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Introduction
The problem called first passage percolation was invented in the

1965 paper by Hamersley and Welsh [HW] and has since, on and off,
been the subject of a certain amount of attention; cf. the monographs
[SW],[Kj],[CC], and [D]. Although the model was originally intended as
a simplified description of fluid flow in a random medium, it has seen
applications in diverse areas such as neural networks and the ever
popular topic of "crack propagation" cf. above references and references
therein.

Here, for the d-dimensional Bernoulli system the critical behavior of
the so called first passage time is investigated. It is established that, in all
dimensions, the scaling behavior of this object can be understood
completely via that of the correlation length of the underlying (ordinary)
percolation problem.

Such results have already been proved in two dimensions [CC],
[CCD] using geometric arguments. (Although the methods used here are
also valid for d 2, the results are technically weaker than those found in
[CC], [CCD].) Prior to [CCD], there had been a certain amount of
confusion in the theoretical community (see, e.g. [Ker^fKe^]) but,
knowing that such results hold in two dimensions, there can be little doubt
of the analogous result for any dimension. Nevertheless, a mathematical
proof this has turned out to be elusive and ultimately, the arguments used
here differ a good deal from those of [CC] and [CCD].

The space below will be devoted to a precise definition of the
problem and used as an opportunity to dispense with some notational
preliminaries. Then there will actually be a statement of the theorems to
be proved.

To avoid excessive provisos, this note will be concerned
exclusively with the d-dimensional hypercubic bond lattices Bd; that is the
set of bonds joining the neighboring pairs of Zd. It will always be assumed
that d > 2. To each beEd, one assigns a random variable wb which is
called the time coordinate of the bond. The cob are understood to be

independent and identically distributed. The cases of interest here are the
Bernoulli first passage problems where

_ (1; with probability p°*~ \0; withprobabUity(l-p) (1)

with 0 <p < 1.

The collection of all time coordinates, (cob|belBd) will be referred to
as a realization and, in general, will be denoted by an to.
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If a,ßeZd, and p:oc-»ß is a self-avoiding path in Bd with endpoints a
and ß then, in a given realization, w, we may define the path time (or
length):

tp(w) £cob (2a)

bep
and the minimum time separation between a and ß:

taß= inf tp(co) (2a)
-p:a->$

Using the notation n (0, 0, n) for the point n units along the xa
axis, the first passage time 6 ¦ 0(p) is defined via the limit

*0,n
0 hm ~ (3)

n—°° n
That the above is meaningful is a consequence of the Kingman
subadditive theorem [Ki], from which it follows that the limit in (3) exists
almost surely and is almost surely a constant independent of the
realization.

The statistical behavior of the underlying configurations as a
function of p is the subject called percolation. Here the necessary items
from percolation will be reviewed but, in order to keep this note self
contained, we will couch these in the language of the first passage
problem.

Foremost in importance is the critical point, pce(0,l). The point pc
may be described by saying that if p > pc, there are, almost surely, infinite
zero time paths while, with probability one, all zero time paths are finite
when p < pc. For p < pc, one is interested in the objects

Taß Prob.(taß 0). (4)

It is not difficult to establish that the quantity
1 logTon-f hm——- (5)
ç n—°° n

exists. From (5), it is clear that the object Ç defines a length scale and, in
particular, £ is referred to as the correlation length. In this model, £ is
known to diverge continuously at some point [H], and in fact, this point is
known to coincide with the above mentioned pc [AB], [MMS]

Not surprisingly, pc is also the critical point for the first passage
problem. Indeed, one can easily demonstrate that 8(p) 0 when p > pc.
It was first shown in 1980 by Kesten [K2] that 8(p) > 0 when p < pc. A
bit later, the stronger result

