L'Enseignement Mathématique

Heading Page PDF
Volume 34 (1988): L'ENSEIGNEMENT MATHÉMATIQUE
Front matter Download as PDF
Index Download as PDF
Front matter Download as PDF
Issue 1-2: L'ENSEIGNEMENT MATHÉMATIQUE 1
Article: THE SCHUR SUBGROUP OF THE BRAUER GROUP OF A LOCAL FIELD 1 Download as PDF
Chapter: K NON-DYADIC 2 Download as PDF
Chapter: Remarks 9 Download as PDF
Bibliography 10 Download as PDF
Article: UNE CARACTÉRISATION DES NORMES EUCLIDIENNES EN DIMENSION FINIE 13 Download as PDF
Chapter: Introduction 13 Download as PDF
Chapter: I. Groupe des isométries linéaires 14 Download as PDF
Chapter: II. La boule unité de L(E) 15 Download as PDF
Chapter: III. Application au cas n = 2 18 Download as PDF
Bibliography 21 Download as PDF
Article: EULER'S FAMOUS PRIME GENERATING POLYNOMIAL AND THE CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS 23 Download as PDF
Chapter: Introduction 23 Download as PDF
Chapter: A) Quadratic extensions 25 Download as PDF
Chapter: B) Rings of integers 26 Download as PDF
Chapter: C) Discriminant 27 Download as PDF
Chapter: D) Decomposition of primes 27 Download as PDF
Chapter: E) Units 32 Download as PDF
Chapter: F) The class number 33 Download as PDF
Chapter: G) The main theorem 40 Download as PDF
Bibliography 42 Download as PDF
Article: LE PROBLÈME DE GAUSS SUR LE NOMBRE DE CLASSES 43 Download as PDF
Chapter: I. La classification de Gauss des formes quadratiques 44 Download as PDF
Chapter: §1. FINITUDE DU NOMBRE DE CLASSES 44 Download as PDF
Chapter: §2. Formes quadratiques réduites 45 Download as PDF
Chapter: §3. Une méthode élémentaire pour calculer le nombre de classes 47 Download as PDF
Chapter: §4. Le groupe des classes 48 Download as PDF
Chapter: §5. Lien entre h(-d) et $h(-df^2)$ 51 Download as PDF
Chapter: II. Le problème du nombre de classes 52 Download as PDF
Chapter: §1. Représentation des entiers par les formes quadratiques 53 Download as PDF
Chapter: §2. Fonctions zêta 55 Download as PDF
Chapter: §3. Ce que l'on espère sur le comportement de h( —d) 57 Download as PDF
Chapter: §4. Minorations non effectives de h(—d) 59 Download as PDF
Chapter: §5. Les cas h = 1 et h = 2 60 Download as PDF
Chapter: §6. Courbes elliptiques et fonctions L 61 Download as PDF
Chapter: §7. Le théorème de Goldfeld 64 Download as PDF
Chapter: §8. Le théorème de Gross et Zagier 65 Download as PDF
Chapter: §9. Conclusion 66 Download as PDF
Article: ON TORRES-TYPE RELATIONS FOR THE ALEXANDER POLYNOMIALS OF LINKS 69 Download as PDF
Chapter: §1. Introduction 69 Download as PDF
Chapter: §2. Torsions of chain complexes and manifolds 72 Download as PDF
Chapter: §3. Algebraic lemmas 74 Download as PDF
Chapter: §4. Proof of Theorems 1 and 2 76 Download as PDF
Bibliography 82 Download as PDF
Article: EXTENSIONS DE MODULES ET COHOMOLOGIE DES GROUPES 83 Download as PDF
Chapter: Introduction 83 Download as PDF
Chapter: 1. Rappels sur les extensions 83 Download as PDF
Chapter: 2. DÉRIVATIONS ET EXTENSIONS 85 Download as PDF
Chapter: 3. Le groupe $H^1(G;A)$ 87 Download as PDF
Chapter: 4. Le groupe $H^2(G;A)$ 93 Download as PDF