evnlmted from Fq.(5i. In fact, if -» single
wire ruptures, the "naU'tl" length of the ntx hbnuring wires ; s nf
the order of X^. The same situ-'inn take piac^. in fatigue damage.

One of the simplest models is related to Weibull distribution
of the fatigue life, i.e. analogous of Eq.(6):
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KiHfK^n -
Compared with the notation of Eq. (6), s is characteristic magnitude

of cyclic loading, say, the stress range in wires. Material
constants sß, Sq, N^, Nq, a and ß are related to fatigue lifetime
distribution of single wires with the length \. At s < Sq or N * Ng
one have to put F(N|s) s 0.

Let a bundle (strand, cable, etc.) composed of n parallel wiresfails when at least one of its segment with the length con-trtains at least n^ ruptured wires. Then the probability distribution
for the fatigue life of a bundle of the length L may be

estimated as [7]

(8)

Some conclusions can be made from Eq.(S) concerning the size
effect due to the wires interaction. For example, the shape
parameter of the fatigue life distribution is ßn# for bundles instead
of ß for single wires. The shape parameter of ultimate stress is(<X - Dn^ instead of (X, respectively. To describe more intimate
mechanisms of interaction, the load redistribution and stress
concentration during the sequential ruptures of single wires areto be taken into consideration. The simplest way to account forthe load redistribution is to replace s in Eq.(8) with (« s)/(l -- n^/n). Such an approach is similar to the well-known "bundle-of-
-fibres" model by Daniels. There is no place and time to go intofurther details, and we send the reader to the survey paper [7]where other references can be found.

5. THE PROBLEM OF EXTRAPOLATION OF SHORT-LENGTH AND SHORT-TIME TEST
RESULTS UPON FULL-SCALE STRUCTURES

It has beeh shown above, and maybe, not for the first time, thatthe extrapolation problem is complicated with a number of factorsthat are not yet have been studied sufficiently and even not
understood completely. Among them are the presence of cracks and
cract-like flaws of different origin, shape, position and sizesthe complex mechanisms of macrocracl initiation and growth due tothe random scatter of material properties, initial conditions,loads and enviromental actions! and at last, the interaction
between flaws and ruptures of single wires and fibers composingfull-scale ropes and cables. In the present dicussion, let limitourselves with the role of diversity of flaws properties.
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Return to Eq.(2) which is of a rather general nature. To make the
discussion more concrete, consider the two special cases of Eq.(2)
the Wei bull-type equation

l|s) exp £ - — f N, s JR N j s ex p I — f N, s I (9)

and the Gumbel-type (double-exponential) equation

R(N|s) exp £ - — |l - exp { f(N,s) 3 J J (10)

where the notation is used

i i
i=1 J=1 1 sCij J CiJ J

(s - sq1j)H(N - N0±j) m f N s

11

with Heaviside function H(-). Eqs.(9)-(11) correspond to a stationary
loading with a single characteristic stress parameter s. All

the flaws are related to the total cable length L with the reference

length assumed equal to the all sets of flaws. The meaning

of other parameters in Eq.(lO) is understandable from the
comparison with Eqs.(2), (3), (7) and (8). Account of different
thresholds and is a reasonable assumption since for each

type of wires and each kind of flaws a certain minimal stress level
and a certain minimal cycle number are required to produce

macroscopic damage. For those who want to argue this point, it is
enough to remind the low-cycle and high-cycle fatigue mechanisms
with their own areas on s,N plane C9]. In addition, various damage
mechanisms are expected in exterior and interior wires of ropes
and wires, in wires of spiral cables with various angles, etc.

Let is the specified reliability index. The admissible pairs of
s and N satisfy to equation

^"O
f(N,s) - — In R^ (12)

in the case of Eq.(9), and to equation

f(N,s) In ^ 1 In R# j (13)
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if Eq (10) is preferable. Thus, the size ratio L/'Lq and the specified

reliability index R^ enter into equations with respect to the
admissble stress level (at a given cycle number) or to the admissible

cycle number (at a given stress level).

The difficulties of extrapolation of short specimens tests on much
longer, full-scale structures are obvious even from a such elementary

consideration. Let LQ is the length of a specimen, and L is
the full-scale length. To ensure a confident estimation of the
left-hand side of Eqs.(lO) and (13), the non-failure probability
of specimens should be of the order

VL
R0 R,U (14)

For example, if R 0.999, and L 210 L,^ _ __ _q, Eq.(14) yields Rf) f* 0.9.
It means that tests are to be performed at stress levels much
higher than that in the actual structure. On the other hand, at
the higher stress level quite different mechanisms of damage begin
to act, arid that makes the extrapolation procedure rather questionable.

F(N|s)

N01 ^02 N 0 N

a) b)

Fig _6 Fatigue fractile curves (a), and probability distribution
functions of fatigue life (b) at various lengths L 5 L L

The situation is illustrated in Fig.6,a where fatigue curves are
shown schematically corresponding to a given R and various lengths

1 2
another

When a curve goes from one region s N0 to-g. -Q
its character changes. No similitude is awaited of fati-
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gue curves at the same R^ and at various L. This discrepancy
appears in probability distribution functions, too, as it is shown
in Fig.4 b.

Conclusion

It has been shown that the problem of extrapolation of laboratory
fatigue tests of specimens upon the large-scale engineering structures

meets significant difficulties. They are born, in particular,
and probably in the first line, from the existence of several

mechanisms of fatigue damage which relative inputs into the lifetime
vary when the size of a structural component varies. Therefore,

the coarse extrapolation upon much larger sizes and/or much
larger lifetimes is awaited to be unsatisfactory. To overcome these

difficulties, the following ways may be used:

- experimental study of the size effect on fatigue in conditions
most close to the field ones including the pilot tests (very long
specimens, very long durations, modelling of environmental actions,
etc s

- monitoring of loads, actions, stress-strain fields, flaws
distribution and damage in existing and new-build structures;

- development of advanced probabilistic and structural models of
fracture and fatigue of wires, threads, ropes and cables with
account of all random factors effecting on their lifetime and structural

reliability.
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SUMMARY
Functional equations and basic engineering principles suggest that fatigue length of longitudinal elements may be
modelled using a Weibull distribution with a virtual length function entering as a scale parameter. When applied to

yarn data, a quadratic virtual length function is supported by both classical and Bayesian analyses. Related simplified
models and models exhibiting asympotic independence are also investigated.

RÉSUMÉ

Les équations fonctionelles et les principes technologiques fondamentaux permettent d'envisager une modélisation de
l'effet de la longueur sur la fatigue des éléments longitudinaux à l'aide d'une distribution de Weibull, en introduisant une
fonction de longueur virtuelle en tant que paramètre d'échelle. Dans le cas des données de fibres textiles une fonction
virtuelle quadratique peut être admise pour la longueur tant par l'analyse classique que par l'analyse bayesienne. Des
modèles simplifiés et des modèles qui mettent en évidence une indépendance asymptotique sont également étudiés.

ZUSAMMENFASSUNG
Funktionalgleichungen und grundlegende Ingenieurprinzipien deuten darauf hin, daß der Einfluß der Länge auf die
Ermüdung von Längselementen unter Anwendung einer Weibull-Verteilung mit einer virtuellen Langenfunktion als

Maßstabparameter modelliert werden kann. Auf Ergebnisse an Garnen angewandt, wird eine quadratische virtuelle
Längenfunktion sowohl durch traditionelle als auch durch Bayes'sche Analyse unterstützt. Ähnliche vereinfachte Modelle
und solche, die asymptotische Unabhängigkeit aufweisen, werden ebenfalls untersucht.
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1. INTRODUCTION

Longer wires are weaker than short ones of the same diameter. That much has been "obvious"
for centuries. How does this relationship between length and strength manifest itself? A standard
experimental paradigm involves the use of samples of the material in question of equal diameters
but varying lengths. The samples are subjected to repeated vibrational stress and failure times
are observed. There will be considerable variability but, in general, the short samples will have
longer survival times. Development of an appropriate stochastic model will be especially desirable.
A important use of the model will be to predict the strength (as manifested by failure times) of
elements of lengths different from those actually studied. Extrapolation will inevitably be involved.
Typically only short samples can be studied but, in fact, much longer elements are of interest. We
study one meter long samples of cable and try to predict how a bridge cable will behave. Such
enthusiastic extrapolation is risky. It is however inevitable. Small errors in the fitted parameters
have little effect on predictions for short samples but may result in enormous ranges of uncertainty
when we extrapolate to longer samples. This cannot be avoided. All we can do is provide the
engineer with the available information, sparse and uncertain though it may be. Basically our
goal is to provide predictions and estimated reliabilities of predictions for long elements based on
experiments using short elements. If the predictions are too crude, then it will be quite appropriate
to call for new experiments, undoubtedly involving longer samples. To illustrate these ideas, we
will reanalyze the Picciotto yarn data. Short lengths of yarn (less than or equal to a meter in
length) were studied. Extrapolation to longer lengths is desirable. In particular, it is of interest to
know whether an assumption of asymptotic independence is tenable; i.e. for long elements, if one
is twice as long as another, is it twice as weak?

2. DEVELOPMENT OF THE MODEL

The survival function for an element of length x will be denoted by F(t,x). It represents the
probability that an element of length x will survive at least t units of time (often measured in
cycles). An accelerated failure model would be one in which the distribution of failure times
depended on the length x only through a scale factor. That is

F(f, x) Fo(h(x)t) (2.1)

where JFo is the distribution of failure times for an item of unit length and so, by convention,
h(l) 1. Castillo and Ruiz-Cobo [5] use an argument involving functional equations to arrive at
(2.1) but many experimenters will be happy to accept such a model in which the scale of but not
the shape of the survival distribution depends on element length.