0(p)> sup^^ [logtd-pVe]]-1 (6)

was established, by somewhat simpler methods, in [CC].
Equation (6) provides a one-way bound relating the critical

behaviors of 0 and Ç. That is to say, if the limits of |logÇ|/|log(pc-p)| and
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|log0|/|log(pc-p)| exist as ptpc, then denoting these quantities by v and (for
peculiar reasons) v(l-ip) respectively, it is seen that v > v(l-ip). The
essence of the result which is proved in this note amounts to a bound
supplementary to (6) which is valid for all d > 2. Explicitly, the result of
Theorem A is that for any ô there is a V(ô), uniform in p, such that

0(P) * Rwfcs • (7)

Equations (6) and (7) of course imply that "ip 0" if the existence of the
appropriate limits can be established in any meaningful fashion.

An alternative "definition" of v pertains to the duration along the
minimal time paths at pc: When p pc, the minimal path times
presumably scale sub-linearly with the distance vis-a-vis ton s nip- An
immediate consequence of the method used to prove Theorem A is that
this latter y also vanishes. Such is the content of Theorem B.

Proof of Results

I) Strategic Outline
This subsection begins with a few more concepts — and some more

definitions! Let Al denote the L * [3L]dl box:

Al { b e Bal at least one of the endpoints of b lies in the region

-\L < xa< +|L ; -|L < x„ xj.! < +|L} (8)

These boxes have a short (or easy) direction; an inordinate amount of
attention will be focused on paths within Al which cross in this direction.

The "bottom" of AL, that is the sites with xd > - (L + l)/2 which share a

bond with a site outside Al, will be denoted by BL. The top of Al,
denoted by TL, is defined analogously.

If ießL and jeTL then let tH denote the minimum time over all paths
within Al which connect the sites i and j:

trj the minimum time between i &j along paths which he

entirely within Al. (9)

Of considerable interest will be the travel times across (i.e. "up through")
the boxes Al:

TW ^tW. (10)
jeTL LJ
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The mechanism for introducing the percolation correlation length
into these problems is via "finite-size scaling." In particular, when p < pc
and L >> %, the probability of observing a zero time path up through Al will
tend to zero exponentially fast in L/C. On the other hand, for L < Ç one

expects these probabilities to be not unreasonably small and indeed, when

L is of order unity, these probabilities must themselves be of order unity.
On the basis of these considerations, for any constant c, one can define

L*(c) via

L* max{L| Prob(TlL'l 0) > c V L < L}. (11)

Explicitly, on all scales L up to and including L*, the probability of
observing a zero time path across Al exceeds c, but this condition fails in
the box Al*+i.

According to the result of [CCF], for a suitable choice of the

constant c, the length scale L*(c) may be identified — in the scaling sense

- with the correlation length for percolation:

Proposition 1 For any d there is a constant c(d) such that the

correlation length Ç and the finite-size scaling length L* obey the

inequalities

a,L* > I > JLÎ
»2 + a3logL*

with the constants a1; a2 and a3 independent o/p.
Proof. See [CCF] Proposition 3.2.

The situation as it now stands is as follows: for all scales L up to

L*, one can find zero time paths up through Al with probabilities of order

unity. It is in fact easy to show (Cf. Proposition 2 below) that with
probability exceedingly close to one there are "short time" paths up
through Al. Although this implies the existence of sites in TL connected

to sites in BL by short paths, this is not particularly useful for an estimate

of first passage times. Conversely, if a fixed pair of sites — say the

centers of TL and BL — were connected by a (sufficiently) short path with

(sufficiently) high probability an estimate on the first passage time is

almost immediate.
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The key issue is therefore the deterministic localization of
short time paths. The first stage in this localization is accomplished in

Proposition 3 where short paths in Al get localized to some scale m < L.

At this point an inductive assumption is made about the (probabilistic)

presence of point localized paths up through the Am with times shorter

than a power of m. In Lemma 4 it is shown, using these smaller scale

paths, that a point localized path for Al with an improved power estimate

for the crossing time occurs with high probability. Following this are a

few unenlightening geometric constructions which are used to regenerate

the inductive hypothesis with the improved power estimate.

