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Abstract: We consider the strong coupling equations for superconductivity induced by some
"instantaneous" momentum-dependent potentials. Such potentials may arise from non-local corrections to
the Local Density Approximation (LDA). The set ofpotentials and solutions is richer in comparison
with the retarded "local" interactions, as in the latter case, the causality imposes constraints on the

frequency dependent analytic properties of the normal and anomalous Green functions. Our main

purpose is to study the momentum renormalization, and to show why it must be kept in a generalized

Hartree-Fock scheme for superconductivity. While the frequency renormalization always lowers

the electronic group velocity, the momentum renormalization can increase it. The superconducting

gap is considerably larger for a momentum dependent interaction than for a frequency-dependent
(i.e. retarded) one.

1 Introduction

BCS theory [1] for weak-coupling superconductivity is based on the gap equation (at T 0):

A(*) -\ E v«, .A(fc,)
5 (i.i)

2 % v^(fc')2 + A(&')2

where

Ì(k)=vF\k-kF\
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is the energy measured from the Fermi Surface (FS). The potential V^, is negative for an

attractive interaction (providing a solution A(fc)) and positive for a repulsive interaction. In
BCS theory, the potential is a function of the momenta k, k'.

Using the Green's function method for superconductivity [2], Ehashberg [3] generalized
this theory to the case of strong coupling, for a phonon-mediated interaction, for T — 0 and

finite temperature, and obtained a set of equations after his name. Those equations were
solved for Pb by Scalapino et al. [4] and for Nb by Peter et al. [5] (with the equations
extended to the anisotropic case for T Tc), and by Bergmann and Rainer [6] for several
values of the electron-phonon coupUng.

The main feature of the electron-phonon mediated interaction [7] is its retardation, which
is reflected in the frequency dependence of the effective interaction. When we consider an
interaction different from the electron-phonon one, for example an interaction mediated
by electrons, such as an excitonic interaction [8, 9, 10], or interactions via paramagnons
[11, 12, 13] or just the Coulomb interaction in complex systems, the interaction can depend
strongly on the momentum as well as on the frequency.

In the present paper we consider an "instantaneous" interaction that depends on the
momentum. If the interaction is more attractive in higher angular momentum channels
[14], one has to consider the generalization of the 5-wave pairing in superconductors to p-
wave pairing, d-wave pairing, etc. [15]. Instead of angular dependence, we study radial
dependence of the s-wave singlet pairing. For very strong attractive coupUng, the gap may
become isotropic even when the interaction is rather anisotropic [16]. In this isotropic case

the summation over k' can be replaced by an integration over energies / N(£')d£'.

The Ehashberg equations [3] along the imaginary frequency axis, can be written:

2ir J J fi

(Z((,u)-l)u .^if//«^W
fi (ZU',u')u')2 + (X((',u')a2 + <l>U',u')2 (1.2)

X and Z are related to the self-energy:

X(t,w) l + i(Ei«,a/)+ 2^,-«))/*

Z(i,u) l-i(Sx«,w)-Ex«,-«))/«. (1.3)

In the standard calcvdations the self-energy Ei is lumped with the energy [17], therefore
X — 1. This approximation is vaUd when the renormaUzation X is not much affected by the
superconducting state, and therefore, by considering it as a normal-state effect, it can be

absorbed in a renormalized band [18]. In the present work, we wiU show some cases where
this condition breaks down and where it is necessary to consider the <j> dependence of X.
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As special cases, this formaUsm reduces to the Hartree-Fock equations in jelUum, if £(k)
is the free electron band and V is the Coulomb potential and to the standard BCS theory if
V is the Cooper potential [17]. A density-functional theory for superconductors which also

incorporates exchange correlation effects has been proposed in ref. [19].

2 Momentum dependent interaction

Since we consider a potential V that does not depend on frequency, we can integrate-out the
variable u using the residue theorem and obtain the foUowing equations:

R y/(ï')2 + A((>)2, (2.1)

where A 4>/X. These equations can be viewed as a generaUzed Hartree-Fock scheme [17].