Bogdanoff and Kozin [2] suggest a model of the form

F{t,x) [F(t,y)flv-*> (2>2)

for some function N(y,x). Castillo et al [4] show that this necessarily implies that the model is of
the form

F(<,x) [/bW]î(l) (2.3)

for some base survival function F0(t) and arbitrary non-negative function g(x). This is recognizable
as a proportional hazards model in the sense of Cox [6].

Assuming that we find the accelerated risk paradigm, (2.1), and the proportional hazards paradigm,
(2.3), to both be compelling we are forced to conclude that a Weibull model is appropriate with
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some function of length entering as a scale parameter. Specifically our model is of the form

F(t,x) — [e-iC]'(r' (2.4)

where q(x) is a non-negative function. Finally a parametrically parsimonious model might assume
that q(x) is a low degree polynomial.

3. INDEPENDENCE, ASYMPTOTIC INDEPENDENCE AND VIRTUAL LENGTH

The simplest model for fatigue strength corresponds to the choice 9(1) mi in (2.3). In this
model an element of length x behaves as if, when it divided into k subelements of length x/k,
the subelements act independently and the full element survives if and only if all k subelements
survive. This is the independence model. It undoubtedly only applies to long elements and then
only approximately. Following Arnold, Castillo and Sarahia [1] we will say that the model exhibits
asymptotic independence if

Jimj9(A:c) — Aq(x)] 0 V A > 1 (3.1)

and exhibits strong asymptotic independence if

lim q(x)/mx 1 for some m > 0. (3-2)

Both cases correspond to situations in which, for large x, q{x) behaves like mi.

The function q{x)/q{ 1) will, under independence, correspond to the length of the element (namely
x). We will call this function the virtual length function. An element of the material of length x
acts as if (under an independence assumption) it were of length q(x)/q( 1). A key restriction on
q(x) is that it be non-negative over the range of observed values of x. More importantly it should
remain non-negative over the range of x values to which we wish to extrapolate.

4. THE PICCIOTTO DATA; LIKELIHOOD ANALYSIS

Yarn samples of length's 0.3(0.1)1.0 meters were studied by Picciotto [7], A total of 797 observations
were made; 99 or 100 for each value of x. The full data set is reported in [1) and [4] as well as in
Picciotto [7], The previous discussion suggests a model of the form

P(T > t\X x) exp[-(a + ßx + 7x2)t5] (4.1)

where a convenient normalization has been invoked so that T (# of cycles to failure)/1000 and
X corresponds to length measured in meters. The virtual length function is

q(x) a + ßx + 7£z. (4.2)

Our observed levels of x cover the range 0.3 - 1.0. Our interest is in extrapolation to large values
of x. Consequently it is reasonable to restrict a,/?,7 in (4.2) so that q(x) remains positive over
the range (0-3,00). A more stringent requirement that q(x) remain positive over the half line
(0, 00) would require a 0 and ß — 0 so that 9(1) would assume the particularly simple form
712. This quadratic virtual life model is appealing in its simplicity but we must be wary, since this
simplicity may be bought at a high price of reduced explanatory power in the region of interest
for extrapolation. If, for some reason we were very interested in small, rather than large, values
of x then of course a restriction that q(x) remain positive for small values of x would be essential.
For our present purposes, it is judged to not be essential. The model (4.1) may be fitted to the
Picciotto data by standard maximum likelihood routines. Using a BMDP package the following
estimated values of the four parameters were obtained.
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asymptotic
parameter estimate standard error estimate/s.e.

a -6.21 18.98 -0.33
ß -6.84 86.03 -0.08

7 320.23 101.29 3.16
6 1.97 0.05 37.99

The corresponding value of the log-likelihood is 1413.27. Note the negative values of a and ß. If
these are kept in the virtual length function then, for very small values of x (less than 0.3 - 1, the
observed range), the virtual length will be negative. Note also that the estimated value of 6 namely
1.97 is remarkably close to 2, the value corresponding to a Rayleigh distribution.

Physical considerations do suggest that we set a 0 (so that g(Q) 0). The maximum likelihood
estimates subject to this restriction are found to be

asymptotic
parameter estimate standard error estimate/s.e.

a 0

0 -34.56 17.22 -2.01
7 347.84 • 59.32 5.86
6 1.97 0.05 38.26

The corresponding log-likelihood is 1413.21, only a tiny reduction from the value obtained for the
four parameter model. Setting ß — 0 (to guarantee ^(x) > 0 on (0, oo)) is a bit more costly. We
find

asymptotic
parameter estimate standard error estimate/s.e.

a 0

0 0

7 247.52 23.66 10.47
6 1.91 0.04 45.40

with a corresponding log-likelihood of 1410.70. This is a barely significant reduction and the gain
in parsimony and in the ability to extrapolate to small values of x may be judged to be worth the
price. Over the observed range (0.3-1.0), the two fitted virtual length functions -34.56x+347.84x2
and 247.82x2 are very similar.

If we set a 0 and 6 2 and fit the resulting Rayleigh model, our maximum likelihood estimates
of ß and 7 are given by
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asymptotic
parameter estimate standard error estimate/s.e.

a 0

ß -41.98 13.03 -3.22

7 380.60 27.70 13.74
8 1

with a log-likelihood of 1413.04. This is remarkably close to the value 1413.27 obtained for the full
four parameter model. Based on the available data, such a parsimonious Rayleigh model would
be recommended. Further simplification by setting ß 0, though desirable in that it forces g(x)
to be positive over (0, oo), will be bought at a significant reduction in the log-likelihood (down to
1408.23). This extremely parsimonious model, namely

P(T > t\X x) exp[—302.13(x<)2],

merits reporting and would gain in stature if some physical interpretation could be found for the
belief that (xT)2 should be exponentially distributed. Further comment on this model will be found
in Section 7.

5. BAYESIAN ANALYSIS

In practice it is to be expected that, not only would the engineer be able to argue in favor of a
particular parametric model such as (4.1), but also he would have some insights into plausible values
for the parameters in the model. If we denote the elicited prior for (a,ß,y,6) by ip{a,ß,f,8) (most
likely of the form <Pi(a)<p2(ß)<p3(7)<p4(ä)), then our posterior will be proportional to the following
expression

797

fi(a,ß,y,S) p(a, ß,-y, 6) ]J(a + ßzj + jxfjStf'1 exp[-(a + ßzi + yxl)if], (5.1)
f=i

Posterior means will serve as reasonable point estimates of the four parameters. Thus we would
need to evaluate, for example

ô f ah(a,ß,y,6)dadßdfd6/ h(a,ß,i,8)dadßd-/d6 (5.2)
Je Je

where 0 {(c*,/î,7,d) : 8 > 0,a + ßx + ~/x2 > 0 V x > 0.3}. Such four dimensional numerical
integrations may use up considerable amounts of computer time, which may be expensive. An
alternative approximate approach involves iterative one dimensional averaging. Provided that the
posterior is unimodal this will provide a reasonable approximation to the posterior means. In this
approach admissible initial values (op,ft),70, ^°)e® are chosen and are updated as follows

<*i J afc(Q»ft>»7o,Äo)<W J h{<*,ßo,7o,80)da

ßi J ßh(ai,ß,jot80)dß! J h{a1,ß,j0,6o)dß

7i J 7h(Qi,/ft>7,ft)M7/ j h(ai,ßu-r,80)d-(

81 - J 6h(a1,ßi,-ri,8)d8l J h(a1,ß1,yu6)d6 (5.3)
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Then the process is repeated, now using [a\,ß\,71,^1) as initial values. The integration in (5.3)
is over the ranges of values for which the integrands are positive. The process is continued until
stable values are obtained.

Implementation of a simplified version of the scheme (5.3) (in which we set a 0) with the Picciotto
data, assuming improper uniform priors, yielded estimates of the form

As expected these are good approximations to the maximum likelihood estimates. More disparity
would be encountered if a more precise prior were to be used.

6. WHAT SHOULD THE VIRTUAL LENGTH FUNCTION BE?

Data driven analysis suggested that a quadratic virtual length function is appropriate. For predictive

purposes that may be adequate but, since many non-quadratic functions on the real line are
well approximated by quadratic functions on the interval (0.3,1), extrapolation will be dangerous.
Existence of a plausible physical explanation for quadratic virtual length would lessen the dangers
of such projections. One possible explanation argues that failures occur at faults and that faults
are distributed along the element according to a possibly non-homogenous Poisson process. An
element with k faults will have a survival time function given by [Gq(()]'c. If the non-homogenous
fault generating Poisson process has rate function A(x) then the expected number of faults in an
element of length x will be fg A(y)dy. This will be quadratic if A is a linear function. Under
such a scenario a Weibull model with a quadratic virtual length function might provide a good
approximation to reality. The problem with this model is that our elements of length say j were
not made that length. They were cut from a longer piece. The fault generating process model is

difficult to justify under such circumstances.

Quadratic virtual length has another negative feature. It manifestly fails to exhibit asymptotic
independence. Yet asymptotic independence is surely a reasonable requirement for a model. A
long element will fail if it fails in the first or second half of its length. These events should have

equal probabilities and should be (roughly) independent. It doesn't take much arguing to convince

yourself that at least asymptotic independence is appriopriate. Consequently the correct virtual
length function will behave for small lengths in an approximately quadratic fashion and will be

approximately linear for large x. In fact many researchers (see e.g. Castillo and Fernandez-Canteli
[3]) argue that our main task is to determine a threshhold beyond which the linear virtual length
model can be assumed to hold.

