
An overview of current tools for developing
knowledge-based expert systems

Autor(en): Garrett, James H.Jr.

Objekttyp: Article

Zeitschrift: IABSE congress report = Rapport du congrès AIPC = IVBH
Kongressbericht

Band (Jahr): 14 (1992)

Persistenter Link: https://doi.org/10.5169/seals-13932

PDF erstellt am: 19.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-13932

349

AN OVERVIEW OF CURRENT TOOLS FOR DEVELOPING
KNOWLEDGE-BASED EXPERT SYSTEMS

James H. Garrett, Jr.

Assistant Professor, Department of Civil Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

James Garrett received his BSCE, MSCE, and Ph.D. from Carnegie Mellon University in
Pittsburgh, PA. He joined the faculty at Carnegie Mellon University in 1990, after having spent three

years on the faculty at the University of Illinois at Urbana-Champaign. He has been performing
research in the areas of Standards processing, object-oriented building modeling and neural network
applications in engineering.

Summary

Knowledge-based expert System (KBES) technology was presented to the international
structural engineering community in the early 1980's and experienced an exponential growth of
application to Civil Engineering problems in the latter part of that same decade. The intent of this
paper is to discuss what has happened since Fenves, Mäher and Sriram described this technology in
IABSE Periodica in 1985. Several more recent methods for building and using KBES are discussed:
object-oriented modeling, model-based reasoning, case-based reasoning, and inductive machine
learning.

1. Introduction

The purpose of this paper is to present a brief overview of some of the current methods and
techniques being used to develop knowledge-based expert Systems. Because these Systems began as

pure rule-based Systems, this form is briefly described in the first section. Following this discussion,
other more recent KBES technologies (or more general programming paradigms) are discussed. These

technologies include: (1) object-oriented methods, which are now being used to represent the
structured knowledge within a domain; (2) model-based reasoning, which is used to reason
qualitatively about the solutions of complex problems; (3) case-based reasoning, which is used to
reason from past solutions to form solutions to new problems; and (4) inductive machine learning,
which is used to acquire more general problem solving knowledge from past solutions to problems.
Together, these techniques provide increased capability for today's KBES in the areas of
representation, inference, and knowledge acquisition.

2. Traditional (Rule-based) Knowledge-Based Expert Systems

Although the concept of knowledge-based Systems is actually "old" by today's Software
time-scale (it came on the Computer science scene in the early 1970's), it has taken the engineering
community several years to understand and grasp the potential of this technology. In 1985, Fenves, et
al., authored a paper within the IABSE Periodica describing the nature of, possible application of, and
implications of this technology[3]. At that time, the technology was predominantly a rule-based
technology, where they described the main components of a KBES as:

AN OVERVIEW OF CURRENT TOOLS FOR DEVELOPING
350 KNOWLEDGE-BASED EXPERT SYSTEMS

• a knowledge-base — a collection of IF-THEN rules that represent pieces or "chunks" of
decision-making knowledge that are applied during the development of a Solution to a

problem;

• a context or working memory — a formal data structure for representing the initial
information known about the problem as well as the evolving Solution being developed
through application of the rules in the knowledge base; and

• an inference engine — a pattern-matching program for applying the "chunks" of knowledge
in the knowledge base to the problem (and its partial Solution) described in the context.

A knowledge-based system has several key qualities that differentiates this form of Computer
program from its procedural counterparts that all stem from its Separation of knowledge from its
usage: transparency of the knowledge applied, transparency of the Solution being developed, and a

capacity for incremental development.

Because the rules are developed and represented as separate "chunks" of knowledge, each

hopefully specifying the preconditions under which it is applicable, those pieces can be individually
observed and understood thus leading to the claim of transparency of knowledge applied. In a

procedural program, the pieces of knowledge used are inextricably intertwined with the control of
these pieces of knowledge and thus one must look at the entire program to get a sense of the

knowledge within.

Because the inference engine of a knowledge-based system searches over this set of rules and
keeps track of what rules match the context at what points in the Solution process, it is possible to
reconstruct the evolution of the Solution process thus leading to the claim of transparency of Solution.
A procedural program normally does not keep track of the path it followed during the Solution of a

problem and only issues a final answer.

Finally, because the knowledge that is represented within the knowledge base can be both
general and much more specific and one can rely on the inference engine to "figure out" which to

apply, it is possible to develop a knowledge base that consists mostly of general rules in the early stages
of system development that is later augmented with more specific rules as the knowledge acquisition
process matures. Thus, the system will perform at a reasonable level of proficiency, but not expertly, in
the early stages of development. It will not be capable of more expert problem solving capabilities
until the more specific, exceptional pieces of knowledge have been added to its knowledge base. This
represents the concept of incremental growth capability. Most procedural programs do not allow for
more than one level of problem solving knowledge.

