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Time interval statistics of the Brillouin spectrum
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(31. VIII. 1989)

Abstract. Based on the unique analytic form of the one-fold generating-function very recently given
by the present author in [3], we provide in this paper a complete and an exact analysis of the
time-interval-statistics of the Brillouin spectrum with its central Rayleigh line. We also distinguish the
time-interval-distributions for the present Brillouin triplet from the time-interval-distributions for the pure
Brillouin spectrum (a doublet) given in Ref. [4]. As in Ref. [4], we establish here too the invalidity of the
earlier numerical-results due to Blake and Barakat [5] for the present Brillouin triplet, as they violate even
the well known equation (32) for the time-interval-distribution for the conditional photocount.

1. Introduction

A fairly sensitive account of the one-fold photon-counting analysis of even a
complex multiple-peaked spectrum like the Brillouin spectrum with its central
Rayleigh line (a triplet) can be accomplished by a simple and direct study of the
arrival statistics of the photocounts offered by a combination of Time to Amplitude
Converter (TAC) and a Pulse Height Analyser (PHA) with a resolution of the
order of IO-*— IO-7 s [1,2]. Exact theoretical analysis of the time-interval-distributions

(TIDs), on the other hand can be achieved by a unique analytic form of the
one-fold generating function (g.f) pertaining to this spectrum—a task very recently
accomplished by the present author in Ref. [3]. The detailed analysis of the TIDs
for the Brillouin spectrum with its central Rayleigh line provided in this paper
shows a clear contrast with the TIDs for the pure Brillouin spectrum recently given
in Ref. [4]. Also we establish (as in Ref. [4] for the pure Brillouin spectrum) the
inadequacy of the numerical-scheme employed by Blake and Barakat [5] to study
the TID of the conditional photocount for the present Brillouin triplet. Before
proceeding with these formal features of the photon counting analysis, it is

worthwhile to first ponder over the following general aspects pertaining to this
spectrum.

Inelastic laser light scattering from a medium (a liquid or condensed matter)
undergoing thermal motion produces a Brillouin triplet. The frequency shift 'A' is
given by the following relation [6]:

A a>, - co, ± 2vcOi (e /c)l sin 0/2 1

where cos and œ, are respectively the frequency of the scattered and the incident
wave, V is the velocity of sound in the medium, V the directional constant of the
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medium and 'c' is the velocity of light. In liquids the central Rayleigh component
is due to the pressure fluctuations [6, 7] whereas in the solids, the central component
is thought to be present due to the elastic scattering from the spatial imperfections
or reflection from the surfaces and the side Brillouin components manifest due to
the inelastic scattering from the lattice vibrations (phonons) [8]. A macroscopic
theory generally used (see Ref. [9] for example) to explain certain details of this
spectrum is the one given by Landau and Placzek [6]. In this theory, the ratio of the
intensities of the Rayleigh and the Brillouin components is given by the following
relation:

/Ä/2/B (C„-Q)/C„=y-I (2)

where Cp and C„ are the specific heats at constant pressure and volume respectively
and y is known as the Landau-Placzek ratio. Now, if we were to explain the

presence of the central Rayleigh line in solids through equation (2) above, we
immediately encounter a difficulty as Cp ~ C„ in solids [7] but the presence of this
line has been confirmed by Vacher et al in [8]. These facts suggest that there is a

need for a new microscopic theory which would uniformly explain the existence of
the Brillouin triplet and the relative intensities of its distinct components, when we
scatter laser light from a liquid or a solid.

However, for a study of the relaxation times tc of the different components of
this spectrum, we can use the following interesting definition (valid for any class of
an optical field-quantum or classical) given by Prof. Mandel in [10]:

\™\gir)\2dt1.-2 I \gix)\2dt (3)

where g(z) >s the field-correlation. Here for the Brillouin spectrum g(x) is given by
[5]:

g(z) (1 - a)e-l'l + ae-W cos At (0 < a < 1)

(l-a)eA<\ + a/2(e-ßM + e-ß'W) (ß,ß* o + iA) (4)

where the parameters, '<5'—the ratio of the half-widths of the Brillouin and
Rayleigh lines and 'A'—the frequency shift (given by equation 1)) characterize the
scattering medium—solid or liquid.

