# Découverte de clinochlore manganésifère à Falotta, Grisons, Suisse

Autor(en): Sarp, Halil / Perroud, Pierre / Bertrand, Jean

Objekttyp: Article

Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen

= Bulletin suisse de minéralogie et pétrographie

Band (Jahr): 67 (1987)

Heft 3

PDF erstellt am: 24.04.2024

Persistenter Link: https://doi.org/10.5169/seals-51601

#### Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

### Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

# Découverte de clinochlore manganésifère à Falotta, Grisons, Suisse

par Halil Sarp<sup>1</sup>, Pierre Perroud<sup>1</sup>, Jean Bertrand<sup>2</sup>et Walter Cabalzar<sup>3</sup>

#### Abstract

Manganoan clinochlore with the approximate composition  $Mg_3Mn_2Al(Si_3AlO_{10})(OH)_8$  is described from Falotta, Graubünden, Switzerland. It occurs there in paragenesis with braunite, albite, quartz and muscovite, and forms spherules with diameters up to 0.5 mm. The X-ray powder diagram resembles very closely to that of ferroan clinochlore. The brown mineral is biaxial negative with 2  $V_{meas}=0\,^{\circ}-10\,^{\circ}$ ,  $n_{\alpha}=1.608$ ,  $n_{\beta}=1.610$ ,  $n_{\gamma}=1.611$ . Optical orientation  $\gamma \wedge a=0\,^{\circ}-2\,^{\circ}$ ;  $\beta=b$ ;  $\alpha \wedge c=5\,^{\circ}-7\,^{\circ}$ ;  $D_{meas}=2.85\,$ g/cm³.

Keywords: Manganoan clinochlore, Falotta, Switzerland.

#### Introduction

Lors de l'étude minéralogique d'un échantillon récolté par l'un de nous (W.C.), nous avons trouvé un clinochlore manganésifère (contenant 20% de MnO) associé avec braunite, albite, quartz et muscovite. Ce minéral provient du gisement de manganèse de Falotta (Grisons, Suisse), qui a été étudié par Jakob (1923), GEIGER (1948), GRAESER et al. (1984) et CABALZAR (1984).

# Propriétés physiques et optiques

Sur l'échantillon étudié, les cristaux de couleur brun foncé, d'aspect micacé et d'habitus pseudohexagonal (Fig. 1) forment des sphérules de 0.5 mm de diamètre au maximum. Idiomorphes, atteignant environ 0.3 mm, les cristaux sont aplatis selon l'axe c. Les faces les mieux développées sont (001), (110) et (010). Le clivage (001) est parfait. Le minéral est transparent à translucide avec un éclat gras. La densité mesurée dans l'iodure de méthylène dilué avec du toluène est de 2.85 g/cm³. La dureté est environ 2.5.

Les propriétés optiques sont les suivantes: Biaxe (-),  $n_{\alpha} = 1.608$ ,  $n_{\beta} = 1.610$ ,  $n_{\gamma} = 1.611$ (2). 2  $V_{\alpha} = 0^{\circ}-10^{\circ}$ . Le pléochroïsme est très fort avec  $\gamma$  = brun foncé,  $\alpha$ ,  $\beta$  = brun clair à jaune. L'orientation optique est:  $\gamma \wedge a = 0^{\circ}-2^{\circ}$ ;  $\beta$  = b;  $\alpha \wedge c = 5^{\circ}-7^{\circ}$ .

# Composition chimique

L'analyse chimique du minéral a été effectuée à l'aide de la microsonde ARL EMX-SM de l'Université de Genève. Les investigations qualitatives ont révélé la présence de Mg, Mn, Al et Si; il n'y a pas de fer. L'analyse quantita-

<sup>&</sup>lt;sup>1</sup> Département de Minéralogie du Muséum d'Histoire naturelle, 1, route de Malagnou, CH-1211 Genève 6.

<sup>&</sup>lt;sup>2</sup> Université de Genève, Département de minéralogie, 13, rue des Maraîchers, CH-1211 Genève 4.

<sup>&</sup>lt;sup>3</sup> Loerstrasse 138, CH-7000 Chur.



Fig. 1 Détail des cristaux d'habitus pseudohexagonal × 700. (Photographie effectuée avec le microscope à balayage du Muséum d'Histoire naturelle de Genève par Dr. Jean Wuest).

tive a été réalisée en utilisant les standards MgO,  $Al_2O_3$  synthétique,  $SiO_2$  et  $MnO_2$ . Six analyses ont été effectuées sur 6 grains différents; les résultats avec la moyenne correspondante, sont présentés au tableau I. Vu la très faible quantité du minéral à disposition,  $H_2O$  a été calculé par différence.

