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Verification and Application of a New Method of Creep Analysis to Structural Members

Vérification et application d’une nouvelle méthode pour |'analyse du fluage sur des
parties d'ouvrage

Uberpriifung und Anwendung eines neuen Verfahrens fir die Kriechberechnung von

Bauteilen
W. DILGER A.M. NEVILLE
Associate Professor of Civil Engineering Professor of Civil Engineering and Head of Department
University of Calgary, Calgary, Alberta, Canada University of Leeds, Leeds, England

We propose to show how data on creep and shrinkage of plain concrete can
be used to calculate the time-dependent deformations and stresses in reinforced
and prestressed concrete members. Using Trost's (1) relaxation coefficient n,
Wwe can write a general expression for the strain (including shrinkage esh(T))

at time T: fo £(T) - fo

e(T) = T L+ e(T,k )] + — I @+ n¢(T,Ko)] + e (T) (1)
o ‘ | T where f, = concrete stress at the
instant of loading Ky,

f(T) = concrete stress at
VALUE o©F tﬂ‘(mdﬁ) -______,_9 time T > Ko,

09 / = ¢(T,Ko) = creep coefficient for
concrete loaded at age

/;f/ Ko with the load sus-

o /// tained till time T.

o8 et . d . .

t [~ //' The modulus of elasticity

i / / / of concrete, E,, is assumed to

% / be constant and equal to the

o 4 / value at the age of application

3 o7 v of stress fs. The relaxation

/ coefficient n takes into account

] the ageing of concrete as well

£ as the variation in stress, which

* o is assumed to follow the creep-

L time function. The value of n
lies between 0.5 and 1.0 and is
given in Fig. 1. This figure
gives not only the variation of

o 3 7 4 08 96 185 Beb n with the age at loading Ko and
AGE AT FRST LOADING , Ko ~ DhYS with the normal creep coefficient

e A e ia s s ¢y (which is the ultimate creep
COBFFICIENT FoR@ AGE AT LOAPING coefficient for K, = 28 days) but

Fig. 1 Variation in relaxation coefficient also for a modified creep
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coefficient a¢y. The factor is introcduced to account for the influence of
reinforcement on creep and is in fact a stiffness coefficient a = §,/(8, + §).
For an eccentrically reinforced uncracked concrete member with one layer of
steel at distance 1 from the centroid of the concrete section, the deformation
of the steel due to a unit force is 6 = 1/A_E; and the deformation of the
concrete due to a unit force applied at the level of the reinforcement is

= (1 + y§/v®)/(A_E,). Thus,

o, 1+ yjz_/r'z)

1+ pn_ 1+ yi/r‘)

o =

(2)

where p is the ratio of the steel area A_ to the net concrete area A ng is
the modular ratio (Eg/E,), and r the radius of gyration of the net concrete
section. For most practlcal cases the minimum value of n in Fig. 1 can be used
because o is small. Using equilibrium and compatibility conditions and Eq. (1)
to solve the problem of time-dependent change in stress in an uncracked rein-
forced or prestressed concrete member with top and bottom reinforcement (at y,
and y, respectively from the centroid of the net concrete section) subjected

to the forces of Fig. 2, we find the change in steel stress (2) in fibres 1 and

2:
(1 +b,, =D, ) e, (T)E_+ [+ B By = By fz-_] n_¢(T,K )

fa (™ = (3a)
sl 1+ bll) (1 + b22) b12b21
: (1 - (L+by, -b e (ME + [(L+bd,)f, b, £]ne(T,K) .
s2 (1 + bll) 1+ b22) bl2b21

where f; = initial concrete stress in fibre 1; f2 = initial concrete stress

in fibre 2.
- 2742 i = 2
by, = pyn, (1 + yi /rz) (L +n¢); b, =pmn (Lt y1y2/r2) (1 + n¢)
by, = (1 +¥5 2/p2) (1 + nd); by, = Py, (1 + y,y,/r%) (1 + n¢)
12 = ASl/Ac where Asl = area of steel in fibre 1
and Py = As2/Ac where AS2 = area of steel in fibre 2 (see Fig. 2).
SRMNS
CROSS - SEcTION FORCES. Ese(T), €sp _
' Ngy + Ngo(T)
+ Ngy(T
e 4 = Nse( .
l Yo Mco + Me (T
cENTROmAL Aug - g 1 4 - - i i
OF NET ConcReTe | o 1 ! /Nco"‘ Nc(T) )
b ! i
4+ As: 4 [ Nait No(T) -