Thus a simple calculation gives the following relaxation time for the complete
Brillouin spectrum (triplet):

xc [( 1 - a)2 + a/2] Ì/S + a2<5/2(<52 + A2) + 8<5a( 1 - a)/(4<52 + A2). (5)

From equation (5) above now it is easy to deduce the following relaxation times for
the pure Brillouin a symmetric two-peaked spectrum) and the pure Rayleigh (a
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single Lorentzian profile) respectively:

(i) Pure Brillouin (a 1)

Tr (2<52 + A2)/2<H<52-f-A2).

(ii) Pure Rayleigh (a 0)

Tf Ì/S.

(6)

(7)

Thus, whereas equation (7) reporduces the well-known relation for a single
Lorentzian line, equations (6) and (5) give us the new relationships of the relaxation
times for the doublet and the triplet respectively. In Fig. 0 we give the behaviour of
the relaxation times corresponding to different situations found in equations
(5)-(7) as a function of the frequency shift A. For pure Rayleigh (equation (7)), we
observe a straight line as in this case there is no frequency shift at all! For the

complete Brillouin triplet (equation (5)) we see a steady fall of xc as A and a
increase but after a. 0.6 we find that tc values start moving towards the pure
Brillouin case (the dotted line for a 1 in Fig. 0). Even though the relaxation times
for the Brilouin triplet and the pure Brillouin are of the same order, yet it is possible
to distinguish between these two cases even for small frequency shifts, as the
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Figure 0
The relaxation times for the Rayleigh, pure
Brillouin and the Brillouin triplet as defined
by equation 3.
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heterodyning of the Brillouin components amongst themselves and that of the
Brillouin components with the central Rayleigh line ought to produce different
effects! This indeed is the case as evident from Fig. 0.

2. The Generating Functions

For the optical fields of weak or moderate strength we find the following
relation to be true,

/(/') dt' ~ I(t)ôt, (8)1

as only one photocount is registered in the time interval [/, / 4- St]. In such a
situation Glauber [11] has shown that we can study the Time Interval Statistics
(TIS) by employing a one-fold g.f pertaining to a given spectrum. However for a

rigorous analysis when the field strengths are arbitrary, Barakat and Blake [12]
have shown that we would require a third-order g.f instead and we have successfully
dealt with the case of Gaussian-Lorentzian (G-L) light in [13] by employing the
exact third-order g.f derived in [14]. However, for the present, we confine ourselves
to the results obtained from the one-field g.fs. The one-fold g.f is obtained on
solving the following Fredholm integral equation of the second-kind:

[g\t -1%k(t')dt' kk4>k(t) (9)

where V is a useful parameter, g\t —1'\ the auto-correlation of the spectrum under
study and $k s and kk s are respectively the eigenfunctions and the eigenvalues. For
a Gaussian light of any spectral shape, it is well-known that the one-fold g.f can be

expressed as the following infinite-product involving the eigenvalues of eq. (9):

e(*)=n(i+-K'>4)-' (10)
k

where </> is the mean count rate of the scattered light.
The one-fold g.f given by Blake and Barakat [5], based on the numerical-

procedure suggested by Glauber in [15], is given by the following relations:

Q(s, T) exp £ [( - (I}sy/r]Ir(T) (11)

where

I,iT)=[\r(t',t')dt' (12)

and gr(t', /') is the rth iterated kernel of the integral equation (9) defined recursively
as,

£,(/',/")=£(/',/") (13)
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and

gr(t',t")= V g(t\t)g, _,(/,/")«// (r>2). (14)