Hence, path times at length scales smaller than L*(p) enjoy a

sequence of upper bounds which are constants times smaller and smaller

powers of the distance. It should be emphasized that the constants are

uniform in p hence one only need investigate the limit of the sequence of

powers. Since this limit is readily shown to be zero, Equation (7) follows

immediately.

II) Preliminary Results

Proposition 2 For any L < L*(p)
Prob[T|L| > n] < (1 - c)n - e"Xn.

Proof. This result is easily established by looking to the dual model.

Placing a dual (d-l)-cell traversal to each bond which carries a unit time

coordinate, it is a standard result (see, e.g. [Ki]) that T'L| is exactly the

number of independent surfaces which separate TL from BL. The above

estimate is obtained by conditioning to the lowest (n-1) disjoint surfaces

and (paying homage to the Harris-FKG inequality [Har], [FKG]) obtaining
the nth surface at the additional cost of at most (1-c). Alternatively, one

can apply the van den Berg - Kesten [vBK] inequality n times.

Now consider a tiling of the regions TL and BL by disjoint hyper

squares of side m — using smaller hyper rectangles to fit the boundaries

and corners if, perchance, m does not divide 3L. Label the tiles on BL
and TL by indices which run from 1 to K where it is observed that K < [3L

m
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+ l]d_1. Let T1^ denote, in a configuration w, the minimum time that it
takes to get from the Ith tile on BL to the Ith tile on TL:

j|L|,m _ min t\U (12)1
I,J ici li,j • y'">

jej

The following constitutes the first step in the localization of short time

paths:

Proposition 3 For at least one particular (i.e. deterministic) pair of tiles,

denoted by the I*th on BL and the J*th on TL the times T^'jS enjoy the

bound

AnProb[T[y# > n] < exp- K2

Proof. Observe that the event T|L| > n is equivalent to the statement that

the minimum path time from every tile on BL to every tile on TL must also

exceed n. Thus one can write

TLl>n H T'Vf >n. (13)

I<K
Using the FKG inequality on equation 13, one has

ProbrTW > n] > û ProbrT^lf > n ]. (14)
J < K 1,J

1<K
Denote by I*,J* the pair of tiles corresponding to the term in the above

product which is smallest. Then, the desired result follows immediately
from the statement of Proposition 2.

Now for the inductive hypothesis. Let cTL and cBL denote the

central portions of the top and bottom of Al:
cBL {xeBLHL < x1(..., xj., < 4L} (15a)

cTL {xeTL|-|L < x2,..., xj.! < +|L}. (15b)

It is supposed that:

Hb For every L < L*(p) and for every iecBL and jecTL, there are
constants sb, cb, and kb independent ofl. or p such that

tH < sbLb

with probability exceeding 1 - cbexp-[kbLb/2].
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Remark. It is obvious that Hb is satisfied for any b>l since tN is, in the

worst case, a constant times L. Thus Hb is only interesting when b < 1.

However, as we will be demonstrated shortly, Hb implies Hb. with a b'

strictly less than 1.

Lemma 4. Under the hypothesis Hb, for any L < L*(p) there is a

(deterministic) pair ofpoints i*eBL and j*eTL such that

tj«. < stbLb'

with probability larger than 1 - ctbexp-[ktbLb/2]. In the preceding, the
constants s\>, ctb,, and ktb. are independent ofLor p and b' is given by

b'= -^ü a+b

where, for the purpose of typographical ease, we have defined a 4(d-l).

Proof. Let L < L*(p) and let m be an integer smaller than L/2 which, for

the moment, is kept unspecified. Focusing attention on the box AL-2m,

consider a tiling of the top and bottom which is of scale m. For the

privileged pair of tiles, I* and J*, the event of a connecting path, inside

AL-2m, with path time shorter that n enjoys the probabilistic estimate

An
Prob[ TlLj2^m < n] > 1 - exp (3(L-2m)+ M

> 1 - exp - Xn

m

m_ la/2
(16)

l3L-5mJ

(The extra 5m in the denominator is being held in reserve to nullify future

inconsequentials.)

