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Classical theories, atomicity and nonclassical theories

By Al. Ivanov

Institute of Physical Chemistry, Spi. Independen{ei 202, R-77208 Bucharest, Romania

(26. XII. 1990, revised 4. III. 1992)

Abstract. The classical theories, represented by a special type of Boolean orthomodular lattices,
are defined. By using the notion of classical theory, several reasons are given, permitting to assume that
any orthomodular lattice which may be considered as a physical theory is "constructed" from a set of
"classical components". This assumption leads to an interpretation of the atomicity of physical
theories/orthomodular lattices. Arguments for the existence of nonclassical theories are examined by
employing nonclassical observables, which are also defined in the paper.

1. Introduction

There are physical arguments to consider that any physical theory—if identified

with a collection of "yes-no" experiments (tests)—has the mathematical
structure of an ortholattice (a lattice with an orthocomplementation defined on it).
Roughly speaking, a physical theory should be a mathematical object able to
describe empirical states (modes of preparation) [1,2]. Consequently, a physical
theory must have a sufficiently rich mathematical structure, i.e. a structure which
allows the correct description of the relations between states, time-evolutions of the
states, symmetries, etc. It is clear that, from this point of view, ortholattices are too
poor mathematical structures. Therefore, we have to find some other mathematical
properties which confer to ortholattices the quality of being physical theories.

In a previous paper, using the fact that for any ortholattice which may be a

physical theory there exists a compatibility relation defined on it, we proved that
any physical theory is an orthomodular lattice [3]. This does not mean that any
orthomodular lattice is a possible physical theory, so that it is necessary to complete
the structure of orthomodular lattices with some new physically interprétable
properties. It will be shown below that such a property is the atomicity (of
orthomodular lattices).

One of the main purposes of this work is to make clear that any theory/ortho-
modular lattice may be completely embedded into an atomic theory and this is a

physically interprétable statement. The argumentation of this fact is based on a

careful analysis of the so-called classical theories. Since we consider that any theory
may be thought of as a collection of observables, we will define first the observables
as objects which are independent on any theory (Section 2). We will distinguish also
between classical and nonclassical observables. Then it will be seen that there are



642 Ivanov H.P.A.

theories which may be naturally considered as "constructed" from classical observables,

so that they appear as a "superposition" of classical theories. These will be

called total theories (Section 3). It will be also clear that, even if an arbitrarily given
theory/orthomodular lattice is not total, it may be considered as a subtheory of a
total theory. On the other hand, it will be proved that any total theory is atomic,
and this fact offers an interpretation of the atomicity as a basic property of
orthomodular lattices which are physical theories.

In Section 4 we will discuss the very interesting problem of the existence of
nonclassical theories. It is well known that Heisenberg's uncertainty principle
assures the existence of pairs of incompatible observables and this fact is naturally
described in the language of Hilbert-space theory. The Hilbert-space theory is a
non-Boolean one (classical theories are Boolean algebras) so that we might think
that the existence of nonclassical theories is a direct consequence of the uncertainty
principle. We will show that there is another interesting point of view. More
precisely, the arguments used in Sections 2-3 do not imply necessarily the existence
of non-Boolean physical theories, so that they appear as being independent on the

uncertainty principle. In other words, the fact that any theory is an orthomodular
atomic lattice does not imply directly the existence of incompatible pairs of
tests/observables. It results that we have to look for a physical argument for the
existence of non-Boolean theories and it seems to be interesting to find one which
does not depend on the incompatibility of tests. It will be seen that it is sufficient
to consider a total theory having a nonclassical observable described by an atomless
Boolean algebra (such as the position of a microparticle). Such a theory is

necessarily a non-Boolean orthomodular lattice. Taking into account this result, we

may affirm that the existence—in a theory—of a nonclassical observable implies
the existence of incompatible tests/observables and, consequently, the uncertainty
principle. We could also say that there exists a close connection between atomicity
and Heisenberg's uncertainty principle via nonclassical observables.

2. Observables

In this section it will be shown that any observable may be described, in
principle, by an appropriate Boolean algebra. More precisely, it will be seen that the
Boolean algebra associated with a given observable exists, but in order to construct
it effectively we have either to consider some experimental facts, or/and to make
specific physical hypotheses.