X is the renormaUzation function appropriate for the momentum-dependent interaction.The
quasiparticle energy is given by X(£)£. Therefore X renormaUzes the DOS, the group
velocity and the specific-heat effective mass as

N*(0 N(()/X(0 v-(() v(t)X(0 and m'(() m/X(0 (2.2)

(provided one can neglect dX/d£). Independence of u means Z 1 (no wavefunction
renormaUzation). We see immediately that for a repulsive interaction, X > 1, and for an
attractive one, X < 1. When X 0, we obtain an instabiüty.

We start by studying a strip potential with a cut-off £i :

vun-fvo *K-£'I<6 ,23i^'^~\0 otherwise ^
The DOS that we employ is given by:

The coupUng constant is given by N0V0. Usually, the symbol A is used for coupUng due to
electron-phonon interaction: it is positive for an attractive interaction. We use the symbol
p for coupUng due to electron-electron interactions and it can be either positive (repulsion)
or negative (attraction). In Fig. 1 and Fig. 2, we show X(£) and the renormahzed DOS for
a repulsive, as weU as for an attractive strip potential in the normal state (A 0).

We may note that Hedin and Lundquist [20] considered the momentum-renormahzation
X(k) as weU as the standard frequency renormaUzation Z(u) caused by the Coulomb
interaction for reaUstic metals, such as alkaUs, and estimated that X(k) « 1.3, Z(u) « 1.3;
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Figure 1: Momentum renormaUzation X and DOS in the normal state for a repulsive strip
potential with p 6 as a function of £. The fuU Une represents a case £i 1 < T/2 2.5

and the dashed Une represents a case £i 3.5 > T/2 2.5. A Coulomb quasigap is clearly
seen in the DOS.
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Figure 2: Momentum renormaUzation X in the normal state for attractive strip potentials
as a function of £ (in £i units) for p —0.5 (fuU Une) and p — 1 (dashed Une) and p — 2

(bold dotted Une). For p —0.5 we give the DOS, the other two cases give instabihties
X<0.
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Figure 3: Momentum renormaUzation X and the gap parameter A (in £x units) at T 0

for attractive strip potentials: p —1 (fuU Une) and p —2 (dashed Une).

thus the increase in velocity (decrease in mass) caused by X, and the decrease in velocity
(increase in mass) caused by Z, nearly cancel each other, leaving a residual effect of order
5%, which is thus negUgible. Therefore, renormaUzation effects caused by the Coulomb
interaction are usually neglected. However, for "exotic" metals, such as the high-Tc cuprates,
these estimates no longer apply, and X may be large, and not necessarily compensated by
Z.

We see that X(kp) 1 + p. This result is somewhat analogous to McMiUan's result
[21] Z(0) 1 + A (where A is the electron-phonon coupUng constant); but here, for the
momentum dependent interaction, p may be negative (attractive interaction) as well as

positive (repulsive interaction). X(£) is constant up to £ £x. When fi is larger than T/2,
the form of X(£) changes somewhat, and X(£) is constant only up to F - ^. Thus the

average of X over the interval 0 < f < fx decreases.

An increase in velocity due to a repulsive fc-dependent interaction was found by Lindhard
[22] (for an unscreened Coulomb interaction in the Hartree-Fock approximation) and by
GaUtski [23] (for a short-range, hard core interaction).

3 The superconducting state

In the superconducting state, we show, in Fig. 3, A(f) and X(£) at T 0 for p —1,

p —2 (attractive interaction). The A(f curve is broader for p — 2 than for p —1, i.e.
there is substantial pairing at energies larger than the cutoff fx for a large coupUng constant.
We caU this deep pairing [24]. This broadening is not present for a separable potential,
such as the Cooper potential. Note that here X is regvdar (positive) in contrast with the
situation T > Tc (Fig. 2). We have thus some expUcit examples, where X renormaUzation
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in the normal state and in the superconducting state are very different. In these cases, it is
essential to solve X and A at the same level using the generaUzed Hartree-Fock scheme.