A three parameter virtual length function of the following form

was considered in Arnold, Castillo and Sarabia [1]. They assumed a Rayleigh distribution so the
survival model was of the form

ß -34.49

7 349.94

« 1.973

g(x) — ax -f b(ecx — 1) (6.1)

P(T > t\X x) exp j-[ax + b(ecx - l)]t2] (6.2)
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This virtual length function behaves roughly as a quadratic for x < 1 but, for large x, behaves
like ax. For extrapolation purposes, particular interest will be focussed on the parameter a. If we
apply this model to the Picciotto data, the likelihood surface exhibits a ridge. The likelihood can
be made large by picking very small values of c together with appropriate large values of a and b.

Three sets of parameter values which yield approximately equal values of the likelihood (and which
are consequently essentialy equally plausible) are

a b

1011.5 1089.90
7859 79048

76290 7633183

ç log-likelihood

-1.00 1412.63
-0.10 1413.05
-0.01 1413.07

The data based on lengths in the interval (0.3,1) support the plausibility of arbitrarily large values
of a. Perhaps predictably, they are unable to assist us in determining the appropriate asymptotic
slope.

7. THE SIMPLE MODEL

The simplest model with explanatory power corresponds to the choice a 0, ß 0,tf 2 in (4.1).
For this model, as remarked in Section 4, Y — {xT)2 will have an exponential distribution. The
sample c.d.f. of the 797 Vj's from the Picciotto data should look like 1 — e~*v. Consequently a plot
of log Fn(y) (the log of the empirical survival function) vs y should be a line through the origin
with negative slope —A). The actual situation for the Picciotto data is as shown in Figure 1.

-7.5 - -

0.BUBO O.007Q 0 .0140
1-

0.0210 0.0280 0.0350

Figure 1: Plot of the logarithm of the empirical survival function (logF„(y)) versus y(= (zT)2)
for Picciotto data.
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Elimination of the 8 largest V,'s, regarded as potential outliers, improves the picture considerably.
The empirical plot of the remaining 789 points, shown in Figure 2, might be judged to be acceptably
linear. This may be advocated as a simplistic straw-man model for small values of the length x.
We are still lacking a theoretical argument in favor of the quadratic virtual length which is implicit
in such a model. We recognize that extrapolation to large lengths using such a model will be

questionable since it will fly in the face of our belief of the plausibility of asymptotic independence.

9,0

"X.

lu J

-5,0 T

i tr
i J

0,0003 0,3935 0.0970 0.0105 0.0140 0.0175

Figure 2: Plot of log Fn(y) versus y for the 789 Picciotto points remaining after deleting eight
outliers.
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SUMMARY
This paper considers issues in modelling the fatigue strength and lifetime of wires and cables including size effects and extreme

lower tail probabilities important to reliability in life safety applications. Examples are drawn from cables made of advanced

composites in order to make two basic points. First, while a good fiber or wire model is an essential starting point, estimating
certain extreme parameters and quantiles from test data may not be important to the reliability performance of a cable with

series-parallel, load-sharing structure Second, series-parallel load-sharing models afford the opportunity to pursue better
designs for cable structures.

RÉSUMÉ

Cette communication traite les problèmes de modélisation de la résistance à la fatigue et de la durée de vie des fils et des
câbles Elle tient compte de l'effet d'échelle et de la probabilité de rupture extrêmement faible, facteurs importants quant à la

fiabilité des réalisations impliquant un risque humain. Elle présente deux remarques fondamentales à partir d'exemples de
câbles en matériaux composites hautement performants. Premièrement, bien qu'un modèle de fibre ou de fil d'excellente qualité

soit essentiel au départ, une estimation, faite à partir de données expérimentales pour certains paramètres extrêmes et

résultats statistiques, n'est absolument pas importante pour la fiabilité d'un câble à structure sérielle-parallèle avec répartition
de charge. Deuxièmement, les modèles sériels-parallèles avec répartition de charge offrent la possibilité de mieux concevoir
les structures de câbles.

ZUSAMMENFASSUNG
Dieser Beitrag behandelt Aspekte der Ermüdungsfestigkeit und Lebensdauer von Drähten und Kabeln. Miteinbezogen sind
Größeneffekte und Schadensereignisse mit extrem kleiner Wahrscheinlichkeit, die im Zusammenhang mit Sicherheitsaspekten
in der Anwendung wichtig sind. Beispiele werden aufgezeigt für Kabel aus Hochleistungsverbundstoffen, um zwei grundlegene
Punkte anzusprechen. Obwohl, erstens, ein gutes Fasern- oder Drahtmodell ein wichtiger Ausgangspunkt ist, muß eine

Abschätzung von gewissen extremen Parametern und Größen aus Testdaten nicht unbedingt wichtig sein für die
Zuverlässigkeit eines Kabels mit seriell-paralleler, lastverteilender Struktur. Zweitens, seriell-parallele, lastverteilende Modelle
bieten die Möglichkeit, besseren Konstruktionen für Kabelstrukturen nachzugehen
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1. INTRODUCTION

1.1 Preface

Our interest in steel cables and strands for cable stayed bridges and other suspended
structures is a natural outcome of experiences with practical problems of cable and
socket performance. For several years, one of us (SLP) has been a technical consultant
to the Arecibo radar-radio telescope observatory, funded by the U.S. National Science
Foundation. The feed systems for the telescope are supported by a large steel
suspended structure, having twelve 7.6 cm diameter main cables and fifteen 8.3 cm
diameter cables constructed of bridge strand of typical helical construction. Originally,
this structure was designed to be a limited life, structure (about ten years) so that safety
factors in many of the cables are less than two\ Wire breakage in these cables has been
experienced over its approximately 25 years of operation, and has been studied from
both a mechanics and metallurgy perspective including dissection of a removed cable.
This has led to unique corrosion protection efforts which have largely been effective in
suppressing wire breakage, and many decades of useful life are expected. Some of our
results have been published [1],

Most of the our experience, however, has been in advanced composites (mostly
graphite, glass and Kevlar 49 aramid fibers in epoxy matrices) and ropes and cables
(mostly Kevlar 29 aramid fibers in various untwisted and twisted constructions). Our
interest has been in statistical modelling of the strength and lifetime in creep-rupture and
fatigue of these fibrous structures and we have also done considerable experimental
work on individual fibers, strands and bundles and unidirectional composites in order to
validate various theories. We believe this experience brings a different perspective to
the issues being addressed by this workshop as these issues are not unique to steel
wires and strands. We would like to share a few observations through examples. Our
comments are motivated in large measure by helpful material in the introductory lectures
elsewhere in the workshop proceedings.

1.2 Reliability Goals and Realities

Whether we are talking about steel or polymeric composite cables in applications
involving life safety, the key design problem is to establish wire and cable
structures and parameters such that the probability of failure over a
specified service lifetime, loading and environment is a very small number,
say < 10*6. This must be true not only for a single cable but for all cables of a structure
viewed collectively as a system, whereby any one failure will produce collapse of the
system. As has been pointed out by Castillo and Fernândez-Canteli in their introductory
lecture, this sort of requirement imposes prohibitive needs for experimentation if such
reliability targets are to be verified by brute force experimentation. It is not possible
to verify such low probabilities of failure empirically since the number of
required replications of a fatigue test is prohibitive (> 107 in the above
example), the specimen sizes must be huge (cables much longer than
typical test facilities can handle) and the times for testing must be
enormous (years). Furthermore experience gathered on performance near the mean
of a distribution may be very misleading with respect to performance in the extreme
lower tail, which cannot be observed.

This brings us to the need pursue accurate models. Designers in the past have often
been satisfied with mean values of fatigue strength and lifetime (and on occasion
coefficients of variation) followed by application of large safety factors based on
longstanding experience. The modern reliability approach, however, is to seek
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probabilistic assessment through careful modelling, with the goal of determining the full
probability distribution of fatigue strength (the probability for each possible value of the
cyclic stress range Ao that the fatigue lifetime will reach say 2x10® load cycles) but
especially in the extreme lower tail (say probabilities of 10"6 or less). This must be done
not only for a single wire of laboratory length but for a full cable.

Much of the effort in the literature seems to be devoted to building a realistic probability
model for the failure of a single wire including statistical estimation procedures for model
parameters and size or length effects about which there has been considerable
controversy. Castillo and Fernândez-Canteli in their introductory lecture have identified
many key issues which from our experience are also relevant to the field of composite
materials. But like composite materials, cables are redundant structures for which there
is considerable load-sharing among wire members. This means that bundle models,
chain-of-bundles models and other lattice models have great potential for describing
how a cable is ultimately to perform, especially in the lower tail region of the probability
distribution; single wire models cannot do this job alone, and in fact, one must to be
careful about becoming preoccupied with wire model issues that may emerge as largely
unimportant in a series-parallel, load-sharing structure. There have been a few attempts
to build such bundle models, notably by Fernândez-Canteli and coworkers [2-4],
Stallings [5], and Tanaka and coworkers [6,7] with some success. But this is just a
beginning, and we believe their is great potential based on what is known about these
models in the context of polymer cables and composites. Unfortunately efforts so far
have had little effect on the development of international standards for testing and
design [8], but on the other hand, this shortcoming can be viewed as a great opportunity
for the future.