Let us consider an observable co. From the empirical point of view, ca is a
physical quantity and an experimental procedure permitting to measure it in any
state. Intuitively, we understand by a state a mode of preparation [2]. Suppose that
the result of any single measurement of cu is a real number (we restrict ouselves to
this situation for the sake of simplicity, but it must be noted that there are
observables whose "measured values" may be considered as elements of other sets,
like R3 or appropriate spaces of functions—here R denotes the set of real numbers
and R3 its third Cartesian power). The basic object of our discussion is the
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a -algebra J'(R) of Borei subsets of the real line R. The elements of J^(R) may be

interpreted as tests with respect to the observable ca : B e â$(R) represents the test
which gives the answer "yes" when the measured value of the observable co is a

number from B. The set J>(R) itself may be organized as a Boolean algebra if we
put Bxv B2 Bx\jB2, Bx a B2 BxnB2, B± R-B for all Bx, B2, B e ®(R).
Taking into account these facts, we may show easily—by a standard reasoning—
that any arbitrarily fixed state rj defines an unique probability pa : &(R) ->[0, 1].

Let us consider now a set of states denoted by <$. The set
Irg {Be ®(R);pAB) 0 for all a e 'S) is an ideal in &(R) [4]. If no state besides
that contained in <& is considered, any element of /^ corresponds to the "impossible
test" (the test which gives always the answer "no"). This affirmation has an obvious
statistical character since it does not exclude the possibility to obtain "sometimes"
by single measurements of the test B e I& the answer "yes". Now it is almost
evident that the quotient algebra 0S(R)/Iv is the Boolean algebra describing the
observable ca when a set of states 'S is fixed. This is because two Borei sets Bx, B2

represent the same test if Bx — B2, B2 — Bx e I9. All these facts lead to the conclusion

that an observable ca is described by the quotient algebra 0a(R)I^ when <fi§ is the
set of all possible states. Unfortunately such a set cannot be defined, so that, for the

moment, we know only that a Boolean algebra describing a given observable ca

exists and is—in some sense—unique. It will be denoted by 0SW. For 3tm we may
propose different concrete forms, depending on the physical hypotheses which are
made. A model of the Boolean algebra 3èm may be obtained if there are physical
reasons—related to the measurement of the observable co—which permit to choose
an ideal / whose elements may be considered as corresponding to the "impossible
test". If such an ideal is given, we consider that aäw may be identified with &(R)/I.
This is the idea which will be used in what follows.

Definition 1. Let 0Hm âS(R)/I be the Boolean algebra of the observable co. We

say that cu is a classical observable if there exists a set Sm e â#(R) such that
I={Beag(R);BnSœ 0}.

It would be more correct to consider that 08(R)/I is a classical model of the
observable ca, but we will often prefer to say simply that ca is a classical observable.

The most important property—from the physical point of view—of classical
observables is given in the following proposition, which may be proved without
difficulty.

Proposition 1. Let co be a classical observable and âSm =^(R)/I its Boolean
algebra. Then &m is an atomic algebra and the set of its atoms is 0,(äSm) {{â};
aeSa}.

Here Q(L) denotes the set of all atoms of the orthomodular lattice L and {â} is the
element of J'(R)//having as représentant the one-element set {a}. The atomicity of
the algebra &m has a clear physical interpretation, which results directly from the
physical meaning of the ideal /. Indeed, if a e R has the property {a} $ I, it results
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that we have accepted the existence of a state a such that p„({a}) ^ 0. Since a e Sa

represents a possible result of a single measurement of the observable a», we may
say that there exists at least one mode of preparation (state) such that the
measurement of the test corresponding to {a}, performed on identical copies of this
state, gives the answer "yes" with a statistically significant frequency (we will say
that {a}—or another Borei subset having this property—is statistically significant).

In conclusion, a classical model of an observable co is obtained when a set Sm

of possible values of co is chosen, all tests associated with the measurements of ca are
described by subsets of Sœ and any one-element subset of Sœ is considered to be

statistically significant. It follows that, when a Boolean algebra sé is supposed to
describe an observable co and sé is atomic, we may affirm that ct» is a classical
observable. Hence, the following definition appears as being quite natural.