Our set of equations for A and X is mathematically similar to the standard EUashberg
equations for A and Z, with Z replaced by X and the electron-phonon coupUng constant
A replaced by p. Consequently, for weak to moderate coupUng, the gap A is given by a
McMiUan-Uke equation. For an attractive interaction (negative p)

A 26 exp(^) 26 exp(-i^) (3.1)

because of the 1 — \p\ factor, A is a factor of e larger than the BCS value 2fx exp(—l/|/i|),
and a factor e2 larger than the value given by the McMillan expression 2uph exp(—^p). For

very strong attractive coupUng X —> 1/2 and A « fx/sinh(l/2|/i|) « 2\p\(,x which is near
the BCS value, and substantially larger than the EUashberg value for the case of a phonon
Einstein spectrum with uph 6 1 (Fig- 4). However for momentum renormaUzation,
the parameter A </>/X does not give the lowest excitation energy. This value is given by
4> XA (Fig. 4), because the quasi-particle energy is J(X£)2 + <jP. Consequently, the gap
is given at weak and moderate coupUng by

0 26(l-H)exp(-ì^J) (3.2)
P-

and for very strong coupUng by the original BCS expression <f> \p\(i-

Non-trivial solutions for A exist in principle for a repulsive interaction, as pointed out by
Englman, Halperin and Weger [25]. For these solutions, A(f) oscillates as function off with
a period of (4/3)fx. Antisymmetric solutions (in f) exist as weU as symmetric ones [24]. For
these solutions a constant repulsive potential p has no effect however strong it is, since the

product of A and p oscillates and its integral vanishes [26]. If we ignore renormaUzation, i.e.

arbitrarily set X(£) 1, the solution is obtained immediately for a coupUng constant p > 2

(Fig. 5). However, when we introduce X(f), then for a strip potential with fx < T/2, the
solutions disappear and there is no solution however large p is. We can obtain a solution
nevertheless if fx > T/2 and thus the renormaUzation is reduced. An extreme Umit is when
fx >> T, and then Xml. Alternatively, a solution is obtained if the renormaUzation is for
some reason smaller than X(£). The eUmination of the solution by the renormaUzation is a

property of the square-barrier potential. For other forms of the potential, a solution may be

present even when the renormaUzation X(f is properly introduced, as for a Bardeen-Pines

potential:
-Vog

(t-er-tì
For such a potential, a solution exists even for very small \p\. The solutions for the attractive
and the repulsive case axe shown in Fig. 6 (we have assumed that the Bardeen-Pines has a
small factor i6 in the denominator, without it, the gap could be considerably larger [25]).
We can notice a resemblance between Fig. 5 and Fig. 6, regarding the osciUating behaviour.

An antisymmetric solution in f for antisymmetric, separable, model potential was
considered by Cohen [27] and Nakajima [28]. Antisymmetric solutions in u where proposed by

V(U)=tt ."r & 0-3)
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Figure 4: The excitation gap in units of the cutoff as a function of the coupUng A, for the

original BCS model (dashed Une), EUashberg theory for an Einstein spectrum (lower fvdl Une)

and for the attractive momentum dependent strip potential (upper full Une) (uph fi 1).
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Figure 5: A and excitation energy E (in fx units) at T 0 for a repulsive strip potentials
with p 6: (A) and (B) symmetric solution; (C) and (D) antisymmetric solution. The
renormaUzation is neglected: X 1.
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potentials: p —0.3 (attractive) and p +0.5 (repulsive).
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Berezinskii [29] for the spin-triplet pairing and extended on a spin-singlet pairing by other
authors [30]. The antisymmetric solutions in f, were also considered by Mila and Abrahams
within a weak-coupUng theory [31]. These authors consider a sum of a repulsion with a large

f cutoff (short range potential) and an attractive strip potential (i.e. square well potential)
with a short f cut-off. For the attractive momentum-dependent potential, the solution
persists in the presence of the renormaUzation X. The constant Coulomb potential drops out
as had been pointed out previously [26].

For an attractive interaction (negative p in our notation), there is an instabiüty for a

square-weU potential, in the normal state, when \p\ > 1, X becoming negative (when X 0

the DOS diverges). An instabiUty of this kind could occur in the formation of a bound state
such as lattice-distortion bipolarons [32], or spin bipolarons [33]. Moreover, a recent study
using Monte Carlo simulations on the 2D attractive Hubbard model [34] shows that singlet
pairing correlations develop above Tc. Therefore, for an attractive momentum-dependent
interaction, there is a bound state even at temperatures higher than Tc, for the case of
strong coupUng. This is in the spirit of the Schafroth model [35], where there are bosons
above Tc, which undergo a Bose-Einstein condensation below Tc. The formation of bound
pairs above Tc is also discussed by Nozieres and Schmitt-Rink [36].