EalT) - Esq('f) &
£ (T) Es;

Fig. 2 Forces and strains in a section with two layers of reinforcement
( Abar on top of a symbol denotes time-dependent change in force,
strain or curvature)

The change in strains in the two fibres can be computed by dividing Eq. 3
by the modulus of elasticity of the steel, E_. Knowing the time-dependent
change in strain in the two fibres, we can compute the change in curvature from
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E (yl - y2) (4)

(Note that y is positive below the centroid.)

If the section under consideration is symmetrical and symmetrically

reinforced (i.e. y; = -y, Agy = Agp), then Eq. 3 can be simplified consider-
ably and we obtﬁin for fibre 1: fM
: - £ n ¢(T,K ) + ey (T) Eg ) 1 D ¢(TK ) )
sl 1+ pn (1L + no) 1+pn (yi/r‘) 1+ ncp(T,Ko)_]

where f§ and f? are respectively the normal and bending stress in fibre 1.
Introducing the creep reduction coefficients

1 1

b R pn B+ n¢(T,Ko)_) and a4 = 773 pn 1+ n¢(T,K°)_J y_‘{/:c'Z (6)
where p = (Ag; + Agp)/A., we can write Eq. 5 in the form:
- _ N :
E (1) = (a) £) +a f)) n¢(T,K ) +ae (T)E (7a)
Similarly, for fibre 2
- _ N _
EL(T) = (a)f) —a f)) n o(T,K) + ae  (T) E (7b)

The change in curvature can be expressed by
o(T) a3<1>0¢(T,K0) (8)

where ¢ is the initial curvature. Thus the total curvature (initial plus
time-dependent) ¢ (T) is

H

o(T) = ¢ [1+ ae(T,K )] (9)
and the total deflection at time T can be written as
w(T) = u, [1+ aj6(T,K )] (10)

where u_ is the initial deflection.

In the case of a symmetrically reinforced member subjected to an axial
load, Eq. 7a further simplifies to yield for the time-dependent steel stress

n°f¢(T,Ko) % Esh(T)ES

fs(T) =8 [hof¢(T’Ko) * esh(T)Eéj =TF po, 11+ n¢(T,K0)J (11)
(The subscript of stress can be omitted.)

If there is only one eccentric layer of reinforcement (or tendon)

Eq. 3 reduces to
nofl¢(T’Kb) + esh(T) E

£ =13 pn (1 + y7/r9) {1 + ne(T,K )] (22
Introducing the creep reduction coefficient
1
= 13
4 T pno(l + yi/r‘) 1+ n¢(T,K°1J (13)
we can write Eq. 12 as
£(T) = ay[n £6(T,K) + ey (T) E] (14)

For design purposes, the creep coefficients are available in chart form
(3) for various values of the parameters pn_, y,/r and n¢(T,K,). Since the
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creep reduction coefficients indicate the effect of reinforcement on creep, by
using a reduced creep coefficient a¢(T,Ko), reinforced concrete can be treated
in the same way as plain concrete.

BIAXIALLY LOADED COLUMNS

For symmetrically reinforced, biaxially loaded columns, Eq. 7 can be
suitably expanded to

M M
= N X
E(T) = (an £ taln £*%am £Y) o(T,K) +aje (T)E (15)
N
where £ = K% = normal stress,
c
MX MOX
£ = v Yy T Stress in concrete due to moment My, in a fibre distant
cx ¥g1 from the centroid of the concrete section,
M M
£ = ng X,y = stress in concrete due to moment M, in a fibre distant
cy Xgy from the centroid of the concre%e section,

A' = cross-sectional area of the transformed section,

Ié = second moment of area of the transformed section, the second
subscript denoting the axis about which the moment is taken,

X5y and yg, are distances from centroidal axis to the outer layer of
reinforcement,

and a), ag, ag are creep reduction coefficients, given by Eq. 6. Since
the last two coefficients involve ¥y = distance from the centroidal
axis to the centroid of steel area on eagh side, we require this
distance in the x and y directions for ag and ag respectively.