Definition 2. An observable co is said to be nonclassical if 3&m is a nonatomic
algebra.

The classification of observables into "classical" and "nonclassical", given in
Definitions 1, 2, has an obvious intrinsic character since the observables are defined
as objects which do not depend on any theory. A discussion concerning other
possible classifications of observables into classical and nonclassical is given in
Appendix A.

In what follows any orthomodular lattice will be denoted by a triple (L, <, 1),
where L is a nonempty set, "<" an order relation on L—such that L is a lattice
with respect to L having a lowest and a greatest element—and "1" an orthocom-
plementation on the lattice (L, <).

Suppose now that an orthomodular lattice (L, ^, _L)—considered as a physical

theory—and the Boolean algebra ^M of the observable ca are given. We want
to obtain a mathematical form of the statement "cü is an observable of the theory
L". Unfortunately, the whole "physical content" of this statement cannot be

expressed in a purely mathematical form. Nevertheless, for our purposes it is

sufficient to work with the following definition.

Definition 3. Let (3Sa, <m, lm) be the Boolean algebra of the observable ca

and (L',<,lfi) a physical theory/orthomodular lattice. We say that co is an
observable of the theory L', if there exists a mapping cp : 3$m -*L' such that:

(0 x <wyocp(x) <cp(y);
(ii) cp(x-L"') cp(x)L for all x e L';
(iii) xt e&œ, i el and /\mi e /x, exists in âSm => /\ie/cp(xi) exists in L' and

<p(AJex-) A<-<?(*-¦)•

We will say often that the pair (cp, ca) is an observable of the theory L'.

We want to notice also that a mapping cp : L^L', where L, L' are orthomodular

lattices, having the properties (i)-(iii) from Definition 3—L instead of
BSm —will be called a complete embedding. Concerning this definition, we must take
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into account sometimes that it is not complete from the physical point of view.
More precisely, the implication

^m 's isomorPhic to \ / ca is an \
\an orthosublattice of LJ ^observable oî LJ

is true provided that nothing but the "logical structure" of the theory L is

considered. If some other physical facts have to be taken into account, then cp must
satisfy some additional conditions. Nevertheless, all results of this paper are
physically correct since the implication (I) was not used for proving them (see also
Appendix A).

3. Atomicity and classical theories

It has been seen in Section 2 that the Boolean algebras of classical observables
are atomic and their atomicity may be interpreted in physical terms. In this section
we will justify the following assertion: any theory is an atomic orthomodular lattice
or may be embedded into such a lattice.

It is important to point out that classical observables exist. Indeed, any
arbitrarily given test a generates a Boolean algebra sé'a {0, a, <fa, 1}, where a^
denotes the test which gives the answer "yes" if and only if a gives the answer "no".
It is easy to understand that séa may be considered as describing a physical
quantity caa. It is also a trivial fact that caa is a classical observable.

Let (L, < 1) be a theory/orthomodular lattice. Since L \JaeL séa, the theory
L may be considered as a collection of classical observables interconnected by the

lattice—operations " v " and " a ". In order to use efficiently this observation, we
need some special technical results concerning orthomodular lattices.

Let (L, <, 1) be an orthomodular lattice and A s L. We will denote by [A] the
smallest orthomodular sublattice of L containing the set A and having the following
property: F <=, A and v F exists => v F e [A]. Given #" {sé,r, 1 < i < n} a finite
family of atomic Boolean orthosublattices of L, the set

Ci#r {a,, a • • ¦ a aik ; ccik e Q.(sék), \<k^n)
will be called the nucleus of the family J5".

Definition 4. Let (L, <, 1) be an orthomodular lattice and

& {(<P;> cot);l<,i<n}a finite family of classical observables of L.
(i) & is said to be reproducible if Ufa i <Piißm) £ [*V]
(ii) #" is said to be independent if 0 4 ^V-
(iii) J* is said to be maximal if [\J"= x cpA^œ)] is a maximal Boolean sublattice

of L.