4 Comparison with EUashberg theory

For a frequency-dependent interaction, we do not encounter the instabiUty of the renormalization

function of the momentum-dependent interaction. A frequency-dependent interaction

must be an analytic function of u, as are the solutions Z(u), A(u), and the normal
and anomalous Green's functions G(k,u) and F(k,u) [3]. CausaUty impUes the well-known
singularity along the real w-axis and analyticity elsewhere in the complex plane [37]. Therefore

the path of integration can be deformed in the complex-u; plane and consequently the
solution of these equations is straightforward. The EUashberg equations (at T 0) for the
u>-dependent interaction D(u — u'), along the imaginary u—axis, may also be obtained using
the residue theorem

(Z(iu)-l)u -J dto'
,D(iu — iu')u'

A(iw) -—!— /v ' Z(u) J
du

R
,D(iu -iu')A(iu')

Z(u) J R

R j(u')2 + A(iu')2, (4.1)

where A <f>/Z. The structure of these equations is similar to generaUzed Hartree-Fock
scheme that we considered before, however the physics is very different because the causahty
imposes some constraints. Since the Green (or kernel) functions must be analytic functions
of u away from the real axis (causaUty), the retarded part of an effective interaction due to
phonons with an Einstein spectrum with frequency u0,

^9 (4 2)
(w - Wf + ul { '
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Interaction CoupUng strengh Instantaneous
momentum dependent

Retarded
local

Attractrive weak

strong

BCS
solution

Schafroth-Uke
solution

EUashberg
BCS-Uke solution

EUashberg
solution

Repulsive OsciUatory solution
(under special conditions)

No bound-pair
solution

Table 1: Nature of the superconductivity for momentum and frequency dependent, attractive
and repulsive interactions.

is a smooth function of the imaginary frequency and no solution exists for negative A [25].
A frequency-dependent strip potential similar to the one we used before for the momentum
dependence cannot be obtained as a superposition of phonon kernels and, in addition, violates
the causaUty as it is not analytical away from the real u axis.

In conclusion, the momentum-dependent potentials give a richer set of solutions in
comparison with the retarded interaction (see table 1), as the severe constraint of the analyticity
away from the real axis for the kernels is no longer required for the momentum dependent
interaction.

5 Experimental considerations

Let us discuss now some physical considerations relating to the question whether this model
bears any relevance to the high-Tc cuprates. The increase in velocity by the momentum
renormaUzation: v —y Xv is associated with a decrease in the DOS: N —> N/X (Fig. 1).
Thus, there is a minimum in the DOS at the Fermi level. This minimum can be regarded
as a Coulomb quasigap. Coulomb gaps and quasigaps were considered by Altshuler and
Aronov [38] and by Efros [39]. They considered disordered systems, while here we consider

an ordered system. Therefore, our Coulomb quasigap differs in some essential respects from
those of the Altshuler Aronov and Efros theories. In those theories, the decrease in the DOS
in not associated with an increase in the velocity, as is the case in the present model. In
the present model, the Coulomb quasigap is caused by a repulsive momentum dependent
interaction, with a small cutoff fj. We propose a model theory possessing these features
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elsewhere [40].

There is also some experimental indication that an increase of the velocity near the Fermi
Surface is associated with a high Tc. Measurements of Uemura et al. [41] show that Tc is

approximately proportional to A~[2 (Al is the London penetration depth), which in turn is

proportional to the velocity.

Band-structure calculations employ the LDA, in which the interaction is assumed to be
local in r-space, and consequently (essentiaUy) fc-independent. Therefore the fc-dependent
features that we consider by using momentum dependent interactions are not considered.
We suggest that close to the Fermi surface, we must use a theory that goes beyond LDA and
takes into account the momentum dependence of the exchange and correlation potentials.