La formule empirique, calculée sur la base de 18 atomes d'oxygène, donne:

$$\begin{split} [(Mg_{2.84}Mn_{1.71})_{\Sigma4.55}Al_{1.28}]_{5.83} \\ (Si_{2.85}Al_{1.15})O_{9.8}(OH)_{8,2} \end{split}$$

ou idéalement:

 $Mg_3Mn_2Al(Si_3AlO_{10})(OH)_8$ , ce qui correspond à un clinochlore-Mn.

# Données radiocristallographiques

Le diagramme de poudre a été réalisé à l'aide de la caméra Gandolfi (Ø114.6 mm, CuKα X-radiation). Les paramètres de la maille élémentaire ont été calculés à partir du diagramme de poudre par analogie avec le groupe du clinochlore. Ainsi, la maille obtenue

est: a = 5.37, b = 9.30, c = 14.34 Å,  $\beta$  = 97°. L'indicement du diagramme (Tab. 2) permet de supposer que le groupe d'éspace est C2/m. Le volume de la maille est 710.36 ų. Avec Z = 2 et un poids moléculaire de 604.8 (calculé suivant la méthode décrite par Mandarino [1981a]). La densité calculée est de 2.83 g/cm³. Cette dernière est en bon accord avec  $d_m$  = 2.85 g/cm³. Les calculs de la relation de Gladstone-Dale, en utilisant les constantes de Mandarino (1981b), donnent  $K_c$  = 0.220 et  $K_p$  = 0.215. Cela conduit à un «compatibility index» excellent avec:

$$1 - \frac{K_p}{K_c} = 0.023$$

#### Discussion et conclusion

Bayliss (1975) a établi la nomenclature des «trioctahedral chlorites» en se basant sur la composition des termes extrêmes:

$$\begin{array}{lll} (Mg_5Al)(Si_3Al)O_{10}(OH)_8 & clinochlore \\ (Fe_5^+Al)(Si_3Al)O_{10}(OH)_8 & chamosite \\ (Ni_5Al)(Si_3Al)O_{10}(OH)_8 & nimite \\ (Mn,Al)_6(Si,Al)_4O_{10}(OH)_8 & pennantite \\ \end{array}$$

Cet auteur pense que des noms comme daphnite, pennine, kämmererite, diabantite, grovesite, ripidolite, etc. doivent être éliminés. Les variétés comprises entre ces termes extrêmes doivent être nommées avec l'adjonction de l'élément chimique prépondérant qui participe à la solution solide.

Les chlorites contenant du manganèse sont la pennantite (à 2 couches), laquelle a été décrite par SMITH et al. (1946). La «grovesite», qui était décrite par BANNISTER et al. (1955) comme un membre du groupe kaolinite-serpentine, a été définie par PEACOR et al. (1974) comme étant un polytype à une couche des «Mn-trioctahedral chlorites». Le nom de «grovesite» cor-

Tab. 1 Analyses chimiques du clinochlore manganésifère de Falotta (Grisons).

|                   | 1     | 2     | 3     | 4     | 5     | 6     | Moyenne |
|-------------------|-------|-------|-------|-------|-------|-------|---------|
| SiO <sub>2</sub>  | 28.20 | 28.69 | 28.19 | 28.20 | 28.19 | 28.20 | 28.28   |
| $Al_2\tilde{O}_3$ | 20.48 | 20.04 | 20.54 | 20.58 | 20.62 | 20.83 | 20.52   |
| MnO               | 21.03 | 18.55 | 21.06 | 19.72 | 20.18 | 19.83 | 20.06   |
| MgO               | 18.29 | 20.61 | 18.48 | 19.12 | 18.42 | 18.65 | 18.93   |
| $H_2O$            | 12.00 | 12.11 | 11.73 | 12.39 | 12.59 | 12.50 | 12.21   |
| par diff.         |       |       |       |       |       |       |         |

Tab. 2 Diagramme de poudre du clinochlore manganésifère de Falotta (Grisons).