The following proposition characterizes the reproducible families of classical
observables. It gives also a characterization of independent families of classical
observables when these families are reproducible.
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Proposition 2. Let (L, <., 1) be an orthomodular lattice and
fiF {(cp,, co,); 1 ^ i ^ n) a finite family of classical observables of L. Then the

following statements are equivalent:
(i) 3F is reproducible;
(ii) vQ^r 1;

(iii) [U"=i <Pt(@a>;)] Is a Boolean sublattice of L.

Proof. Let us denote cpt(^w^ by sé,. We will prove first the implication
(ii) => (i). Since (a, y)K (the relation K is defined by the equivalence
(a, b)K o a (a a b) v (a a b x) for all y e Q^, a e Çl(séi 1 < i <ri), we have

» Vv e a, (<* a y).

The sublattices sét are atomic, so that we may write (J"= i ^i — [&&]• In order
to prove that (i) => (iii), let us notice first that the elements of Q^ are mutually
orthogonal. Indeed, if a, a ¦ ¦ • a a„, ai a • • • a a'„ e Q^ are two different elements
and cck =£ot'k, we may write

a, a ¦ ¦ • a a„ < at < a'kx < a.'^ a • ¦ • a a^ (a', a ¦ • • a a^)-1.

From this fact we get immediately that [Q^?] is a Boolean sublattice. Since

^,£[ß,j for all i, \<i<n, it results that [ (J?= i ^,] S [Q^]. Therefore,
[Ufai ^f] is a Boolean sublattice.

It remains to prove the implication (iii) => (ii). It is sufficient to examine the
case n 2, since then the proof may be easily obtained by induction. Let
fiF {séx, sé2} be a family of classical observables such that [séxusé2] is a

Boolean sublattice of L. Since vfl(i2) 1, we may write for all a eîl(i,) the

equality cc \fßeQiJ,2)(<i a ß). Hence,

1 yÇl(séx) V (a A ß) VÎV> Q.E.D.
a e n(.rf ]

/SeO(.=/2)

It may be proved by examples that the reproducibility and the independence of
a family of observables do not imply each other (see Appendix B). The result
expressed in Proposition 1 is important when we have to decide whether a

subtheory of a given nonclassical theory is or not a classical one (an example is

given in [5]).

Definition 5. Let (L, <, 1) be a theory,
(i) A set J* of classical observables of the theory L is said to be complete if

it is finite, reproducible, independent and maximal,
(ii) L is said to be a total theory if, given (cp, ca) any classical observable of L,

there exists !F a complete set of classical observables, such that the family
&u{(cp, ca)} is reproducible,

(iii) L is said to be a classical theory if there exists fiF, a complete set of
classical observables, such that for any (cp, ca), classical observable of L,
the set !F u {(cp, co)} is reproducible.
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Let us discuss first the classical theories. They are characterized by the
following proposition, which has some common points with a category of
mathematical results concerning the representation of lattice morphisms by measurable
functions [6].

Proposition 3. Let (L, <, 1) be a classical theory. Then the following statements
are true:

(i) L is an atomic Boolean algebra;
(ii) there exist S a set and (Ls, £, 1) (here A1 S — A for any A e Ls) a

Boolean algebra of subsets of S, having the property x e S => {x} e Ls, such
that L is isomorphic to Ls andfor any (cp, ca) a classical observable ofL there
exists a unique function fm : S^Q(äSm) satisfying the property
f-\B) cp(B)forallBe®co.

Proof, (i) Let J5" be a complete set of classical observables having the properties

required by Definition 5(iii) and a e L. Since séa Ç L represents a classical
observable and J* is maximal, we get a e [{J(v,ol)e&¦ cp(3Sw)] [Q&]. It results that
L [Qjr]. Therefore, L is a Boolean algebra and Q(L) Q.^.