The quasiparticle DOS in the superconducting state is sensitive to the structure of the
superconducting gap parameter and can be a useful quantity to guide the understanding
of the mechanism leading to the high temperature superconductivity. This quantity can
be measured in tunneUng conductivity experiments. Experimentally, in high temperature
superconductors, such as YBCO, BSCCO, NCCO, BKBO, [42] a sharp maximum is observed
in the tunneUng conductivity and the energy of this maximum is conventionally called the

"gap". However the tunneUng conductivity does not vanish below that maximum, but
extends smoothly down to a very low energy 5'°', which is commonly called the "Zero Bias
Anomaly" (ZBA). A similar situation is observed very clearly in the organic superconductor
ET [43]. £<°> in YBCO is about 4 meV, and in ET it is about 0.35 meV, i.e. 5 to 10 times
less than the "gap". There is not yet a consensus about the origin of states in the "gap",
or the ZBA. Recent experiments by Renner et al. [44], definitely estabUshed an appreciable
tunneUng conductivity inside of the "gap" in BSCCO. This finite tunneUng conductivity
is sometimes attributed to a gap varying with angle [15], as in d-wave superconductivity.
However a similar effect can be otained by a gap function with s symmetry that varies in the

energy direction as described in this paper. For instance the (symmetric and antisymmetric)
solutions A(f of the gap equation for a repulsive potential that osciUate as a function of f
as shown in Fig. 5 give strongly varying excitation energy E(£) faf2 + A2(f) (Fig. 5) and

finite DOS in the "gap" (Fig. 7).

6 Discussion

EUashberg treated the (^-dependent interaction (due to the electron-phonon coupUng) for
strong coupUng. It is important to note, however, that the concepts of a "frequency
dependent interaction" and "strong coupUng" are distinct and independent: a momentum
dependent interaction may be treated for the case of strong coupUng, as we do here, and
an ^-dependent EUashberg formaUsm may be used in the weak coupUng Umit. Also, it is

important to point out that the reduction of Tc is not an essential consequence of strong
coupUng and renormalization alone, but of retardation as weU.

Usually, the momentum renormaUzation X is considered as a normal-state effect that
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(A) Symmetric solution (B) Antisymmetric solution
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Figure 7: Superconducting quasiparticle DOS for a symmetric solution (A) and an antisymmetric

one (B) (given in Fig. 5) as function of the excitation energy E.

can be absorbed in a renormahzed band. We found however, that for some interactions
depending on momentum the superconducting state can have a strong influence on X, and

thus, we have to solve coupled nonhnear integral equations for X and for the superconducting
order parameter <p, generaUzing the Hartree-Fock scheme. These equations are very similar
to the standard EUashberg equations along the u imaginary axis.

However, the differences between an interaction that depends on momentum and one that
depends on frequency are subtle, and at the same time very profound. For an w-dependent
interaction the kernels of the integral equations aie analytic in u away from the real axis. For

a fc-dependent interaction, the kernels of the integral equations are not necessarily analytic
in the complex-f plane. Analyticity is a very severe restriction, that drastically Umits the
allowed solutions. Thus, the manifold of allowed solutions for a fc-dependent interaction is

so much richer (table 1).

A major physical difference is, that a momentum dependent interaction causes the
velocity to increase for a repxdsive interaction, and to decrease for an attractive one. An
w-dependent interaction always decreases the velocity. In the normal state (T > Tc), the
single particle states for an attractive fc-dependent potential are unstable, when A is greater
than a certain threshold.

The physical reason why the electron-phonon interaction in metals gives rise to a weakly
momentum dependent interaction is that the coupUng is almost local in space [45, 46], as

the interaction is screened with a screening length that is considerably shorter than the
interatomic distance. This physical reason may no longer apply in layered materials Uke the
high temperature superconductors, where non locaUty is important [47].

CoupUng originating from electron-electron interactions in layered and composite materials

was considered in the theories of "excitonic" superconductivity by Little [8], AUender,
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Bray and Bardeen (ABB) [10] and Ginzburg [9]. In the description of this mechanism, the
results from the electron-phonon mechanism were taken over, with the frequency rescaled to
the higher exciton frequency, but without consideration of the possibiUty that the momentum

dependence may play an essential role. In the Little mechanism the electron-exciton
interaction may be regarded as local (in the relevant direction), therefore Xml. In the
Ginzburg and ABB mechanisms this is not the case, since the excitons are extended, therefore
the Nambu-Gor'kov [2] theory of superconductivity in these models should be reevaluated,
taking notice of the momentum dependence of the interaction from the very start.

Acknowledgement The calculation on the EUashberg equation were initiated in
collaboration with R.F. Wehrhahn. M.W. benefited from extensive discussions with M. Fibich
and A. Ron. We axe grateful to T. Jarlborg for discussions.
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