3. Additional Methods and Technologies for KBES

Many successful applications of the more traditional rule-based KBES technology have been
described in the literature and employed [1] [9]. However, while developing these Systems, and many
others like them, the KBES community has come to realize several important limitations of the
knowledge-based technologies of the last decade:

• knowledge is not homogeneous in structure and many different knowledge representation
paradigms (frames, rules, procedures, formal logic, neural networks, etc.) are needed in order
to adequately represent the problem solving knowledge brought to bear on a particular
problem;

• knowledge is not homogeneous in level of abstraction and knowledge at various levels of
detail is needed in order to develop preliminary, high-level solutions to problems, as well as

more detailed solutions, at various stages in the problem Solution process;

M J.H.GARRETT 351

• knowledge acquisition is an enormously difficult, time-consuming, error-prone task, is the

most important task in developing a knowledge-based system, and is one area in which tools
for assistance are most needed; and

• most current knowledge-based Systems are only static "snapshots" of the knowledge used in
problem solving and must be made capable of self-modification over time and as more
experience is gained.

Hence, KBES developers have looked toward researchers in AI and other fields of Computer
Science to help them solve these limitations. There are several methodologies and technologies that
are receiving a lot of attention and represent some of the advancements that will eventually find their
way into mainstream knowledge-base System development: object-oriented knowledge
representation, model-based (qualitative) reasoning, cased-based reasoning, and inductive machine
learning. The following sections describe each of these emerging technologies in more detail.

3.1. Object-Oriented Modeling

Object-oriented methods are now being used for organizing and representing various forms of
knowledge. The basic building block of an object-oriented representation is the object — a modular,
self-contained collection of descriptive attributes and the methods (procedural or rule-based) for
manipulating those attributes. Representation in an object-oriented environment first requires the

description (declaration of attributes and methods) of the general types of objects that populate the
domain (class objects), and then requires the generation of instances of the class objects to describe the

particular entities being modeled.

In object-oriented representations, everything is an object. Objects can represent concepts,
physical objects, processes, etc. In all cases, objects possess a set of attributes and relationships, both of
which are represented as slots in the object. Attributes represent descriptive pieces of information
about the object and may be represented by either a static value or a method, where a method describes
how the value of an attribute is computed. Methods may also cause side-effects in other objects.
Relationships, also represented using slots, represent links to other objects. For example, an object

may have a "next-to" slot that is filled with the name of another object representing the fact that the
two objects are next to each other. Other objects can access the attributes and relationships ofan object
by sending a message to the object that "owns" the attribute or relationship.

While, the most populär way to represent domain-dependent behavior is with production rules,
they alone are inadequate for representing domain object definitions and their static relationships. It is

common today to use an integrated approach to knowledge representation, where objects represent
the natural structure of the physical objects and abstract concepts within the domain that are to be
reasoned with, and rules are used to represent the decision-making knowledge (i.e., the derivation of
object attributes that are conditional in nature). Objects provide a powerful foundation for a

rule-based inference by providing:

• a powerful language for describing domain objects that can be used within rules,

a set of inference mechanisms (inheritance and ValueClass/cardinality checking) that can
automatically reach a lot of conclusions that are needed by a rule, such as class membership
and default values, and

•

• a powerful and flexible language for defining the rules themselves.

The advantages of an object-oriented representatio.i are: 1) the methodology greatly aids in
structuring the knowledge; 2) it enables rules and procedures to be more generic making the

AN OVERVIEW OF CURRENT TOOLS FOR DEVELOPING MWk
352 KNOWLEDGE-BASED EXPERT SYSTEMS tWWk

knowledge-base easier to understand (one can write rules based on a class of objects and have them
apply to all subclasses); 3) it compartmentalizes the knowledge, thus reducing the complexity; and 4)
through graphical display of attributes and relationships, the knowledge base is more
understandable. For more information on object-oriented modeling, see [10].