| hkl         | d <sub>calc</sub> | d <sub>obs</sub> | I   |
|-------------|-------------------|------------------|-----|
| 001         | 14.230            | 14.2             | 70  |
| 002         | 7.115             | 7.11             | 100 |
| 003         | 4.743             | 4.741            | 25  |
| 020         | 4.648             | 4.643            | 5   |
| 004         | 3.558             | 3.559            | 80  |
| 005         | 2.846             | 2.846            | 10  |
| 200         | 2.665             |                  |     |
|             |                   | 2.660            | <5  |
| 13 Ī        | 2.662             |                  |     |
| 131         | 2.605             |                  |     |
|             |                   | 2.605            | 35  |
| $20\bar{2}$ | 2.602             |                  |     |
| 201         | 2.564             | 2.562            | 50  |
| 132         | 2.458             |                  | -   |
|             |                   | 2.460            | 35  |
| 203         | 2.455             |                  |     |
| 202         | 2.401             |                  |     |
|             | 21775             | 2.399            | 25  |
| 133         | 2.396             | -1017            |     |
| 133         | 2.274             |                  |     |
|             |                   | 2.274            | 15  |
| 204         | 2.270             | 715              |     |
| 205         | 2.076             | 2.067            | < 5 |
|             | 4.0.0             | _,,,,            |     |
| 204         | 2.018             |                  |     |
|             |                   | 2.017            | 40  |
| 135         | 2.013             | *)               |     |
| 206         | 1.889             | 1.894            | 10  |
| 136         | 1.832             |                  |     |
| (C.E. C)    | -100              | 1.834            | 5   |
| 205         | 1.836             |                  | _   |
| 206         | 1.673             |                  |     |
|             | 1.075             | 1.671            | < 5 |
| 137         | 1.669             | 1.071            |     |
| 208         | 1.570             | 1.574            | 20  |
| 060         | 1.549             | 1.551            | 30  |
| 062         | 1.514             | 1.518            | 15  |
| 064         | 1.420             | 1.418            | 5   |
| 208         | 1.420             | 1.400            | 10  |
| 200         | 1,413             | 1.400            | 10  |

respond à la désignation originale de la pennantite. La gonyerite décrite par FRONDEL (1955) comme «trioctahedral chlorite» ne contient pas d'aluminium et l'étude d'un monocristal, effectuée par BAILEY, a montré qu'il ne s'agissait pas d'une chlorite.

Les données radiocristallographiques du minéral étudié ici sont identiques à celles des clinochlore Fe<sup>++</sup>. Toutefois, le minéral de Falotta ne contient pas de Fe, celui-ci étant remplacé par Mn. Nous l'avons donc appelé clinochlore manganésifère de formule:

Mg<sub>3</sub>Mn<sub>2</sub>AlSi<sub>3</sub>AlO<sub>10</sub>(OH)<sub>8</sub>

## Remerciements

Nous remercions le Professeur Josef Zemann de l'Institut de minéralogie et cristallographie de l'Université de Vienne qui a revu le manuscrit ainsi que Mademoiselle E. DESPLAND pour sa collaboration dans la réalisation des analyses à la microsonde.

#### Références

BANNISTER, F.A., HEY, M.H. and SMITH, C.W. (1955): Grovesite, the manganese-rich analogue of berthierine. Min. Mag. 30, 645-647.

BAYLISS, P. (1975): Nomenclature of the trioctahedral chlorites. Can. Miner. 13, 178-180.

CABALZAR, W. (1984): Über die Mineralien von Falotta GR, Schweizer Strahler, Vol. 6, Nr. 10.

Frondel, C. (1955): Two chlorites: gonyerite and melanolite. Amer. Miner. 40, 1090-1094.

Geiger, Th. (1984): Manganerze in den Radiolariten Graubündens. Beitr. Geol. Schweiz, Geotech. Serie, Lf. 27, 89 S.

Graeser, S., Schwander, H., Suhner, B. (1984): Grischunit (CaMn<sub>2</sub>[AsO<sub>4</sub>]<sub>2</sub>), eine neue Mineralart aus den Schweizer Alpen. Schweiz. mineral. petrogr. Mitt. 64, 1-10

trogr. Mitt., 64, 1-10.

JAKOB, J. (1923): Vier Mangansilikate aus dem Val d'Err. Schweiz. mineral. petrogr. Mitt., 3, 227-237.

JAKOB, J. (1926): Sursassite, ein Mangansilikat aus dem Val d'Err (Graubünden). Schweiz. mineral. petrogr. Mitt., 6, 376-380.

Mandarino, J.A. (1981a): Comments on the calculation of the density of minerals. Can. Mineral., 19, 531-534.

Mandarino, J. A. (1981b): The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Can. Mineral., 19, 441-450.

PEACOR, D. R., ESSENE, J. E., SIMMONS, B. W. and BIGELOW, W. (1974): Kellyite, a new Mn-Al member of the serpentine group from Bald Knob, North Carolina, and new data on Growesite. Amer. Miner. 59, 1153-1156.

SMITH, W.C., BANNISTER, F.A. and HEY, M.H. (1946): Pennantite, a new manganese-rich chlorite from the Benalt mine, Rhiw, Carnavonshire. Min. Mag., 27, 217-220.

Manuscrit reçu le 10 avril 1987; manuscrit révisé accepté le 15 septembre 1987.