PRESTRESS LOSSES

As mentioned before, all the equations apply equally to reinforced and to
prestressed concrete. If Eq. 3 is used to determine the loss of prestress in a
member with top and bottom layers of tendons and with additional non-prestressed
reinforcement, the terms p; and p, have to include all the reinforcement, and
yj and y, are the distances of the centroids of the bottom and top steel (pre-
stressed and non-prestressed taken together) respectively.

If we have one eccentric layer of prestressed steel only, we find the
prestress loss (including the effect of steel rglaxation) from

E(T) = a, [n £ ¢(T.K ) + e (T) E_ + £ (T)] (16)

where f.(T) is the intrinsic relaxation loss of steel kept under a constant
strain for (T-K,) days, and f, is the stress in concrete at the level of the

tendon due to dead load and to prestress.

If only one layer of tendon is used in combination with non-prestressed
reinforcement uniformly distributed across the section, then a; = ajz. Eq. 12
then takes the form (steel relaxation included)

a, [(nofoq;(T,Ko) + E'Sh(T) Es] + fr(T)
1+ pno(l + y]2_/r2) [T+ aln¢(T’Ko)] (17)

fs(T) =

If the non-prestressed steel is symmetrically disposed in two layers a) #
a3, and we can find the prestress loss from
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) (2,85 + agf) n $(T,K ) + a e (T) E_ + £_(T)

fS(T) - : a, + a (18)

1+ pno(l + yi/rz) 1+ L

-———-——-n¢(T K i

In Eq. 17 and 18 the creep reduction coefficients are determined for the
non-prestressed reinforcement only and the term p is the ratio of the pre-
stressing steel area to the concrete area.

VERIEICATION AND APPLICATION OF THE METHOD

Graf's tests (4) on columns and tests on prestressed concrete members by
Ban et al. (5) are well suited to verify the approach presented. However, only
two of Graf's columns (No. 587 and 591) can be compared with the theory, as the
others were stressed to 0.60 f} at initial loading so that creep cannot be
considered to be proportional to stress. The following data are available.

TABLE 1
Column N© 587 591
Steel area, Ag{cm?) 24.3 24.3
Net concrete area, A (cm?) 875.7 875.7
P-=A /Ac 0.028 0.028
Age at loading, K (days) 13 13
Time under load (T-K,) (days) 1102 1080
Modulus of elastlclty of concrete at time of
loading, E,(kg/cm?) 191,000 148,000
Modulus of elast1c1ty of steel, E (kg/cm ) 2.1 x 10° 2,1 x 10°
Modular ratio, n 11 14
Applied load, P ?kg) 72,000_ 70,000 _
Shrinkage, € (T) -450 x 10 © -460 x 10 ©
Observed change in steel stress, f (T)(kg/cm ) 1512 1407
Creep coefficient, ¢(T,K,) 3.20 2.89

With the initial concrete stress computed from the relation f, =P /A
(1 + png), and the relaxation coefficient n = 0.76 (determined for ady
0.62 and K, = 13 days), we find, using Eq. 11, the change in steel stress, in
column 587: _
_ 11 (-62.9) 3.20 + (-450) x 10 ©® x 2.1 x 106

- 2
£,(1) = T + 0,028 x 11.0 (1 + 0.76 x 3,20) = =L830 Jgfem

Using the same_procedure, the lncrease in compressive stress in column
591 is found to be f (T) = -1uss kg/cm?. Both values agree very well with
those observed in the tests (see Table 1).