Consider now the box Al. Since BL and BL.2m are separated by a

layer of thickness m, the m*m tiles on BL-2m may ^e regarded as

translates of cBm; the corresponding translate of cBm forms a portion of
BL. (See Figure 1 for further clarification.)

Given that the event T^2™]^ < n has occurred, some site on the

I*01 tile is connected to some site on the J*th tile by a short path inside of
AL-2m- What is now desired is to attach this path to fixed (deterministic)
sites on the top and bottom of Al. This will be achieved (shortly) by using

translates of events in Am. The obstruction to the immediate accom-
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plishment of this deed is that there is no natural partition of the event

T|Lj2^m < n according to which sites on the I*th and J*th tiles are "the

ones" that are connected. However, we have at our disposal the fact that

the events above TL_2m and below BL-2m are independent of the

configuration inside AL-2m; this permits the luxury of an essentially

arbitrary partition of T|Lj2l^m < n.

I*th tile

3L-6m

T
L-2m

1
2/

l*th tile

i- 3m H I- 3m-I

Figure 1

It is thus claimed that there is an i*eBL and a j*eTL such that with

probability exceeding (1 - cbexp-[kbmb/2])2(l - exp-Xn[m/(3L-5m)]a/2), the

event t-JH,, < n + 2sbmb occurs.

Let Am(I*) be that translate of Am for which the I*th tile of AL.2rn

serves as "cTm." (In case the I*th tile is near an edge or corner, the above

sentence should be replaced by " serves as part of 'cTm.'" As the

reader can easily glean from Figure 1, there is still ample room to fit the

relevant translate of Am inside Al.) Pick any site i* on the translate of
cBm corresponding to Am(I*). Pick a similarly defined site j*eTL from the

topofAm(J*).
Order the sites on the I*th tile 1, 2, k, and those on the J** tile

by 1, 2,... h,.... Denote by A^the event

Akh {we T|Lj2l^m < n;The k* site on the I** tile is the "earliest"

site which is connected to the J*th tile by a path inside

AL-2m which is shorter than n. Of all the sites on the
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I*th tile to which it is connected by this sort of path, the

hth is the "earliest."} (17)

The above partition is manifestly a disjoint partition of T|L~2™i'm < n (and

otherwise has very little intrinsic value) but it is now possible to state that

Prob[TlLJ2^m <n] £Prob[Ak,h] (18)
k,h

Using the notation ta b for path times in the translate of Am near B, and

la,b for path times in the translate of Am near TL it is not awfully difficult

to see that

Prob[(tl*'j* < n+ 2 s^)] >

Prob [ IJ \iml < sbmb) fl Ak)h D $j% < sbmb)] (19)
k,h

Now the rhs of equation 19 can be expressed as the following a sum:

Prob[(tjyd* < n + 2st,mb)] >

£ Prob[(t^k1 < Sbmb)nAk(hfl (t'm^ sbmb)] (20)
h,k

J '

Now it is observed the terms inside the square brackets are independent

(since they take place on disjoint regions) so each term inside the sum

can be factored. The quantities Prob^l™ < sbmb] and Probte < sbmb]

are uniformly estimated by invoking the inductive hypothesis. The

estimate then simply multiplies the sum which is seen to be a round about

expression for Prob[T|Lj2™km < n] (cf. equation (18). Using equation (16),

the above mentioned claim, namely that

Probtt^* < n + 2sbmb] >

(1 - cbexp-[kbmb/2])2(l - exp-Xntm/OL-Sm)]372) (21)

has finally been established. Now, to finish the lemma, all that remains is

to optimize over the choices of m and n.