We do not want to give the impression that the quest for better models and better cables
is purely a mathematical exercise in statistics devoid of the realities of the current base
of experience. In their introductory lectures Esslinger and Gabriel and Nürnberger have
pointed out many issues related to manufacturing processes, environmentally driven
corrosion and clamping and socketing, all of which may overwhelm idealized statistical
predictions. Still, good models can help us identify what is theoretically possible but
also what may actually be unimportant to our goal. Models can also help us identify
strategies for structural and materials design and engineering in order to focus on
innovative solutions to the key materials and mechanics problems that are identified.

In what follows we wish to discuss issues of wire and cable reliability performance many
of which have been raised in the introductory lecture of Castillo and Fernândez-Canteli.
We will begin from the perspective of fibrous composites as a means of illustrating some
key points. We will focus mainly on static strength as the concepts are simpler.
Admittedly, steel wires have considerable ductility and small variability in ultimate
strength as compared to fibers used in composites, however, the issues we raise have
close analogies with respect to fatigue strength and lifetime of steel cables.

2. A PERSPECTIVE FROM COMPOSITE MATERIALS

2.1 Experience with Fibers

Our laboratory experience has largely been with advanced fibers such as Kevlar 49 by
The duPont Company or IM-6 or AS-4 fibers by Hercules, Inc. These fibers vary from 5
to 12 pm in diameter depending on the specific material which means that a 1 cm length
already has an aspect ratio (length/diameter ratio) of 1,000 to 2,000. In comparison to a
steel wire with a diameter of 5 mm, this corresponds to a wire length of 500 cm to 1,000
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cm! We routinely tension test fibers of lengths up to 20 cm or aspect ratios of 20,000 to
40,000, which corresponds to steel wire lengths of 10,000 to 20,000 cm. In a few cases
[9] we have also determined strength statistics for fiber segments at an aspect ratio of
only about 40, that is at lengths of 0.20 to 0.40 mm. So our experience spans fiber
aspect ratios from 40 to 40,000 or three orders of magnitude in length. Certainly one
would think that distributions motivated by extreme value statistics would naturally apply,
but the experimental reality less simple.

Fibers typically are produced as very lightly twisted yam wrapped on spools. A yam
may have from 200 to more than 10,000 fibers in a cross section. Variability in fiber
strength comes from flaws which are randomly distributed along the length either on the
surface or within the fiber interior. As one might expect strength statistics may vary from
spool to spool within the same lot. But more interesting, fibers differ in properties across
a yam. This is because the processing conditions from hole to hole in a spinnerette
through which the fibers were originally extruded are not identical, and a fiber may have
a common microstructure along its length, but slightly different from its lateral neighbor.
Typically one finds that a Weibull weakest-link model works quite well but not over all
length scales and not without the need for modification.

For a given spool and a given location along a spool (spanning say a few yards of yarn),
the following version of the Weibull model for fiber strength often works quite well.
Suppose we sample fibers from across a yarn and tension test them at arbitrary gage
length I relative to some reference length t0. Experiments show that over a range of
gage lengths I, the distribution function for strength accurately follows the Weibull
distribution

F(a;C) 1 - exp{-(t/l0)a(a/ato)P}, a>0 (1)

where a is fiber stress, t is the actual fiber gage length, to is a convenient reference
length, a[o is the Weibull scale parameter for strength measured at reference length to, p
is the Weibull shape parameter for strength, and a is a parameter satisfying 0 < a < 1.
Note that the strength versus length relationship is given by

°t ot0(to/t)a/p (2)

where the exponent is not the usual 1/p.

When fiber segments are sampled from along a given fiber it often occurs that the model

E(o;t) 1 - exp{-(t/t0)(o/Qto)p*}. o^0 (3)

works well with p* p/a, though g[0 would vary from fiber to fiber. The strength versus
length relationship is then given accurately by

St 2to(to/t),/p* (4)

as expected. (The theoretical underpinnings of the above 'empirical' model are
discussed in Watson and Smith [10] both for fibers and composite strands.) Figure 1 shows
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Fig. 1. Strength data for Hercules AS-4 graphite fiber on Weibull coordinates (Ref. [14])

experimental data for Hercules AS-4 graphite fibers tested at gage lengths I of 1 and 20
cm. For this fiber we find p 5 and a 0.6, p* 8.3 and » 4,500 MPa.

The question arises as to how well the model works with respect to extrapolation to
much longer or shorter gage lengths of AS-4 fiber. Experience shows that reasonable
extrapolations are possible down to I 0.25 mm, which is approximately the effective
load transfer length for fibers in a graphlte/epoxy composite. At that length, the scale
parameter for strength would be in the vicinity of 7,000 MPa, but further decreases in
length may not produce the anticipated increases in strength. For IM-6 graphite fibers in
this situation, it turns out that a rolloff in strength and rapid increase in Weibull shape
parameter may already occur at such lengths [9]. The extrapolation works well for
longer lengths of AS-4 graphite fiber also, up to perhaps 100 cm. At that length, the
scale parameter would be about 2,600 MPa but the strength my drop of more rapidly at
even longer lengths than eqn (4) predicts often accompanied by a sudden drop in
Weibull shape parameter. So the model reasonably covers a strength range varying by
a factor of almost three and a length range of over three orders of magnitude.
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This model works well for the AS-4 graphite fibers at hand, but one finds great variety
particularly in the value of a. For Kevlar 49 we find p « 8 and a » 0.4. For Hercules IM-6
fibers we have found a - 1.0 over a limited range, but tending actually to drop to 0.8 for
longer lengths. Moreover, values vary from spool to spool even in the same production
lot. For spectra fibers one finds a - 0.1 with only a very mild length effect at least up to
several centimeters. For most fibers one finds 'drift' in the model in that the Weibull
shape parameter will drift continually downward to smaller values as the length is
increased starting with aspect ratios of about 40. This behavior is well known for glass
fibers and we have seen it also in Hercules IM-6 graphite fibers and boron fibers.

Thus, our experience is that for the strength of single fibers one must anticipate the need
for models of the form

F(a;t) 1 - exp{-g(C/[0)A(a/oIo)}, a^0 (5)

where g(t/t0) and A(o/oi0) are a quite arbitrary functions not necessarily well
represented by simple power forms leading to the usual Weibull distribution. Power
approximations to A(ct/O[0) for smaller and smaller values of stress may require smaller
and smaller exponents leading to smaller Weibull shape parameters for longer and
longer lengths. Even for very large aspect ratio,s g(C/C0) » [/t0 may not be the
appropriate model for fibers in a bundle as the fibers have consistent differences in
properties. We believe the same situation will occur for steel wires in a bundle as one
must be concerned about the manufacturing homogeneity and source of the wires.

The statistical theory of extremes suggests to us that there are only two limiting
distributional forms, namely a Weibull form or the double exponential (Gumbel) form
useful for tensile strength. But this can be a misleading concept as the above example
shows. One must be prepared for well behaved possibilities that don't conform nicely to
a Weibull or Gumbel model. In fact, we have a well developed lattice model for failure
[11] with weakest-link properties but where a simple well behave distribution is far
superior to a Weibull or Gumbel approximation at all lengths and especially in the lower
tail. The simple Weibull model is not always a good approximation for a fiber in a given
application since in a composite material where load sharing takes place, many length
scales and stress ranges may be important simultaneously. Nevertheless in analytical
models of systems involving load-sharing the Weibull model can give us considerable
insight.

2.2 Experience with the Strength of Simple Composites
Armed only with such statistical models for fiber strength, what can be said immediately
about the strength behavior of a fiber/epoxy composite? Short of bounding the strength
from below, the answer is very little! To see this, we consider a simple graphite
fiber/epoxy strand made from impregnating a graphite yarn with epoxy. A typical
laboratory specimen might be 20 cm long and have 10,000 fibers in its cross section, yet
it is still smaller in diameter than a shoelacel The total length of fiber in strand is now
200,000 cm or 2 kilometers. In fact, a key characteristic length in the composite is the
effective load transfer length for a fiber in the epoxy matrix, being of the order of 40 fiber
diameters or 0.25 mm. There are 8 x 106 such fiber elements in our composite strand.

If we apply the above Weibull model, eqn (1) and assume that the composite fails when
the first fiber fails, we might predict by extrapolation that the strength of the composite
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parameter 4,500x(200,000)H0.6)/5 MPa 1,040 MPa. Experiments show, however, that
this prediction is false. In fact, the strength of such strands will follow approximately a
Weibull distribution with a shape parameter of about 30 and a scale parameter of close
to 4,500 MPa (fortuitously the value for 1 cm fibers). Furthermore if the strand length is
increased by a factor of say 10 to 100, say, the strength will decrease very slowly
approximately in proportion to t-o-^30, which is almost unmeasurable by experiment.
What this means is that in a composite loaded say to 2,800 MPa there will be many fiber
breaks ~ of the order of one in every 50 cm of fiber in the composite; this is of the order
of a total of 4,000 fiber breaks in the strand, yet at this load the composite has survived
nicely I In fact the probability of failure is lower than 6.6 x 10"7. The presence of a
huge number of fiber breaks Is consistent with high reliability.

There are two points: First, breaks may be monitored by acoustic emission in an attempt
to predict impending composite failure, but experience has shown this to be largely an
unproductive exercise. These breaks and for that matter the strengths of the weakest
fibers tell us little about the strength performance of the composite, and are not a reason
for its removal from service. Second, for prediction in the lower tail of the composite
strength distribution, there is no need to characterize the strength of fibers beyond a
length of 50 cm. In fact our models show that the fibers could actually be discontinuous
with a mean length of about 10 cm, and the strength distribution for the composite would
be negligibly altered. This is the power of fiber load-sharing through the matrix.