The tests of Ban et al. (5) will be used to demonstrate the accuracy of
the equations when applied to determine the loss of prestress. The tests
include members with symmetrical and unsymmetrical non-prestressed steel, and
with the prestressing force applied axially (Series A) and eccentrically
(Series B). Since no creep tests were performed, we shall use the tests
without non-prestressed reinforcement to determine the creep coefficient,
solving Eq. 12 for ¢(T,K,). From the test data in Table 2, the creep coefficient
for series A is found to be ¢ = 2.60 (Test A5). For series B, both test B5 and
test B6 yield ¢ = 2.70 for the period under load (350 days).

17. Bg. Schiussbericht
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TABLE 2

; E _ )
Series ccent Area ratio of

and ricity Initial Measured Calc.
Beam = 2
BropeRty beam of Honnprest prestress loss loss
ressed steel
No. tendon
in. top bottom 1b 1b 1b
_ A-1 -0.04 & 0.31 26,060 6590 6940
€, = “H70 x 10 & A-2 -0.08 - 0.31 26,830 7210 7140
6 = 2.60 A-3 -0.08 0.16 0.16 27,050 6770 6770
no = 6.48 A-y 0 0.16 0.16 28,330 7140 7100
A-5* 0.08 = - 25,130 7960 -
L. B 0.71 = 0.31 27,290 8070 7330
sh = -520 x 1076 B-2 1.01 - 0,31 28,920 8460 7750
¢ = 2.70 B-3 1.30 0.16 0.16 27,970 8420 8340
4 = 6.95 B-u4 1.11 0.16 0.16 29,230 8600 8380
o} ) B-5% 1.02 ~ = 26,900 9460 -
B-6#% 0.85 - - 27,560 9520 -

Tendon area, Ag = 0.369 in2#%

Cross-section LI in. x 8 in. (duct area 0.45 in?)

Age at loading, K, = 28 days

Time under load: T-K, = 350 days

Modulus of elasticity: prestressing steel E
non-prestressed steel Ez

27.5 x 10° psi
29,9 x 10% psi

Consider Test Al: Eq. 3 is used tc compute the loss of prestress. With
p; = 0.869/(32700 - 0.45 - 0.31) = 0.0117, pp = A" _EL/(AE) = 0.31 x 29.9 x
108 /(27.5 x 108 x 31.24) = 0,0108,
r? = 5.33 in?, n = n.. =0.75, y; =0, y2 = 2.75 in. we obtain the co-
efficients:

bll = bl2 = 0.0117 x 6.48 (2 + 0.75 x 2.60) = 0.224
b22 = 0.0108 x 6.48 (1 + 2.752/5.33) (1 + 0.75 x 2.860) = 0.499
b2l = 0.0108 x 6.48 (1 + 0.75 x 2.60) = 0.206

The concrete stresses at age K, = 28 days are: fl = =790 psi, and f, = -860 psi.

Thus,
- (1+0.499-0.207X-470x10 5x27.5%x105+ [( 1+ 0.499) €790)- Q. 207x(-860)} 6 . 48x2 .60

£ _(T)
sl (1 + 0.224) (3 + 0.499) - 0.224 x 0.207

= 18,800 psi
This stress corresponds to a loss in prestress of 6940 1lb.

By the same procedure, we obtain £ (T) = -19350 psi for Test A2, which
corresponds to a prestress loss of 71407 1b.

Consider Test A3: To compute the loss we can either use Eq. 11 or Eq. 17.
Using the first of these, we find, with p = (Ag + AéEé/ES)/Ac = (0,369 + 2 x
0.16 x 29.9 x 10%/27.5 x 10%)/31.24 = 0.0231 and the concrete stress £ = 810
psi at age K, = 28 days,

E () = £:48(-810) x 2.60 - 470 x 1076 x 27.5 x 106

sl 1+ 0.,0231 x 6,48 (1 + 0.75 x 2.60)

= -18,350 psi

Notes: ®* Test used to determine ¢
%% Since the steel is stressed to only 0.5 fg, there is no steel
relaxation loss.
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This corresponds to a prestress loss of 6,790 1b.
Using Eq. 17, we find, with y; = 0 and £,(T) = 0, a; = 1/[1 + 0.0117 = 6.48
(1L +0.75 x 2.60)]: 0.82,

[6.48(~810) x 2.60 - 470 x 1075 x 2,75 x 106] 0.82
1 + 0.0117 x 6.48 (1 + 0.82 x 0.75 % 2.6)

fsl(T) = = -18,350psi

The calculated prestress losses of Series B do not agree as well with the
measured ones as for Series A. However, the agreement is still good.