Clearly, no functional forms of the TIDs can be expected from this sort of a g.f
stemming from a numerical-scheme, unlike in the case of our exact analysis of the
TIDs here, based on a unique analytic g.f for the Brillouin spectrum, given by the

present author in [3]. This one-fold g.f for the Brillouin triplet obtained on
following certain boundary conditions on the g.f and the usage of the Hadamard's
Theorem [16], has the following general form:

Q(s,T) P(0)/P(-s(iy) (15)

P(i)

where both P(0) and P( — s(.I}) are the specific forms of the entire function P(Ç)
given by the following determinantal forms:

*i(/»i) M-PAE,(P.T) R2(p,) R2(-p,)E2(p„T) R3(P]) R3(-Pl)E3(Pl,T)

*i(-/>i) *Ap,)E,(-px,T) R2(-Pl) R2(p,)E2(-p„T) RA-P,) R3(pt)E,(-Pt,T)
RAPi) R,(-p2)EAp2.T) R2(p2) R2(-p2)E2(p2,T) R3(p2) R3(-p2)E3(p2,T)

*i(-/»2) Rx(p2)E{(-p2,T) R2(-p2) R2(p2)E2(-p2,T) RA-Pz) R3(p2)E3(p3,T)

*,(pA R,(-p3)E,(.p3,T) R2(p3) R2(-p3)E2(p3,T) R3(p3) R3(-p3)E3(p3.T)

RA-pA /?,(/>.,)£•,(-p,,r) r2(-pA R2(p3)E2(-p3,T) RA-pA RApAEA-p^T)

* {P1P2PAPÌ-pÌHpì-pDHpI-pì)}-' (16)

where

Rtip) iß, +P)ZAp), E,-(p, T) exp( -(ft +p)T)
with

/?, 1, ß2 ß, ß, ß* and 2,(p) Zj(p)Zk(p) (17)

where i, j, k 1, 2, 3 and 1 &j ¥^k and the variables pts are obtained from the

following sixth-order polynomial [3]:

p6 + Ap* + Bp2 + C 0

where

A=(sfrx-\)-(ß*2 + ß2),

B (tfa, -D-f (ß*2 + ß2)(sia, - 1) + i?*2)?2,

C *«û, - a2) - j«fl, - a,)(^*2 + /?2) + (tffl, - l)/?*2/?2

with

a|=2[(l-a)+a/2(/?* + /?)],

a2 2[( 1 - a)+ a/2()S*3+ /?')],

«3 2[( 1 - a) + a/2(^*5 + J?5)].

(18)

(19)
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An important measure of the g.f is given by the probability of zero-counts defined

as,

P(0,T) Q(s,T)l_{ (20)

which has the maximum value of 1 at T 0, as there are no photocounts just on
switching the photocounter [3]. However, such a simple aspect related to the g.f has
been overlooked by Blake and Baraket [5] while studying the TIS of the Brillouin
spectrum.

3. Time Interval Statistics

3.1. Definitions and General Features

The one-fold g.f can be alternatively written as,

ß(*,r) <e-«'>> (21)

where

£(/)=! 71(f) dt' (22)-r
and /(/) is the instantaneous intensity of the scattered field. The TIDs of registering
the first photocount V(T) and the conditional photocount PiT), are respectively
given by,

V(T) (I(T)e-sE(T)) (23)

and

P(T) </(0)/(7> -l£(r)> (24)

where / 0 in equation (22). In terms of the one-fold g.f given by equation (21),
the above equations (23) and (24) for the TIDs can be recast as follows:

rçr)--**'^3T

and

1 d2Q(s,T)
P(T)

</> ÖT2

(25)

(26)

For a gross-analysis of the TIS of the Gaussian light Barakat and Blake have
given certain interesting details in their review article [12]. We recapitulate some of
these details required here. For a completely polarized light the TIDs have the
following simple relations [12]:

F(r) </>(l+i</>7V2 (27)
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and

P(r) 2</>(l+</>r)-3 (28)

where the length of the counting interval T is short and the mean count rate </>
can be anything. Clearly these equations (27) and (28) are completely insensitive to
the spectral shape of the chaotic light as the auto-correlation g(x) does not figure in
anywherel However, a fair idea of the TIDs under extreme conditions, can be had
from the following relations derived from equations (27) and (28):

(i) where T 0

K(0) </> (29)

and

P(0)=2</> 2F(0) (30)

(ii) when </>T> 1, we have

P(T)/V(T)x(2^iyT)-i (31)

which implies that P(T) decays-off faster than V(T) for large count rates and the

crossing point is at about T — 0.088 for </> 5.0 for example.