(ii) Let us denote by (cpt, co,), \ < i < n, the observables of the set J5". Since J^
is independent and L [Q&], it results that L is a Boolean product of Boolean
algebras 3Sm., 1 < i < n. Moreover, if we consider the set S Q.(3Smi)

x-x Çl(3êWn, then L is isomorphic to a Boolean algebra Ls of subsets of S,

having the property £l(Ls) {{x}; x e S}. Therefore, any observable (cp, co) of the
theory L is completely described by a complete embedding cp :Mm-^Ls. It remains
to prove that there exists a mapping fm : S y 0.(38m) such that/fa(Ä) cp(B) for all
B e dim. It is easy to see that S UaEO(«m) <P(°0 and a / a' => cp(tx) ncp(a') / 0.
Hence, for any x e S there exists a unique ax e £i(â#m) such that x e cp(ctx). It results
that we may define a mapping fm : S ->£l(â$œ) by the equality fm(x) <xx for all
x e S. If B e âim, then B v {a; a £ Q.(0$m), a < B) and, since cp is & complete
embedding, we may write cp(B) (J{cp(<x); ce e Çï(fi%m), ce <* B}. On the other hand,
f~\B) {x e S; there exists a. < B, ce e Çl(0Hm), x e cp(a)} and it is easy to verify
that cp(B) ~f-\B), Q.E.D.

Proposition 3 may be considered as justifying our definition of classical
theories. Indeed, if we take L a theory, having a complete set of n classical real
observables, then S £ R" and all real classical observables of L are described by
Borei—measurable real functions.

Since there are experimental facts which confirm that any classical observable

may be described in the framework of a classical theory, we will accept the
following axiom.

A. For any arbitrarily given theory (L, <, 1), there exists a total theory
(U, <', 1') and a complete embedding cp : L->L'.

It is obvious that for any arbitrarily given classical observable there exist many
classical theories "containing" it. Axiom A affirms that it is possible to choose, for



64 8 Ivanov H.P.A.

any classical observable of a theory L, a classical theory such that the union of
these theories may be organized as a total theory having a subtheory isomorphic to
L.

The most important result of this section is:

Proposition 4. Any total theory is an atomic orthomodular lattice.

Proof. Let (L, <, 1) be a total theory and °U the set of all its classical maximal
subtheories. It may be proved easily that L \jaU. Let us consider U e<W. If
a eQ(U), then a e Q(L). Indeed, let us suppose that a $ Q(L). Then we may find
ß e L, 0 < ß < ol. Obviously, (ß, a')K for all a' e QW) and ß $ U. Then [{ß} u U] is

a Boolean sublattice including strictly the sublattice U, which is impossible since U
is maximal. It results that a e Q.(L). If a e L, A > 0, then there exists U e ^ such

that a e U and we can find a e Cl(U) ^£l(L) such that a. < a. Therefore,
a(L) l)UeVQ(U), Q.E.D.

The physically significant result of this section is expressed in the following
statement.

Corollary. Any theory may be completely embedded into an atomic theory.

This result represents—in our opinion—a sufficiently good interpretation of
the atomicity axiom.

4. Nonclassical theories

In previous sections we saw that there are natural arguments to consider
classical models for physical observables. Henceforth, taking into account only such

a kind of arguments, we have no serious motivation to consider nonclassical
theories. In this section we will show that nonclassical theories must be considered
if there are physical motivations for describing some observables by nonclassical
models. This statement is based on the following proposition.

Proposition 5. Let L be a total theory having a nonclassical observable. Then L
is a non-Boolean orthomodular lattice.

Proof. Let {Jf ,¦ ; i e /} be the family of all classical maximal theories of L. We
know that any Jf, is an atomic maximal Boolean orthosublattice of L and
L U/e / fifi^f Let (cp, co) be a nonclassical observable of L. For any b e cp(â8m) there
exists i e / such that b e Jf,-. Suppose that b e Jf,- for all b e cp(3Hm). Then it results
that cp is a complete embedding of a nonatomic Boolean algebra into an atomic
Boolean algebra, which is impossible. Indeed, it is known that if a complete
Boolean algebra B may be completely embedded into a complete Boolean algebra
A, then B is also atomic [7]. Therefore, let us consider the minimal completions
^Z,fifi^T of the Boolean algebras âSœ, Jf,- respectively [8]. Since there exists a
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complete embedding £ : 0S% -* Jf f and Jf * is obviously atomic, we find that 3S% is
atomic. It remains to observe that, in this case, &m must be also atomic [8]. But 8äm

is nonatomic, so that we obtained a contradiction. It follows that {Jf, ; i e I) has at
least two elements, so that L is a non-Boolean orthomodular lattice, Q.E.D.