The procedure starts by choosing n to be the largest integer smaller

than (3L/m)a so, explicitly,
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(ä-r*-*isr->- <22»

A dreary calculation can then be performed which shows that

ni-m~-f/2 >- (2Lf/2 (23)L3L-5m.l lm' (23)

which can temporarily be inserted into the estimate in equation (16).

Next, m is chosen to be the largest integer which satisfies

sbmb < (3Lf (24a)mil
Using (24a) and the alternate bound

Sb<m + 0b * IfifcJ (24b)

one can quickly obtain the estimates

gbLb' > mb > hbLb' (25)

where the constants gb. and hb. are messy but do not depend on L or p. A

similar endeavor will also produce estimates which bound (L/m)a from

above and below by constants times Lb'. Substituting the appropriate

bounds into equation (21) — so that all quantities are now expressed in

terms of Lb' — it is seen that the desired result has been obtained. ^
The geometric lemmas must now be dispensed with

Lemma 5. Under the condition Hb, there are constants s\<, c b>, and k'b>

such that for all L < L*(p) the centers o/BL and TL (that is the points

nearest to (0,0, ±^2)) are connected inside AL ôy a path shorter than

s'bLb with probability exceeding 1 - cVexp-[k*bLbV2].

Proof. To simplify the exposition, it will be assumed that L is even. (The

proof for odd L cannot be too different since a careful look at the

definition of Al will reveal that A2N+1 A2N) Consider two copies of the

box Al/2: one translated L/2 units in the positive xd direction and the other

L/2 units in the negative xd direction. Suppose that in the bottom translate

of Al/2, the associated translate of the event tjifai < stb.(L/2)b' occurs.

Meanwhile, in the top copy of Al/2, suppose that a translate of the

reflection of this event across the xd 0 hyperplane occurs. Then,

denoting the (untranslated) coordinates of i* by

i* « (i*,i*2,...,i*d_i,-u2) (26)
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it is seen that a path connecting the point (i*,,... ,i*d-i> ~L) to the point (i*,,

,i*d-!, +L) has occurred at a probabilistic cost of no more than (1 -

ctb.exp-[ktb<L/2)b'/2])2.

Noting that all of the |i*,|, |i*2|, |i*d_!l are smaller than 3L/4, it is

observed that if a translate of the above described event by the vector (-

i*, - i*2, ,- i*d-!, o) occurs, then the desired connection between (o,

- ^2) and (0, + L'2) does not wander outside of the confines of Al. See

figure 2 for further clarification.

c2
x.= 0

h -^H

Figure 2

Lemma 6. Under Hb, the condition Hb. holds where, explicitly,

b' 4(d-l)b
4(d-l)+b

Remark. It is perhaps useful to first illustrate the procedure in d 2

after which the details in d > 3 need only be sketched. The basic scheme,

for Al, is to use the "center to center" events constructed in Lemma 5 in

boxes of scale smaller than L. Unfortunately, one cannot use scales very
small compared to L without spoiling the probabilistic estimates. Thus,
constrained to use only events on scales of order L, there will be a certain

amount of wastage as well as seemingly unnecessary tedium.

Proof. (For d 2) Let L < L(p) and let i (ij,i2) e cBL. Consider the

points placed as near as possible to the points (L,0), (L/6,0),(-L/6,0) and (-

L,0). These will be denoted as "anchor points." The primary goal is to

hook i up to one of these anchor points by a short path residing inside Al.
Having done so, a similar procedure will be invoked to connect any je cTL

up to another anchor point after which the anchor points will be strung
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together via events which are translations and 90° rotations of the "center

to center" events (cf. Lemma 5) in boxes of scale L'6.

First, consider the box Al/2 (or at worst A<l+i)/2) translated so that

the bottom center lies at the site i. Then, with probability no less than 1 -

c"b.exp-[k'b.(L/2)b,/2], this site is connected to its partner at (ii,0) by a path
which is shorter than s*b.(L/2)b'.