Whereas P(T) given by eq. (28) is completely insensitive to the spectral shape
of the chaotic light, a better and a well-known approximation for </>r < 1 is given
by,

P(T) </>( 1 + g\T)) </>C(D (32)

where C(T) is the intensity-correlation function for the short counting times.
Equation (32) has been recently used by Dhadwal et al. [17] for constructing a
'Time of Arrival Correlator' operative in the /is regime.

At T 0 both equations (28) and (32) give P(0) 2</> as g(0) 1 for the
Brillouin triplet (equation (4)). Though equations (27) and (28) have been
confirmed for the case of G-L light by Barakat aand Blake in [12], unfortunately the
same authors report the P(T) values for the Brillouin triplet which neither follow
equation (28) (for any </» nor the well-known equation (32) (for </>r<f 1). This
is indeed strange as a simple comparison of their numerical-results for the P(T) [5]
with the well-known equation (32) would have given a clear warning!

In our exact analysis of the TIDs of the Brillouin spectrum we allow for any
arbitrary values of the parameters involved a, S, A, T but </> is confined to the
moderate values as mentioned in the beginning of Section 2. The direct dependence
of the TIDs on these parameters comes through the one-fold g.f determined by
equations (15)-(19). In Section 3.2 below, we now give the explicit expressions for
the various TIDs for the Brillouin spectrum, based on the determinantal form of
the g.f given by equations (15)-(19).
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3.2. TIDs for the Brillouin Spectrum

Whereas for the case of the pure Brillouin spectrum [4] where we could give the

explicit functional forms for the various TIDs, we find it more convenient here to
use the following elegant relation due to Bodewig [18]:

DA A Tr (sé ~'Dsé) (33)

where sé is the matrix of the determinant A and Tr stands for the trace operation.
Now rewriting equation 15) as,

Q(s,T)=A(0)/A(s, T) (34)

and on using equation (33) in equations (25)-(26) we find,

K/TÌ dQ(< A pi°>T)dAn TÌr(vj= —— (s, T) T,^:('J)oT \s=, A(\,T)dT

P(0,T)TtIs/-\1, T)^(l, r)l P(0, T)7r(J<) (35)

where

ur-^-c.)^. (36)

and P(0, T) is the probability of zero-counts given by equation (20), and

PiT)=?^{2(A-\l,T)^(l,T))2-A\l,T)j±(l,T)}

^P{Tr2(^)+Tr(^2)-Tr(^)} (37)

where

u ^(-)
ÔT2^•=^-,(.)-^rfa (38)

On using equations (35) and (36) we find that equation (37) can be recast as,

PiT) ^ {^fj + P(0, J)[Tr (M2) - Tr (JT)] J. (39)

From above it is interesting to observe that the higher TID is related to the
lower-order ones as V(T)—the TID of registering the first photocount is related to
the probability of zero-counts P(0, T) and the TID of the conditional photocount
P(T) is related to both V(T) and P(0, T).