EXAMPLE ON A BIAXIALLY LOADED COLUMN

The column shown in Fig. 3 is reinforced by l4 bars, 7/8 in. diameter, so
that A, = 8.40 in? and p = 0.0365. We have f£! = 4,000 psi, n, = 8.0, ey}, =
-300 x 1076, ¢, = 2.5, K. = 60 days. From Fig. 1 n = Mpin = 9.80. The section
properties are A, = 230 In?, A} = 297 in?, I, = 5538 in%, Ity = 7090 in",

= 3760 in*, Ily = 4775 in*. The forces applied are N, = 180,000 1b, My, =

IC
258,000 1b in, Mgy = 210,000 1b in.

] Hence, the stresses in
‘p———d——uié——————j—uwn‘ concrete are
*o= 45
7 N _ _ 180,000 _ _ ¢
Ebu.\ x,365" £ ——’-—297 606 psi,
M
' i X .4 250,000 -t .
'de f ——’-——7090 ) 211 psi,
CE_N_T?OID o Q P —+ ' My 210,000
UPPER STEEL. 3 £ =t =2 x 4.5 = % 198 psi
< ) : 'O ﬁr_ 4775
4= '
| ,3 The creep reduction
" 9 - L NN % st .
7 = coefficient a, is found from Eq.
. 3" 6 to be a; = 0.54, From the
ggnda O eentRoo "o O --]'- same equation, we find the values
RIGHT HAND STEEL ‘ of ag. For a’a‘, Xy = 3.65 in. (to
o O O O ks replace yj in Eq. 6)5 r? = Ioy/Ac
| ' = 3760/230 = 16.4 in?, so that
3 . L] & [FAY ax = L Z
Hla | 3|3 (2% 3 1+0.29(1+2.0)(3.65)4/16.4
bt il i ¥ ¥
= 0.59

Fig. 3 Cross-section of column

Now, y; = 5 in., r? = I_,/A_ = 5538/230 = 24.1 in?, whence

vy . 1 ]
3 5 T70.29(1 ¥ 2.09(5)%/o%.1 - 9-58

From Eq. 15, the ultimate change in steel stress in the corner of the
column subjected to the highest compression is

£ = [0.54 x 8 x (-606) + 0.53 x 8 x (-211) + 0.59 x 8 x (-198)] 2.5
+ 0.54 x 28 x 10% x (-300) x 107® = -15,820 psi
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SUMMARY

The paper shows how data on creep and shrinkage of plain concrete can be
used to calculate time-dependent deformations and stresses in beams and columns
of reinforced and prestressed concrete (with or without non-prestressed steel).
Comparison of calculated values with experimental results of other investigations
shows very good agreement.

RESUME

Ce document montre comment les données sur le fluage et le
retrait du béton peuvent &tre utilisées pour calculer les défor-
mations dépendant du temps et les tensions dans les poutres et
les piliers en béton précontraint ou armé (avec ou sans acier pré-
contraint). Des comparaisons effectuées entre les calculs et les
résultats expérimentaux d'autres recherches, montrent de treés
bonnes concordances.

ZUSAMMENFASSUNG

Dieser Beitrag zeigt, wie das Datenmaterial ilber Kriechen und
Schwinden von Beton gebraucht werden kann, um zeitabhingige Ver-
formungen und Spannungen in Balken und Stiitzen aus Stahl- und Spann-
beton (mit oder ohne Zusatzbewehrung) zu berechnen., Der Vergleich
der berechneten Werte mit den experimentellen Ergebnissen anderer
Untersuchungen ergibt gute Uebereinstimmung derselben.
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