3.2. Model-Based Reasoning

Model-based reasoning, also known as qualitative reasoning, provides developers of
knowledge-based Systems with a tool for assisting both knowledge acquisition and reasoning at
multiple levels of abstraction. Model-based reasoning is based on the way in which humans initially
develop causal modeis for, or initially reason with, complex Systems. We do not start with the detailed
descriptions of the causal relationships about the components of a system. Rather, we reason
qualitatively about the way in which these components (or larger groups of components) interact to
get a sense for how the system will behave. Hence, model-based reasoning first involves building a
qualitative model of a complex system, consisting of a set of identified subcomponents and their
qualitative causal interrelationships (e.g., A causes B to increase). Next, this model is used to: 1)

qualitatively reason about effects given observations about existing Symptoms (causes); 2)
qualitatively reason about possible causes given observations about existing conditions (effects); or 3)
developing more detailed causal relationships between causes and effects that can be used to predict
values of quantities instead of just qualitative trends thus guiding the knowledge acquisition process.
When the more detailed causal relationships are known, the qualitative model is not discarded, but
remains as a more abstract description of the system which can be used to reason about the System in
earüer stages of system development when many of the system details are yet to be determined. The
existence of both qualitative and detailed descriptions of causal relationships thus provides the
multi-level reasoning capability described as the second deficiency of current knowledge-based
Systems. There are many different directions being taken by researchers in this field (Harandi and
Lange [6], Forbus [5], Kuipers [8])

In summary, such a model is useful for performing diagnostic causal reasoning. Once the set of
components have been properly connected, it can be used to reason from causes to effects or from
effects to causes. When an expert reviews the results from either of these reasoning exercises, he may
discover inconsistencies, or the inability of the model to reason from opposite changes in inputs, and at
that time may modify the causal equation for a component. In this way, the model is refined and thus
also assists in knowledge acquisition.

3.3. Case-Based Reasoning

Case-based reasoning, also known as reasoning by analogy, provides developers of
knowledge-based Systems with an alternative to the traditional distillation of knowledge into a set of
static rules. Case-based reasoning is based on the way in which experienced humans sometimes solve
problems, i.e., by determining which of the myriad of past experiences is dosest to the current problem
and modifying the former Solution to develop a Solution to the current problem. Hence, the
case-based reasoning paradigm takes a large collection of previous experiences, called cases, and
determines which case is most similar to the current case. Having determined which case is most
similar, and having identified which aspects are similar and which are different, the case-based

reasoning system then transforms the past Solution into one that is viable for the current Situation.
Having the ability to reason about the similarity of previous cases (and their solutions) with the
current case being addressed and then to develop an analogous Solution offers a dynamic problem
solving paradigm that begins to address the fourth limitation of current knowledge-based Systems
(namely, their "snapshot" nature).

J.H.GARRETT 353

Kolodner describes three steps in performing a simple case-based inference: 1) recall a previous
case that is similar to the current case; 2) focus on the appropriate parts of that previous case as it relates
to the current Situation; and 3) use the appropriate parts of the previous case to derive an appropriate
Solution to the current case [7]. More than one case may be employed in developing a Solution to the
current problem; different cases may be similar to the current Situation in different ways and together
the subset of past cases provides enough past knowledge to solve the current problem [7],

In order to make effective use of past experiences and to determine the degree of similarity
between past cases and the current Situation, it is not sufficient to only represent the final design
Solution. What is needed about past cases are: the goals and subgoals of the past problem, the
constraints imposed on that problem at the goal and subgoal levels, the Solution derived for each of
these goals and constraints, and the rationale or plan behind the Solution derived for the goals and
subgoals. It is usually the case that the goal hierarchy, constraints and rationale are represented using
an object-oriented representation such as that described in section 3.1. Kolodner defines a past case to
be similar to a current Situation if the past case has many of the same goals and most important
constraints [7]. There is no currently agreed upon definition of similarity.

Once a past case has been identified as being similar to the current case under consideration, the
next step is to determine what about the past case can be used in solving the current problem. There are
several ways in which the successful Solution of a goal from a past case can be employed in the
development of a Solution to a similar goal in the current case [7]: 1) the Solution used in the past case
can be directly transferred to the new case; 2) the Solution used in the past case can be modified for the
new case based on the differences in constraints and subgoals between the past and current case; and
3) the method by which the Solution in the past case was derived can be transferred directly to the
current case and used to derive a Solution for the current case. Hence, using the design representations
and plans of past cases, a design plan and Solution for a new design problem can be constructed.

Case-based reasoning Systems provide an alternative to the traditional, static rule-based
Systems. One can easily see that as the case-base is built up with descriptions of past experiences
encountered and successfully, or unsuccessfully, resolved, the Performance of the System will
drastically improve — a characteristic that is also present in Systems capable of learning, some of
which are described in the next section.

3.4.. Inductive Machine Learning

Learning is a generalized term denoting the way in which people (and Computers) increase their
knowledge and improve their skills. Machine learning has been a goal of AI researchers since

beginning of AI, where researchers strived to understand the process of learning, and to create

Computers that can be taught rather than programmed. Two methods for machine learning are
described below: induction from symbolic rules and neural network-based mappings.