Over the past few years we and others have worked on the development of chain-of-
bundtes probability models to explain the above behavior. The basic idea is that the
above composite strand can be partitioned into a chain of short bundles with each
bundle having length equal to the effective load transfer length for a broken fiber next to
an intact fiber in the epoxy matrix, which transfers the load through shear. This length is
of the order 0.25 mm in the above example. Fibers within these bundles then share load
according to a load-sharing rule which assigns the loads of failed fibers mostly onto the
nearest surviving neighbors. This produces what amounts to a local redundancy and
the composite will fail once a critical cluster of a few broken fibers develops which then
becomes unstable. References for such models are Harlow and Phoenix [11] and Smith
et al. [12] particularly the references therein. Phoenix and Tierney [13] consider such
models in the setting of time dependent failure and fatigue adaptable to steel cables.

An interpretation of the above Weibull-like result is that the composite strand fails once a
critical cluster of about six fibers develops, and the Weibull shape parameter for the
composite, pc turns out to be 6x5 30. The effective Weibull scale parameter for the

composite, ac, is determined from the load-sharing in a fairly complex way [14]. We can
write the approximate Weibull model for the composite as

Fc(o; t) - 1 - exp{-(a/ac)?c}, o^0. (6)

Yet if we increase the length of the composite (or for that matter its width) the model
predicts that the shape parameter will actually increase very slowly aproximately in
proportion to the log of the volume (since as the strength drops the critical cluster size
grows). This increase occurs despite the fact that the fiber shape parameter decreases!
Furthermore the Weibull distribution actually overestimates the probability of failure in
the lower tail consistent with an increasing Weibull exponent applicable to that region.
This is not just a prediction from the model. All experiences with composite
structures, orders of magnitude larger than the laboratory strand under
discussion reveal that these general features are valid.
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2.3 An Example of a 4-fibsr Composite 'Cable'

The number of fibers in the cross-section of a typical commercial yam (a thousand or
more) or the number of characteristic fiber elements in a small composite strand (at least
10®) are orders of magnitude larger than the number of wires or wire elements in a
typical steel cable. Thus one may attempt to argue that the above models and ideas
have limited relevance, especially the benefits of load-sharing among elements. This is
not true. In fact most of the benefits of localized load-sharing are realized with the
interaction of very few fibers, and the effective degree of interaction actually grows as the
log of the total volume, which is very slowly. For more global load sharing, the benefits
grow even faster. The following experimental example [14] makes the point.

We have fabricated miniature composite 'cables' consisting of four AS-4 graphite fibers
in parallel in a square cross-section and held together by an epoxy. The fibers were
closely packed and the epoxy not only filled in the voids but also formed a fairly thin
layer around the fibers. The epoxy volume fraction was about 30%. Specimens were
fabricated for tension testing at two gage lengths, 1 cm and 20 cm. Note that these
specimens had a diameter of about 16 pm (much less than a human hair so they would
be useful as cables only to insects!) so that their aspect ratios were about 600 and
12,000, respectively. From a chain-of-bundles model point of view, the effective load
transfer length, S, among fibers in a cross section is about 0.15 mm, so the number of
bundles, m, in the chain model is about 66 for the 1 cm specimens and about 1,333 for
the 20 cm specimens; the total number of fiber elements 4m were 264 and 5,280
respectively. Figure 2 is a schematic of the composite including load-sharing
configurations.

2 m

5 S - Rber Element Lengt

m « Number of Bundles

Fig. 2. Schematic of 4-fiber composite cable and load-sharing model (Ref. [14])
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According to theory [14], we expect to see the emergence approximately of Weibull
distributions of the form

Flk!(a) - 1 - exp{ - 4mOt(a/08,k)kp}. a ^ 0, (7)

for the strength of the composite where k 1,2,3 and 4, p is the Weibull shape parameter
for the fiber, and a is a parameter discussed earlier in connection with the fiber. Also

os.k o8(dk)"1/(kp). (8)

where

di 1, 02 " 3(4/3)P, d3 » 6(4/3)P(2)P, d4 « 6(4/3)P(2)P(4)P (9)

captures (approximately) the effect of load-sharing factors and configurations, and

o5 oto(C0/5)a/p (10)

is the characteristic Weibull strength (scale parameter) for a fiber element of length 8.
For lower and lower stress ranges, these Weibull distributions will apply in succession,
where, k « 1 applies roughly for 3os/4 < er, k 2 applies roughly for 05/2 < a < 3o$/4, k 3

applies roughly for as/4 <a< 05/2 and k 4 applies roughly for 0 < a< as/4. Note that k
1 corresponds to the strength of the weakest flaw in all four fibers, that is, the first fiber

break or a 'weakest flaw' view of failure of the composite.

Figure 3 demonstrates that these features are largely observed in the experimental data
for these composites [14]. The various lines are the Weibull distributions of eqn (7) for k

1, 2, 3 and 4 and m 66 and 1,333 for the two cases. For the calculations we have
taken a 0.6 and p 5 as in Figure 1, and 5 0.15 mm for which, we have 05= 7,500
MPa. The interpretation of the plots is that k is the critical cluster size (number of
adjacent fiber breaks required for collapse) for that stress range. Clearly the
composites do not fail with the first fiber failure. For the 1 cm composites, perhaps only
the strongest specimen failed when one fiber failed, many of the remainder required two
adjacent breaks, and the weakest few required three breaks to cause collapse. In fact in
the extreme lower tail, the appropriate Weibull distribution will have k « 4 with Weibull
shape parameter 4p 20.

For the 20 cm composites the fit is not quite as good, but it can be greatly improved by
choosing 8 0.25 instead of 8 0.15. The appropriate Weibull distribution modelling the
extreme lower tail has shape parameter pc 20 and scale parameter ac 2,850 MPa
calculated from eqns (7) to (10) in view of eqn (6). The stress level producing a 10'6
probability of failure is about 1,450 MPa. In this case failure requires four adjacent
breaks prior to collapse. Incidentally Figure 1 shows that we have sufficient data on
fibers to be confident of the fiber strength at that stress level. We do not need to know
basic fiber statistics at extremely low probabilities of failure or extremely long lengths.
Although we can never make and test enough specimens to prove the point (although
filament wound pressure vessels with 10s times as much material behave as predicted)
we are confident of these reliability predictions for this microscopic cable.
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Fig. 3* Strength distributions for a composite 'cable' of four AS-4 graphite fibers in an
epoxy matrix plotted on Weibull coordinates for two gage lengths (Ref [14])

3. THE PROMISE OF BUNDLE AND CHAIN-OF-BUNDLE MODELS FOR CABLES
FATIGUE SETTINGS

Apart from the attempts described earlier [2-7] there are various bundle models and
chain-of-bundles models ready to be adapted to steel wire bundles and cables for
purposes of reliability prediction in fatigue. Phoenix [16] describes a bundle model of
great flexibility, though it has seen little application thus far. One example of importance
in the case of glass fibers is due to Kelly and McCartney [16]. This model should be
adaptable to the wire fatigue model described in the introductory lecture of Castillo and
Fernéndez-Cantelli. Other versions are also discussed by Phoenix [17] and [18]. Singlefiber models are used to interpret experimental data in Wu et al. [19]. Smith and
Phoenix [20] and Pitt and Phoenix [21] give various static and time dependent cases of
the model applicable to cable systems.
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As pointed out by Castillo and Fernândez-Canteli in their introductory lecture, these
models often lead to various limiting or approximating distributions for fatigue strength
and lifetime, including Weibull, Gaussian and Gumbel distributions. In some important
cases, however, other distributions arise [11] with far more power to model the extreme
lower tails of interest in high reliability requirements. This power may be diluted by
attempting to generate a classical extreme value form, especially when such is
unnecessary.

Such models can help us identify not only what is theoretically possible but also what
may actually be unimportant to our goal of reliable and efficient cables. Models can also
help us identify strategies for structural and materials design and engineering in order
to focus on innovative solutions to the key problems that are identified. In the process of
failure in a typical laboratory fatigue test such models may put into perspective the value
of data on wire failures along the way. It is not clear that current practises, particularly as
they pertain to acceptance/reject standards, bear much connection to the performance of
the extreme lower tails of distributions. This perhaps was the most important point
raised in the analysis of Stallings [5]. It is clearly a point in our 4-fiber cable example.
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SUMMARY
A continually occurring problem of engineers when designing components of structures is the availability of proper
design values. In the literature, test results are documented for many different materials, but in rare cases only can
values concerning the fracture or survival probability be found. In this context a statistical model is presented which
enables the engineer to analyse test results and extract the design values with required fracture probability from a
Wöhler-field. This model is applied to test data for reinforcing steel of different length and the results of the analysis are
discussed.

RÉSUMÉ
La disponibilité des valeurs caractéristiques des matériaux pose un problème perpétuel à l'ingénieur pour le dimension-
nement des éléments de construction. On trouve bien dans la littérature des résultats d'essai pour les matériaux les plus
divers, toutefois les valeurs de probabilité de rupture ou de survie ne sont données que dans de rares cas. Dans ce
contexte, le modèle statistique présenté permet à l'ingénieur d'analyser les résultats d'essai et de tirer les valeurs de
résistance nécessaires avec la probabilité de rupture demandée du diagramme de Wöhler. Ce modèle a été appliqué aux
résultats d'essais effectués sur des aciers d'armature de longueurs diverses et les résultats des calculs sont discutés.