3.3. Reduction in the Computation Time

While introducing relation (33), what we had in mind was the reduction of the

computation time by converting the rather involved algebra of a determinant A to
that of a matrix sé. Explicitly speaking, evaluation of an Nth order determinant
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implies N\ multiplications and one differentiation of the determinant implies
summing up of N determinants whose one row (or column) has been differentiated
at a time. Both of these operations can be phenomenally reduced by employing the
usual Gauss-elimination [19] for inverting a matrix. Here, we need the following
number of multiplications for inverting a matrix of N x N dimensions [19]:

p(N) 4/3/V"3 - 3/2N2 + N/6 (40)

and the evaluation of the Nth order determinant demands only N multiplications!
Further, it is instructive to have the following ratios defining the number of times
more we have to use the multiplications via the direct determinantal algebra as

compared to the one given by the matrix inversion by Gauss-elimination [19] and
the usage of equation (33):

(i) For />(0, T) (equation (20))

m- N + Nl _('+("-'>'). (4I)N + N + p(N) 2 + p(N)/N v '
(ii) For V(T) (equation (35))

N + N\ + j ¦ N\ 1 + (N ¦

'/(Ar)
N + N + 2N + p(N) 4 + p(N)/N ' (42)

(iii) For P(T) (equation (37))

am n—-t- (43)v N + N + 2N + 2N2 + 2N + p(N) 6 + 2N + p(N)/N
v '

In our present calculations involving a sixth-order determinant (equation (15)),
we have the following values for v(6), f/(6) and Ç(6):

v(6) 2.93927,

^(6) 11.142857,

C(6) 14.71137. (44)

For a comparison with the earlier case of the pure Brillouin spectrum [4, 20], we
give below the values of v(4), rj(4) and £(4) as the g.f in this case is represented by
a fourth-order determinant (see equations (23-26) and (43) in Ref. [20]):

v(4) 0.4000,

f/(4) 0.97436,

C(4) 1.0508. (45)

Equation (45) clearly shows that there would not have been any distinct advantage
in having employed equation (33) unlike in the present case where equation (44) shows
a definite advantage in saving the computation time and it is maximum for P(T),
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which implies—'greater the number of differentiations involved, greater is the
saving in the computation time'. Also it is easy to infer from equations (41)—(43)
that 'higher the order of the determinant, greater is the saving in the computation
time'. These deductions are really important as the algebra of the chaotic light with
arbitrary number of peaks would otherwise obviously pose serious computational
difficulties.

3.4. Results and Discussion

The probability of zero counts P(0, T) is a direct measure of the g.f (equation
(20)) and as the name implies, it ought to be maximum at the origin T 0 and we
find that P(0,0) 1 in Fig. 1. Even in this lowest order Time Interval measurement,

there is a clear difference in the values of the Brillouin doublet (a 1.0) and
the Brillouin triplet (a 0.4) as evident from Fig. 1. Also as the count rate goes
higher, the probability of zero counts decays-off faster, thereby suggesting a faster
registering of a photocount at high count rates.

Figure 2 gives the behaviour of the TID V(T) for registering the first
photocount. First we notice that ^(0) </> at T 0 as suggested by equation (27)
but in our calculations we have arrived at this truth via the actual evaluation of
V(T) (equations (35-36)) through the one-fold g.f given by equations 15)—( 19).

Za' -

«-^J""°5^"""-""-^-Ä-

^<l>-IO^.\
|6-1-0.4=10 0|

*\ \ «-O-«\ V «-io\\ V\\ V\\
\\

V.m-ioo

Figure 1

The probability of zero-counts.
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Figure 2
The time-interval-distribution for the first photocount.

As T grows, V(T) represented by equation (27) becomes completely insensitive to
the spectral shapes involved and in Fig. 2 we clearly see that the pure Brillouin case
(a 1.0) is distinguishable from the Brillouin triplet (a 0.4), as shown by our
exact calculations. At this point we need to mention that the TIS of the other
multiple-peaked spectrum like the one encountered in the polydispersity case [21] is
indeed distinguishable from the Brillouin doublet or triplet which do exhibit 'kinks'
unlike the polydispersity case.