Now the end of this path, that is the site (ii,0), is somewhere

between two of the anchor points. Let (ii,0) and the further of these two

points, (P,0) constitute the "top and bottom" centers of a rotation and

translation of a AN with N |P - i,|. Observe that L/3 > N > L/6; thus it is

certainly the case that a path of length shorter than k*b<L/3)b' connecting

Gi,0) and (P,0) occurs with probability no smaller than 1 - c*bexp-
[k'b.(L/6)b/2]. Good. Now consider the same type of procedure with
regards to an arbitrary j e cTL; this gets us a path from j to another

(ostensibly different) anchor point (P',0). Finally, suppose that there are

paths connecting all adjacent anchor points — the paths lie inside AL and

all three of them are shorter than s*b<L/3)b'. Using Lemma 5 on boxes

which look like Al/3, this can be accomplished at a cost of no more than

(1 - c*b.exp-[k'b<L/3)b'/2])3. The intersection of the above described

events certainly implies the much desired path from i to j and since they

are all positive FKG events, there is no difficulty in multiplying the lower
bounds on the probabilities. The desired result for two dimensions has

been established.

Proof. (For d > 2) A similar procedure can be employed in d > 3. First, a

grid of scale L/3 must be set up in the middle portion of the central

hyperplane (Xj! o, -jL < x2, Xd-! < +|L) amounting, e.g., to a total of
4d_1 anchor points. The site ie cBL is hooked to one of these anchor points
in 1 + (d-1) steps; the first taking it to the central hyperplane and then,

cutting down one dimension at a time, a series of d-1 moves each time

going to the grid (point - line - square etc) which of all the (2 - 4 - 8 etc)

nearest ones is the furthest away (to safeguard the probabilistic estimate.)
When i is finally tacked on to an anchor point, the same must be done for
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the arbitrary je cTL; then the two relevant anchor points must be "tied"

which necessitates the use of no more than 3(d-l) additional events.

When all is said and done, there is a path between i and j — within AL —

of length no longer than

s'b.[3(d-l)(L/3)b' + 2((L/2)b'+3(d-l)(L/3)b')] sbLb' (27a)

at a cost of no more than

(1 - c'b.exp-[k-b.(L/3)b'/2])3(d-i) x

x [(1 - c-b.exp-[k'b.(L/2)b'/2])2(l - c-^exp-tk'^L/ó)"72])3^1)]2
> 1 - cb.exp-[kb.(L)bV2] (27b)

for some constants cb. and kb-. Thus, finally, the inductive hypothesis has

been regenerated.

Ill) Final Proofs

Theorem A. For any ô > 0, there is a V(ô) such that for all p sufficiently
close to pc,

V(B)
0(p) <

[Ç(P)]1-5

Proof. In light of Proposition 1, it suffices to establish the above stated

with £ replaced by L*(p). Starting at b 1, (where Hb is manifestly

satisfied) and noting that ab/(a + b) < b whenever b > 0, it is seen that —

after the order of 1/5 iterations — H5. is satisfied for some ô'< 5. Consider

a sequence of times to,N where N (0, nL*(p)). Using translates of
the box Al*(p) stacked up along the xd axis (so that successive tops and

bottoms coincide) a worst case scenario — and the law of large numbers -

- puts

e<P) fc TT* l4p)[s^(L*(p))5' +

+ (L*(p))c5.exp-[kô.(L*(p))ô'/2]] (28)

with probability one. For p close to pc one can rest assured that

s5L*0' > L*c0.exp-[k5L*ô'/2]

from which the statement of Theorem A follows.

Theorem B. At p pc, for any 5 > 0,
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to,N
lim -TTÌT =0N-~ Nò

with probability one.

Proof. At p pc, the condition L < L*(pc) is enjoyed for every finite L.

Again, the "b" in Hb is whittled down to any 5' below 5. Then, using a

single An box event, the direct estimate described by H5. leads

immediately to the above stated result.
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