ZUSAMMEMFASSUNG
Eine immer wiederkehrende Problematik des Ingenieurs bei der Auslegung von Strukturbauteilen stellt die
Verfügbarkeit der benötigten Materialkennwerte dar. In der Literatur sind wohl für die unterschiedlichsten Materialien
Versuchsresultate dokumentiert, jedoch in den seltensten Fällen finden sich Angaben über die Bruch- oder
Überlebenswahrscheinlichkeiten. In diesem Zusammenhang wird ein statistisches Modell vorgestellt, das dem

Ingenieur erlaubt, Versuchsergebnisse zu analysieren und die benötigten Festigkeitswerte mit der geforderten
Bruchwahrscheinlichkeit dem Wöhlerfeld zu entnehmen. Dieses Modell wird auf Versuchsresultante von Armierungsstahl

unterschiedlicher Länge angewendet und die Berechnungsergebnisse werden diskutiert.
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1. INTRODUCTION

Since mechanical structures were used more and more to move people quickly between
different locations the problem of fatigue (metallic materials under repeated loading tend to
fail after a certain number of cycles) became obvious. Especially when human beings lost
their lives during accidents caused by fatigue, discussions started again about structural
safety or probability of failure.
It is not new that for materials exist no accurate correlation between load level and cycles
to failure. Whenever material is tested under dynamic loads, results (cycles to failure)
always show an amount of scatter.
Depending on the number of tests a failure probability can then be related to each test
result by means of statistic calculation.
If these results shall be used for a fatigue analysis it is desirable to choose a value which
corresponds to a low probability of failure or a high probability of survival respectively.
Therefore engineers need more detailed information on the material with respect to failure
probability.

2. CURRENT DESIGN SITUATION

Usually when engineers are developing structural components finite element analyses are
involved in a very early stage to get an idea of the stress distribution in order to be able to
optimise the design. Not only for static but as well for dynamic (fatigue or fracture)
analyses material data is very important. A lot of data was collected in literature but for an
actual design task in most cases the needed data can't be found because metal alloy
doesnt match exactly, the heat treatment is different, or testing was performed for an
other kind of loading etc. If material data can't be found in literature a company has to
perform tests by itself or give an order to an external laboratory. These fatigue tests are
expensive and so it's important to get a maximum of information out of a few tests.
Nowadays material data derived from laboratory are applied often for strength analysis
without taking into consideration shape or size effects (Fig. 1). In other words, an
extrapolation of material data from laboratory conditions to reality is rarely carried out.
The size (length) of the specimen used in the laboratory is normally not comparable with a
real structure. This effect may have considerable influence on fatigue life predictions.
When testing e.g. longer specimen the probability of the occurrence of larger cracks
increases and therefore the fatigue lives decrease [2].
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Fig. 1 Everlasting problem of engineers

3. OBTAINING MATERIAL PROPERTIES

3.1. Performing Wöhler-testinq

Material data describing fatigue life are determined normally by carrying out Wöhler-tests
(Fig. 2). The size influence mentioned above is associated with the specimen geometry
used for testing. This aspect will be discussed in the next chapter.
In order to obtain a proper shape of the Wöhler-curve the definition of the number of load
levels on the one hand and the amount of the loads on the other hand are very important.
It should be emphasised that the range of load levels should cover the stresses the
engineer is interested in. Extrapolations of Wöhler-curves to values beyond the tested
range should be avoided, especially in the range of high cycle fatigue, estimations of curve
trends may lead to serious errors.
Beside the fracture probability related to a number of cycles to failure there is an other
statistical value which defines the certainty for the fracture probability to be true. This
statistical value is called the confidence level. Statements for material behaviour are
usually expected to have a high confidence level (e.g. 95%). This can be obtained by
performing numerous tests per load level. Of course many tests cost a lot of time and
money. So again a compromise has to be made to get a satisfactory confidence level and
to keep the costs low at the same time.
The relationship between testing time (test frequency) and test costs is quite obvious.
What is not well known, is the aspect that the test frequency also may have an influence
on fatigue life i.e. on the number of cycles to failure. What kind of effects become active
when increasing the frequency has not yet been clarified but test results at EMPA for
prestressing wire showed longer lives for tests with a higher frequency [3].
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To minimise time and cost for testing, a final aspect has to be taken into consideration.
When testing in the region of the endurance limit (if there exists one), it is favourable to
define a limit number of cycles beyond that a test may be aborted. This value is called
runout limit and specimen which have run through that limit are treated as "real" runouts.
The difficulty of course is to define the value for that boundary because a specimen might
fail a few cycles after that limit and doesn't therefore represent a runout. As discussed in
chapter 6.2 the choice of this value may influence the evaluation of fatigue data.
So it seems to be reasonable to set the limit beyond the region of cycles the engineer is
interested in.

Specimen
geometry

Wöhler
Testing

Number of load
levels

\
Proper

curve shape

\ OTMFOÛ'IMCE

Number of tests
per load level

\
v \

Failure
probability

vv

Frequency

V Testing
time

Runout
limit

Fig. 2 Load controlled Wöhler-testing

3.2. Size effect

In order to perform Wöhler-testing a convenient specimen should be designed. In this
context the geometry of the specimen need to fulfil some limitations which are shown in
Fig. 3 below.
First of all the technical specifications of the testing machine in the laboratory (i.e. the
proof length and the load capacity) usually force the designer of the specimen (depending
on the problem) to deviate from reality (the specimen cannot be that long or wide as the
real structure because it won't fit into the machine or the loads become too large).
As a second aspect the available facilities are often not able to manufacture the
specimen's geometry.
Finally there are international standards which should be taken into consideration because
testing results may then be comparable to data measured elsewhere.
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All these limitations (beside the cost for manufacturing complicated surfaces) may lead to
specimen geometries which differ more or less from the real component of a structure. A
detailed investigation on the size effects between specimen and real structures can be
found in ref. [4],

Fig. 3 Different aspects influencing the specimen's geometry

4. USAGE OF WÖHLER-DATA

Wöhler data coming out of laboratory represent in most cases a summary of fatigue lives
(number of cycles to failure) derived from testing specimen. In order to get an idea of the
data, an engineer needs to create a graphical representation as show in Fig. 4.

In practice there will scarcely be such a large number of data available. However, the
required design values have to be extracted out of a chart like this to carry out fatigue
analysis and this characterises the problem many engineers have to deal with.

Looking at the example in Fig. 4 some material dependent characteristics may be pointed
out for this Wöhler-field:

- For this material, an endurance limit seems to exist.
- A non constant character of scatter can be recognised for different load levels.
- The median curve (50% of failure probability) is non linear.
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Still, two important informations are missed in Fig. 4:

- How do the curves for different failure probability Pb (Pb=5%, 10%, 50%, 90%,
95%) look like

- What is the influence of the length

b
<

390

380

360

350

Fig. 4 Good experimental background

Just for illustration, some fatigue data of reinforcing steel measured at EMPA are
presented in Fig. 5 to demonstrate the existence of a length influence:
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Wöhler-Diagram for reinforcing steel / o16 mm

Cycles to failure

Fig. 5 Length influence for reinforcing steel

The material characteristics and the lack of information concerning failure probability
mentioned above can be handled by a statistical model which is presented in the following
chapters

5. STATISTICAL MODEL FOR EVALUATING WÖHLER DATA

5.1. Development of the programme

A mathematical model for analysing data of wires, strands and cables, based on statistical
requirements (compatibility, stability and limit conditions) was developed by E. Castillo and
co-workers at the University of Santander, Spain The methods, procedures and the
theoretical background of the model was published in a 1ABSE Periodica already 1985 [1].
A computer programme of this model was first implemented for Macintosh but later
rewritten for DOS-environments by F. M. Rodrigez at the Technical University of Gijon in
1989. This DOS-programme was sent to EMPA in 1990. For practical reasons this release
was adapted and modified at EMPA. Thus, this new version will be discussed in the
following chapters
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5.2. Programme modifications

The statistical programme "ZURICH" received from the University of Gijon was written in
Turbo Pascal 5.0 and for dialogues, error messages and help texts the Spanish language
was used.
In order to understand all the modules and auxiliary files of the programme a translation
into the German language was carried out. Additionally an English version was written for
more general use. During translation the programme's name was changed to "FANOW"
(Fatigue ANalysis Of Wires).
Applying the programme to practical fatigue data some of the input routines have been
improved by adding default statements or keeping values already entered before. It
became also obvious that some input procedures are not needed if the programme is
used for more than one data set evaluation. Therefore the general programme's execution
was simplified in a way that users may skip input routines for values which shouldn't be
altered. In the meantime Turbo Pascal 6.0 was released, so the programme has been
adapted to this newest Pascal version in spring 1992.
When trying to output diagrams on a printer the corresponding procedures showed not to
work correctly for the used EPSON LQ-500 printer. Modifications within the initialisation
and formatting commands solved these problems. In addition to that output of diagrams
are also foreseen for pen plotters, but the procedures used to perform this task have not
yet been tested.

5.3. Statistical model

This chapter is intended to give just a general idea of the programme's evaluation
methods. For detailed theoretical information the reader is referred to ref. [1,5].

Initial for the programme to work correctly, is the availability of numbers of cycles to failure
for at least three different load levels. Otherwise the programme will crash.

One of the fundamental theoretical findings is the fact that data in the Wöhler-field follows
the Weibull distribution. In a first step the measured data are used to calculate the
parameters (constants) of the Weibull-distribution to define its shape, one of the most
important value. Beside this, also an endurance limit as well as an asymptotic limit of
numbers of cycles to failure results from this calculation. With the known Weibull-
distribution the model allows to determine a set of different failure probability curves
(hyperbolas, see below), which may give the engineer the required and important design
values as shown in Fig. 6.