We will consider now—as an example of nonclassical observable—the case of
the observable Q corresponding to the measurement of the position of a micropar-
ticle in the "physical space" R3. It is clear that the possible values of this observable
are points in R3. The Boolean algebra @SQ may be constructed by considering the

Lebesgue—measurable subsets of R3 as tests which determine the position of the
considered microparticle. Let us denote by if and \x the class of Lebesgue—measurable

subsets of R3 and the Lebesgue measure, respectively. It is well known
that—when microparticles are considered—there are physical reasons to accept
that M g if is statistically significant if and only if p(M) > 0. Taking account of
this hypothesis, we may affirm that 3$Q Z£/Jf, where Jf {N e £? ; p(N) 0}.
The set Jf is obviously an ideal of the Boolean algebra if. The Boolean algebra 3SQ

has no atoms. Indeed, let us consider M e if, p.(M) > 0. Then there exists

M' e <£,M' <= M, such that 0 < p,(fiM') < p(M). It follows that M is not an atom
and, consequently, 3$Q is a nonclasical observable. Therefore, any theory describing
systems of microparticles is non-Boolean since it must "contain" the position
observables of the microparticles. It remains to show that there exists at least one
theory having Q as one of its observables. But this is a well known fact: Q is an
observable of the theory whose elements are orthogonal projectors in Z,2(R3) (the
space of all square—integrable complex functions defined on R3).

It is important to remark that, in our formalism, the existence of non-Boolean
theories results directly from the existence of a nonclassical observable. In other
words, the existence of a nonclassical observable implies the existence of pairs of
tests/observables which are not compatible. It is also interesting to note that a total
theory having Q as an observable has an infinite family of maximal atomic Boolean
sublattices (classical sub theories or classical components).

Proposition 6. Let (L, <, 1) be a total theory such that (cp, Q) is an observable

of L and <% the set of all classical components of L. Then % is an infinite set.

Proof. Let U e °U be an arbitrarily fixed classical component and BQ cp(38Q).
The Boolean sublattice BQ n U is complete. Indeed, let {bt ; i e /} be a family of
elements of BQ n U and a e U. Since BQ is complete and (b„ a)K for all i e /, we get

(V'ieibi, a)K. By applying Definition 4(iii) we get Vie/^i e U. Now we will prove

that BQ n U is an atomic sublattice of BQ. Let us denote BQ n U by B and consider
a e B, a > 0. Since U is atomic, there exists a e Q(U), cc < a. Let p : U -* [0, 1] be
the probability defined by the equality

fl, oi<a'
(0, a. £ a
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for all a' e U and consider the set Ba {b e B,p(b) 1}. Since B is complete,
ß a Ba e B and J? is an atom of B (which is obviously contained in a). Since a < b

for all b e Ba, we get a < /?, so that ß e Ba. Obviously, ß is the smallest element of
Ba. If ß is not an atom of B, then there exists ß' e B such that 0 < ß' < ß. We have
also ß-ß'>0 and ß ß'v(ß - ß') so that /?(j8) =/>(p") +/>(/? - /H 1-

Consequently, p(ß') 1 or p(ß — ß') 1. It follows that we may find y < ß,y e Ba, which
is absurd; the atomicity oï BQr\U is proved. Suppose now that ^ is finite and let

UX,U2,...,U„ be its elements. The family & {Bt; 5, BQ n £/,-, 1 < j < «} may
be considered as a family of classical observables of L. Since BQ Ufa i Bt, we get
from Proposition 2 that ^ is a reproducible family and, therefore, BQ [fljr]. This
result is absurd since [Q.&] is an atomic sublattice of L and it follows that <% must
be an infinite set, Q.E.D.