In Fig. 3 we give the details of the TID for the conditional photocount
P(T)—the most important quantity in the Time Interval analysis. First we observe
at T 0 that P(0) 2</> as suggested by both equations (30) and (32), though we
have arrived at this result by an actual evaluation of P(T) via equations (37-38).
Unlike the case of V(T) (Fig. 2), we now see the emergence of pronounced
oscillations in the behaviour of P(T). This is to be expected only as indicated even
by a simple equation (32) for P(T) where we now have an explicit dependence on
the auto-correlation unlike the case of V(T). The general oscillatory behaviour of
both V(T) and P(T) for the Brillouin spectrum is mainly due to the cos AT factor
in the auto-correlation g(t) in equation (4). However, the heterodyning of the pure
Brillouin (a 1.0) components amongst themselves is different from the heterodyning

of the Brillouin components with the central Rayleigh line of the Brillouin
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Figure 3

The time-interval-distribution of registering a conditional photocount at time T.

triplet (a 0.4) as shown in Fig. 3 where P(T) curves for the Brillouin triplet
(a 0.4) are flatter in comparison with the pure Brillouin (a 1.0) and this
difference is essentially due to the central Rayleigh line which decays off exponentially

unlike the side Brillouin components.
It is instructive to compare the TIDs V(T) and P(T) and this we do in Fig. 4.

We notice that P(0) 2F(0) at the origin for both the count rates </> 5.0 and
</> 0.1. For a high count rate </> 5.0, P(T) remains higher than V(T) until
about T 0.9, the crossing point, after which P(T) decays-off faster than V(T). On
the other hand for a low count rate </> 0.1, P(T) oscillates above the V(T)
values throughout.

Finally, we compare the approximate values of the TID P(T) for the Brillouin
triplet as given by Blake and Barakat in [5], with our exact ones provided here. At
the outset, we notice in both Figs. 5(a) (for </> 0.1) and 5(b) (for </> 1.0) that
the results of Blake and Barakat [5] violate even the well-known equation (32) valid
for </>r« 1. At the origin P(0) 1.0375 for a 0.4 in the reported values of
Blake and Barakat [5] whereas equation (32) suggests P(0) =0.2 and thus an error
of —418.75% exists at the origin itself! The same order of error is found to exist
for the a 0.6 case when </> 0.1 (Fig. 5(a)). For a relatively higher count rate
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A comparative study of the time-interval-distribution V(T) and P(T), as a function of count rates. For
</> 5.0 (moderate count rate) P(T) decays-off faster than V(T) after T 0.09 but P(T) oscillates
above V(T) values throughout when </> 0.1 (low count rate).
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Figure 5(a)
The approximate values of the time-interval-distribution

for the conditional photocount reported by Blake
and Barakat [5] for </> 0.1, compared against the

exact ones obtained here.
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Figure 5(b)
The approximate values of the time-interval-distribution

for the conditional photocount reported by Blake
and Barakat [5] for </> 1.0, compared against the
exact ones obtained here.
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</> 1.0, we notice in Fig. 5(b) the value of i>(0) 1.2444 for both a 0.4 and
a. 0.6 as reported by Blake and Barakat [5] and the equation (32) on the other
hand suggests P(0) 2.0, which now suggests an error of the order of ~38% at the

origin for this count rate </> 1.0. However, as equation (32) itself is strictly valid
under the restriction </> T <£ 1, the overall and the exact estimate of the error in the

P(T) values reported by Blake and Barakat [5] can be had only from our exact
values here. On comparison we find that an average error of the order of 216% for
a 0.6 and 234% for a 0.4 exists when the mean count rate </> 0.1 (Fig. 5(a))
and for </> 1.0 (Fig. 5(b)) the average error is of the order of 66.5% for <x 0.6
and ~70% for a 0.4. However, there is some resemblance of truth in the
approximate results of Blake and Barakat [5] as the qualitative features (the nature
of oscillations in Figs. 5(a) and 5(b)) do agree with our exact ones here. We would
also like to add that as the numerical-scheme suggested by Glauber [15] (equations
(11-14) here) is indeed correct, the error is thus only in the computations of Blake
and Barakat [5] while using this numerical-scheme [15] for the Brillouin spectrum
(doublet or triplet).
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