A: Weibull shape or slope parameter
B: Asymptotic N limit
C: Endurance limit
D: Scale fitting parameter obtained for chosen reference length U
E: Constant defining S-N threshold curve (zero probability of failure)

For P=0 and L=e => Hyperbolas
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Fig. 6 Statistical model

As already mentioned in chapter 3.1 testing cost may be saved by defining a low runout
limit. Information of runouts are incomplete and contain an uncertainty concerning the
aspect if the specimen would fail or not. The programme FANOW assumes that the
specimen will fail some time later and tries to predict the number of cycles this failure will
happen.
The user just has to specify within the data set the number of cycles to failure which
represents this runout limit. Using the Weibull-distribution, determined before, the
programme extrapolates these runouts by calculating an estimation of a number of cycles
to failure for each runout and associates these numbers to the corresponding runouts
(Fig. 7).
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x Failure

o—Run-out
A Assigned N*-values to

run-outs at the end of
the E-step

N0 ~N
limit number of cycles

Fig. 7 Considering runouts

6. PRACTICAL EXAMPLE

6.1. Length influence on fatigue data of reinforcing steel

Bars of reinforcing steel (0=16mm) have been tested at EMPA for three different length
(L=160mm, L=500mm, L=10440mm) at up to five stress levels (Ao=200N/mm2,
Aa=220N/mm2, Aa=250N/mm2, Aa=300N/mm2, Aa=350N/mm2). An upper stress limit was
kept constant at au=400N/mm2. Three test frequencies (f=2.5Hz, f=3.5Hz, f=10Hz) have
been used for testing. The influence of the different frequencies was considered as
negligible (the differences are small).
In order to evaluate the measured fatigue lives, three different data sets (one for each
length) have been created for the programme "FANOW". The results of the analyses are
plotted in Fig. 8 to 10.

The measured numbers of cycles to failure (test data) are represented in the Wöhler-field
by unfilled squares, whereas the filled squares mark the extrapolated runouts.
Accordingly, the vertical dotted line shows the chosen runout limit of 2-106 cycles [6].

As main result of the programme's evaluation a field of failure probability curves
(hyperbolas for Pb=1%, Pb=5%, Pb=50%, Pb=95% and Pb=99%) can be found on these
plots.
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Fig. 8 Evaluation of reinforcing steel, L 160 mm

Fig. 9 Evaluation of reinforcing steel, L 500 mm
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REINFORC. STEEL 0-16mm | CTU=400MPa, f=2.5/3Hz, L=10440mm
Dataset : 3Delta a
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Fig. 10 Evaluation of reinforcing steel, L 10'440 mm

Fig. 11 Length influence for reinforcing steel (L=160mm, 500mm, 10'440mm)
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7. CONCLUSIONS

Based on the experience made during evaluation of fatigue data for reinforcing steel this
statistical model turned out to be a valuable tool for processing and presentation of
Wöhler-test-data. However, it should kept in mind that the model is still in development. As
pointed out in the former chapter the user should avoid trying to extrapolate data beyond
the range where Wöhler-testing was carried out due to the sensibility of the model to the
number of load levels as well as to the choice of the runout limit.
During development of the statistical model an assumption (simplification) was made to
derive a solution from a functional equation. This assumption consisted of setting the
Weibull-slope-parameter constant for the whole range of loading. One of the future tasks
is to discuss in detail the influence of this simplification.
An other open question is the circumstance, that there seems to be no or little influence of
the number of tests per load level on the estimated probability curves. In order to
demonstrate the difference of just a few test results per load level compared with many
tests on the same level a confidence interval for each failure probability curve should be
included into the model. The more test results the engineer has for evaluation the
narrower the confidence interval for one failure probability curve will be. This problem is
worth to pay attention to in future work.
The programme "FANOW" as well is still in development. By the moment evaluations can
be carried out just for the actual test length. Future improvements of the code are planned
with the object of being able to alter the length and predicting the new Wöhler-field based
on the measured data set.
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SUMMARY
A statistical approach, based on the independence assumption, is proposed here for the consideration of the length
effect on the fatigue resistance As a limiting condition for its applicability the test length must experimentally demonstrate

to be longer than a certain threshold length. The validity of the model is currently being tested in two experimental

programs on wires and prestressing steels In spite of the promising results obtained, more research is needed for
its general application in design

RÉSUMÉ
On propose ici un modèle statistique, fondé sur l'hypothèse d'indépendance, pour l'étude de l'effet de la longueur sur la

resistance à fatigue. La condition d'applicabilité de cette approche implique de vérifier expérimentalement que la longueur
d'essai dépasse celle d'une valeur de seuil La validité du modèle est actuellement à l'étude dans deux programmes
expérimentaux sur des fils at des aciers de précontrainte En dépit des résultats prometteurs obtenus jusqu'ici, il est
nécessaire de continuer la recherche si l'on envisage une application ultérieure dans la pratique du dimensionnnement

ZUSAMMENFASSUNG
Auf der Grundlage der Unabhangigkeitsvoraussetzung wird ein statistisches Modell zur Berücksichtigung des
Langeneinflußes auf die Ermüdungsfestigkeit vorgeschlagen Als Vorbedingung fur dessen Anwendbarkeit muß
experimentell nachgewiesen werden, daß die Testlange einen bestimmten Schwellenwert ubersteigt Die Gültigkeit des
Modells wird derzeit in zwei experimentellen Programmen an Drahten und Spannstahlen überprüft Trotz der vielversprechenden,

bisher erhaltenen Ergebnisse ist weitere Forschung bis zum Einsatz in der Bemessungspraxis notig
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1. INTRODUCTION

It is generally accepted that the fatigue life of longitudinal elements is conditioned by the existence of flaws
along its surface, derived from the manufacturing process, handling and storage. If the random distribution
of the flaws shows no correlation along the element, the fatigue resistance of neighbouring pieces can be
assumed to be independent and, as a consequence, the fatigue analysis can be based on the hypothesis
of independency.

On the contrary, if such a correlation exists, the dependency effect must not be ignored and a suitable
model which takes into account dependency should be used.

2. THE PROBLEM OF EXTRAPOLATION

In order to assess of their fatigue properties, many mechanical and structural elements cannot be tested
on a real scale because of the high costs involved or even due to physical impossiblity. This is the case of
very long elements such us crane ropes, tendons in cable stay bridges or similar structures. Consequently,
prediction of the fatigue resistance for long elements must follow on from extrapolation of test results
usually obtained for short or very short specimens. This means that the fatigue life of one element of
length s is the minimum fatigue life of s/r independent elements of length r in which the former is
hypothetically divided.

Therefore, the survival function for the element of length s can be derived from the survival function of the
element of length r (r > s) by means of the expression:

Gs(x) Prob(Xs>x) l Prob(Xr>x)ls/r=IGr(x)ls* (1)

Xg and Xr being the fatigue lives of the two elements.

However, several experimental studies [1, 5, 11] evidence the non-validity of the independence model for
extrapolation of fatigue life gained from short specimens in order to obtain the fatigue life of larger
elements. To the contrary, extrapolation based on relatively large elements seems to lead to good results
[5]. This fact has been theoretically justified since unless strong dependence exists between the
strengths of neighbouring pieces, the asymptotic behaviour is that of independence [2,10].

According to [6], the transition between the dependence and independence assumption is governed by a
certain threshold value of the length, say s0, beyond which extrapolation based on Eq. 1 is valid. This will
be further discussed in the following section.

3. SUGGESTED MODEL AND ITS JUSTIFICATION

Without theoretical justification, Bogdanoff and Kozin [1] suggest the expression:

Gs(x)=IG/x)lk(s'r) (2)

for general conversion of the survival function of one specimen of length r into that of another larger one,s,
still within the dependence domain. The function k(s,r) is an unknown function to be determined
experimentally (see Fig. 1). If independence holds, then k(s,r) s/r and Eq. (2) becomes Eq. (1).
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k(s, r)

xs,'o

Fig. 1 Function k(s,r)

The validity of Eq. (2), at least within a certain range, has been confirmed by analyzing experimental fatigue
results in visoose yam of differing length [11],

Assuming the number of flaws in a longitudinal element to be a nonstationary Poisson's process of
intensity X(s), Castillo et ai.[6] developed a statistical model which takes into account the influence of the
manufacturing process on the lifetime of the piece from which the survival function is found to be:

where m(r) measures the frequency of appearance of flaws and F(x) represents the lifetime of a single flaw,
respectively. The uniqueness of a c.d.f., F(x), as representative of all possible flaws can be reasonably
accepted according to the Fracture Mechanics approach.

Consequently, the survival function for a different, s, is governed by

By means of the functional equation theory [8]l it can be shown that m(s)/m(r)=k(s, r) and Eq. (4) is identical
to Eq.(2).
The model includes the case of independence, for which m(x)=x, and also the case of asymptotic
behaviour, in which Fs(x) goes over into that of independence [12] and the following equation holds:

Gr(x) lexp (- Rx))l m<r> (3)

Cyx) 10^)1 m(s)An(r) (4)

m(nAs) / m(As) <» (5)

where As is the length of a piece: so that

GnAsW=,GAsM|n (6)

The model comprises still the B-model of Bogdanoff-Kozin, the statistical inconsistencies of which have
been pointed out in [3],Thus for large n
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and

GnAsM IGteM|k <8>

this means that alter some given length the size effect vanishes (the so called saturation effect). However,
neither statistical justification for saturation exists, nor experimental evidence for it has been glimpsed in

the two test programs reported in the following section.