Appendix A

We will present here another possibility of classifying observables into classical
and nonclassical. Let G be a classical theory and ca an observable. Any triple
(77, Ç, cp), where 77 is a total theory and Ç, cp are complete embeddings of G

respectively fi%w into 77, is called an extension of G containing ca. Usually we are
interested in such extensions which satisfy certain physical properties, so that we
will consider the so-called ^-extensions, where 0* is a set of physical properties. If
77 is a classical (nonclassical) theory we will say that (77, £, cp) is a ^-classical
(^•-nonclassical) extension.

By using these notions we may define ^-classical and ^-nonclassical observables

with respect to a given classical theory G. We say that co is a ^-classical
observable with respect to G if there exists a ^-classical extension of G containing
ca. The observable ca is said to be ^-nonclassical if any ^-extension of G containing
co is nonclassical.

From Proposition 5 we get immediately that, given G a classical theory and co

a nonclassical observable, any ^-extension of G containing co is nonclassical. In
other words any nonclassical observable is ^"-nonclassical with respect to any
classical theory, irrespective of the set t?.

The problem of classifying classical observables is completely solved by
Proposition 2. Indeed, from this proposition we get that a classical observable co

is ^-nonclassical with respect to G if 9 contains a condition which implies
that vQ # 1, where Q is the nucleus of the family {Ç(G), cp(âiïœ)}. Such a condition
may be, for example, the existence of a state a whose correspondent pa : H -* [0, 1]

has the property £„ e n pa(a) < 1 (here Î2 is assumed to be denumerable). An important

case is that when 0> contains only the condition of independence of G and co. Then
co is ^"-classical with respect to G since the Boolean product of the family {G, âêm)
is obviously a ^-classical extension of G containing co. It is also interesting to notice
that, even if G, co are independent, co may be ^-nonclassical with respect to G since
0* may contain a condition which entails v Q. # 1. In Appendix B an example is given
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which proves that such a situation is possible. Finally, if there exists a complete
embedding cp : &,„ -» G and we take 0 0, then we see that G is a classical extension
of G containing ca, situation which corresponds to Definition 3.

In conclusion, besides the "intrinsic" classification of observables into classical
and nonclassical adopted in Paragraph 2, there are many other classifications,
depending on the "reference classical theory" G and the set 0 of physical properties.

For any concrete problem which requires such a classification of observables,
we have to choose an appropriate classical theory and a set of relevant physical
properties.

Appendix B

Given p cz M x M a relation on M, we will write (a, b)p if (a, b) e p and (a, b)fj>

if (a, b) ^ p. We will denote by L„ the lattice of all orthogonal projections in the real
Hilbert space R" and by "J." the orthogonality relation on L„.

Let us construct now an example of a family of independent observables,
which is not reproducible. The Hilbert space R6 is ismorphic to the direct sum
R4©R2. We consider the mutually orthogonal one-dimensional projectors
an, a12, a2X, a22 e L4 and the orthogonal pairs of one-dimensional projectors
ßx, ß2 e L2, ß3, ß4 e L2 such that (ßx, ß,)l, (ß2, ß,)l for j 3, 4. By using the

projectors a', a,, v a,2, a.'2 a2] v tx22, b\ a,, v cc2X, b'2 a12 v a22 we may
construct the following projectors from L6: as a\ v />,, a2 a'2v ß2, bx b\ v ß3,

b2 b'2w ßA. Since a\ a2,b\ b2, ax v a2 1, bx v b2 1, it is easy to see that
sé {0, \,ax,a2\, 0) {0, 1, bx, b2) are atomic Boolean sublattices of L6. The

family {sé, 0Ì} is obviously independent. We will show now that (ax, bx)f.. Indeed,
if (ax,bx)K, then, since (a\,bx)K,(b\,ax)K,(a\,b'x)K, it results that ax,bx,a\,b\
are all elements of a maximal Boolean orthosublattice Jf. Therefore, ßx, ß3 e Jf
since ßx a, a a'^, ß3 bx a b\x. It follows that (/?,, ß3)K, which is absurd, so that
[.sé vj<M] is not Boolean and {.<é, <%} is not reproducible. If we denote by ß the

projector ßxvß2, we see that the family {sé', 08'}, where sé' \{a\, a'2, /?}],
^" [{^fa *2> ß}]> is reproducible but not independent.
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