Induction is one type of machine learning (of which there are many) that has received a lot of
attention and presents valuable solutions for some of the limitations of current knowledge-based
Systems. Induction is the process of learning how to perform a task (and recording this knowledge in
the form of if-then rules) by being presented with examples of how it should behave. The most
common inference process used for learning from examples is generalization. We say that rule A is

more general than rule B, if rule A applies in all situations that rule B does and then some more. For
example, "5 cards that are all of the same suit is a flush" is more general than "5 cards that are all hearts
is a flush. [2]" Often description A is more general than description B because description A places
fewer constraints on any relevant situations for which the rule applies. Specific rules are generated
from examples and then generalized by modifying the specific rules, while maintaining their validity

AN OVERVIEW OF CURRENT TOOLS FOR DEVELOPING
354 KNOWLEDGE-BASED EXPERT SYSTEMS

for the given cases. Thus, the representation chosen for the rule space is important and must be able to

support generalization. For example, predicate calculus supports generalization by permitting the
following: 1) turning constants into variables, 2) dropping conditions, and 3) adding conditions, to
name a few of the Operations.

There are currently several problems plaguing such induction Systems. Some of the rules
induced are incomprehensible. A knowledge engineer still plays a major role in inductive learning by
instructing the system as to what attributes are important and what attributes are not. If the attributes
are not filtered by a knowledge engineer, the noise might be so great (in the form of unusable, or
extremely specific rules) that the program will never perform efficiently and at an expert level. The
rules induced from a set of cases is very dependent on the scope of the test cases. If the test cases do not
represent a broad set of situations, the rules will be incomplete and possibly over-generalized. The
programming ofa learning system lies in the selection of test cases or the breadth of the experiences fed
into the learning Systems. Hence, inductive learning Systems will only work for domains where a

large body of experience exists, and will not leam any principles not embodied in the experiences
presented to them.

4. Summary

The purpose of this paper was three-fold: 1) to briefly review rule-based knowledge-based
System techniques; and 2) to briefly describe some of the newer techniques being used to develop
current knowledge-based Systems. Due to space limitations, several other interesting subjects, such
as machine learning and neural networks, were left out of this review. Many of the Systems currently
being developed are still using technology that is 20 years old. However, many others are being
developed that incorporate various forms of machine learning, use more descriptive, flexible modeis
of the domain, and make much greater use of past Performance for improving their Performance on
new problems. While knowledge-based Systems are still in their "formative years", the prospect of
having a System that 1) acts as a knowledgeable colleague capable ofproviding advice when asked, 2)

grows in capability as it experiences various problems and their solutions, and 3) serves to record in
much more detail the evolution of problem solutions, is still very exciting and deserving of more
research attention.

5. References

[1] Proceedings ofthe IABSE Colloquium on Expert Systems in Civil Engineering, IABSE, Bergamo, Italy, 1989.

[2] COHEN, P. R. and E. A. FEIGENBAUM, The Handbook ofArtificial Intelligence - Vol 3., Morgan Kaufmann, pp.
325-334,1982.

[3] FENVES, S. J., M. L. MÄHER, and D. SRIRAM, "Knowledge-Based Expert Systems in Civil Engineering", IABSE
Periodica, Number 4,1985, pp 63-72.

[4] FENVES, S. J., "Expert Systems: Expectations versus Realities", in [1], pp 1-19.

[5] FORBUS, K., "Qualitative Physics: Past, Present, and Future", in Exploring Artificial Intelligence, ed. H. Shrobe,
Morgan Kaufmann, 1988.

[6] HARANDI, M. T. and LANGE, R., "Model-Based Knowledge Acquisition", Chapter 4 in Knowledge Engineering -
Vol 1. Fundamentals, H. Adeli (ed.), pp. 103-129, McGraw-HUl, New York, 1990.

[7] KOLODNER, J. L., "Extending Problem Solving Capabilities Through Case-Based Inference," in Proceedings ofthe
Case-Based Reasoning Workshop, sponsored by DARPA, May, 1988.

[8] KUIPERS, Bj)"Qualitative Simulation", Artificial Intelligence, Vol 29, No 3,289-388,1986.

[9] MÄHER, M. L., ed., Expert Systemsfor Civil Engineers: Technology and Application, ASCE, 1987.

[10] RUMBAUGH, J., M. BLAHA, W. PREMERLANI, F. EDDY, W. LORENSEN, Object-Oriented Modeling and
Design, Prentke Hall, 1991.

	An overview of current tools for developing knowledge-based expert systems