Because of the asymptotical confluence of k (s,r) into k=s/r, the determination of the threshold value sQ,

mentioned in the above section, has only academic significance in research. The extrapolation of the
results using equation (2) are hence possible as soon as it can be experimentally proved that k

corresponds to the independence domain.

Now a general fatigue model such as the Weibull regression model suggested in [5,7], can be used in

order to describe the Wöhler-field as a whole, thus allowing the extrapolation for designing both length and
number of cycles to failure (estimation of the endurance limit).

4. EXPERIMENTAL PROGRAM

Two experimental programs have been launched in order to validate the possible use of the
independence model for extrapolation by testing long enough elements:

4.1 Prestressino steels

This program has focused on the study of fatigue properties of prestressing steel (wires and stands) with
relation to length and started out as a collaboration between the ETH-Zürich, the EMPA Dübendorf, and
the Spanish Universities of Cantabria and Oviedo.

The aims of the study are:

- To corroborate the usefulness of the independence model for extrapolation of fatigue test results for
both prestressing wire and 7-wire prestressing strands, verifying at the same time that the chosen minimal
length hassurpassed the hypothetical threshold length.

- To ascertain that the study of dependence-independence is unrelated to the stress range since the
fatigue behaviour is assumed to be conditioned solely by the initial flaw distribution in the element. This
would lead to the possibility of recommending a high stress range for testing in order to reduce the test
duration.

- To study the influence of the test frequency in order to confirm or reject thepossibility of extrapolating
fatigue results obtained from tests at high frequency with very short specimens.

The tests were been carried out at the EMPA Dübendorl (Swiss Federal Laboratories for Material Testing
and Research) .Results are given in Tables 1, 2 and 3. A detailed description of testing and devices is
given in [9].
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Specimen
number

Number of cycles
to failure
in thousand)

Specimen
number

Number of cycles
to failure

(in thousand)

l 64 1 92

2 70 2 93

3 84 3 109

A 99 4 116

S 105 5 125

6 110 6 129

7 117 7 132

8 133 0 134

9 151 9 135

10 163 10 135

11 199 11 138

12 201 1? 188

13 266

f 62 Hz f 3,5 Hz

Table 1 Fatigue test results for the study ol the influence of the frequency In wires

Specimen
number

Number of cycles
to failure
in thousand)

Specimen
number

Number of cycles
to failure

in thousand)

Specimen

number

Number of cycles
to failure

(in thousand)

205 1 206 143

225 2 206 2 179

<3

256 3 237 200

266 4 257 209

268 5 260 5 210

6 279 6 272 6 216

- 283 7 276 216

e 293 6 30? a 222

9 300 9 318 9 223

'0 521 10 331 10 225

1 : 1709 n 365 n 225

>2 1762 12 393 12 236

ij 2303 13 403 13 279

14 4230 14 413 14 303

15 824 15 315

16 325

' 1.04m 1=2.03m 1=10,40m

Tabte.2 Fatigue test results for the study of the influence of the length in praetressing strands
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Specimen
number

Number 01 cvcles

to failure
thousand)

Specimen
number

Number el cycles
to failure

in thousand)

i 49 i 153

2 53 2 162

3 56 3 165

4 59 4 190

5 60 5 229

6 60 6 235

7 60 7 237

e 60 6 260

9 60 9 297

10 61 10 804

11 62 11 866

12 63 12 1530

13 1964

14 2000 runout

15 2000 runout

16 2000 runout

AO-700 N/mm2 AO-400 N/nvn2

Table 3 Fatigue test reeutts for the study of the influence of the stress range in wires

4,2 Wires

The initial program on prestressing steels has been extended to another one devoted to the study of
length effect on 0.5mm diameter hipo-eutectoid steel wire.

The goals of this experimental research are:

- To develop a testing device for analysing the influence of length in fatigue tests with the purpose of
minimizing time and costs.

To analyze and compare fatigue results for length/ diameter ratios comparable to the ones in real
structures. This would apport sufficient data for testing the saturation assumption.

To explore at the same time the trend of the k(x)-values for large lengths, probably much larger than the
critical length, beyond which no dependence effect would be expected.

- To ascertain if the dependence study can be limited to a single level, the conclusions from it being
extensive to the whole Wöhler-field

Economical and technical considerations lead to the choice of an electro- mechanical testing device. The
authors intention being to test several specimens simultaneously with the possibility of varying the test
length within a large range (say up to 20 m). Since such a non-conventional machine is not commercially
available it was designed and built at the Dept. of Construction of the University Oviedo (see Fig. 2).
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Rq. 2 Testing device for wires

The way-controlled machine permits simultaneous testing of five specimens in horizontal position, moved
by a step-by-step electrical motor, that allows a steady variation of the frequency (in the present program
frequency was fixed at 2 Hz in order to avoid resonance effects for the thin wire). Depending on the Young
modulus of the material, specimens of up to 20 m may be tested.

The relatively small forces required to strecht the small diameter wires permit the fixation of the actuator
and the end rig frames directly to the floor of the laboratory.

The stress in the wires is measured individually lor each wire by means of extensometric techniques; whilst
the reading of the total applied load is made for the set of the five specimens as a whole. The generated
load wave can be displayed during the test.

Some of the difficulties found using this kind of wire are:

The stress-strain curve of this material exhibits a remarkable linearity, practically without any plastic
deformation. As a consequence, the actual applied maximum stress level and the strength range, being
constant for all the tests, imply, in fact, relative differences in the test conditions for the single wires and
propitiate greater scatter for the fatigue results.

- The relative tolerances in the diameter of the tested wire may be not comparable to the ones in the
prestressing steels, which Incidentally are the main subject of the workshop.

The results for the fatigue life of 2,00 m. and 10.00 long wires are presented in Table 4.
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Specimen
number

Number of cycles
to failure
in thousend)

Specimen
number

Number of cycles
to failure

{in thousand)

Specimen
number

Number of cycles
to failure
iri thousand)

Specimen
number

Number of cycles
to failure

in thousand)

i 55440 13 222362 1 20250 11 95155

2 80458 14 250155 2 39154 12 101164

3 127127 15 253134 3 61197 13 105107

4 129024 16 271344 4 67868 14 111030

5 129906 17 276612 5 70470 15 121638

6 136600 18 282822 6 76340 16 12S096

7 173754 19 315849 7 79206 17 129046

8 190246 20 324955 3 64492 18 134255

9 196329 21 344669 9 94950 19 137057

10 208026 22 351282 10 95030 20 144348

11 221480 23 351282

12 221495

'

l»2.00nt 1* 10,00m

IatiaA

5. ANALYSIS OF RESULTS

5.1 Prestressinq steels

The comparison of fatigue results for two markedly different test frequencies (see Fig. 3) demonstrate
that neglecting parameters considered as secondary, such as the frequency, can lead to a groundless
rejecting of the independence model, if fatigue results for different test conditions are used for
comparison.

The analysis of Fig.4enables us, with certain reservations, to accept the validity of the independence
model for strands, if specimens of at least 2m long are used for testing and ulterior extrapolation. The poor
prediction arising from the fatigue results for 1m long specimens are not conclusive, since, as reported in
[9], surface failures in the outer wires of the strand caused by handling or storage damages are suposed to
be determinant for the shorter lifetime measured. Due to the high rate of run-outs obtained in the wire
tests, no sound results for length effect of prestressing wires has yet been achieved.

No definitive conclusions can be drawn concerning the question of whether „the distributions resulting
from different stress levels should be the same (see Rg.5), the study of independency could hence follow
for a convenient high stress range.
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Number of cycles

Rfl. 3. Fatigue test results on prestressing wire lor differing frequencies <1=0,150m, Ao=700 N/mm2)

Number of cycles

Fig.4. Fatigue test results on prestressing strand for differing length (f=3,5 Hz, Ao=700 N/mm2)

I

I

G -o Celts Slgeis 400

/ f Celts Slgsie 700
f- I 1

i

-1.

104 I0S 106 107

Number of cycles

Fig.5. Fatigue test results on prestressing wire for differing stress range (M),15m, f=3,5 Hz)
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5-2 Wires

The research program is still being followed, so that a comparison can only be made for extrapolation
purposes. The fatigue data obtained for 10m long specimens and the regression line derived from the data
for 2 m. long specimens show a fair agreement. (Hg.6).
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--- / / — -{ {

—- I
I

X }

-} r -O 1 : 1 o m

--»-II On from 2m
-» 1-2 nf

Number or cycle«

Hg. 6. Fatigue test results on, hipoeutectoid wire for different length (f=2Hz, Ao=747 N/mm2)

6. CONCLUSIONS

As general remarks for both experimental programs it can be stated that:

Since the left tail of the distributions, corresponding to the low probabilities of failure (design region), is
determinant for ascertaining or rejecting the initial assumptions, further testing is needed in order to come
to reliable and definitive conclusions related to the presented model.Up till then, tproposed model seems
to be founded on sound assumptions without physical or statistical inconsistencies, and reasonably well
supported experimentally; and herefore acceptable for practical design purposes.

- The graphical representation of the results obtained shows that the different sets of data seem to
follow Gumbel rather than Weibull distributions. This should be clarified in the course of
theongoingresearch. Nevertheless, since, as a regression model with the Gumbel instead of Weibull
assumption proposed in [5]. has been derived by Castillo, (see [2]), and as stated in [4], any Gumbel
distribution can be approximated as closely as desired by Weibull distributions.
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