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Abstract
The general problem of guaranteeing the
absence of unwanted complex behavior in the
context of circuit design is discussed. More

specifically, the methods available for
proving unique asymptotic behavior are
reviewed. A new method is presented and

compared, for a circuit example, with the
conventional approach by quadratic Liapunov
functions.

1. Introduction

Nonlinear electrical circuits may have very complicated dynamics. In
particular, a circuit which is driven by a sinusoidal source of frequency f
may have voltages and currents whose asymptotic (large time) behavior is
periodic with frequency f/n (subharmonics), or even chaotic. A series of
review articles on chaotic phenomena in circuits can be found in the special
issue of the IEEE Proceedings [1].

Subharmonic solutions of the circuit equations are undesirable in many

applications (e.g. amplifiers, AC power transmission) but necessary in others
(e.g. frequency dividers). Chaotic solutions are never acceptable. The only
application that has been proposed so far for circuits with chaotic solutions
are noise generators. Their efficiency still has to be proved. Therefore, in
the context of electrical engineering, methods have to be developed, which
permit to exclude any undesirable complex behavior of circuit dynamics.

In this paper we will concentrate on unique asymptotic behavior. This
excludes of course chaotic solutions, but also the presence of multiple
equilibria in the case of autonomous circuits and subharmonics in the case of
periodically forced circuits. Nevertheless, for a large class of devices this
condition is a basic requirement. A precise definition will be given in
section 2.
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to the nature of the connections. The nature of the elements is always known,
whereas the condition on the element connections can be checked by
inspection, at least for moderately sized circuits.

Such a theorem is readily accessible to the average electrical
engineer. Unfortunately, there are not enough such theorems to cover the
current circuit technology. To be specific, theorem 1.1 is unable to give any
information on circuits with transistors. In fact, there are almost no
theorems on the dynamics of transistor circuits at present.

1.3. Criteria that need some computation
It is likely that the qualitative aspects of circuit dynamics cannnot

in general be captured by theorems whose conditions are as simple as those of
theorem 1.1. Therefore, it is reasonable to involve computation in some well
controlled way. More precisely, criteria for qualitative features of the
circuit dynamics are sought which cannot be decided upon by simple
inspection, but which neccessitate a finite number of numerical computations
of finite precision. The engineer then uses the corresponding software to
investigate the circuit behavior. This procedure is quite different from
brute force numerical simulation. The result is just as reliable as the
paper-and-pencil application of a theorem.

In this paper we will present a new approach to the uniqueness of the
asymptotic behior in the case of a system of two nonlinear nonautonomous

differential equations. It belongs to the third category. Even though our
examples are circuits, there is nothing which refers to the special structure
of the circuit equations.

Before introducing the method, we will discuss the traditional approach
by Liapunov functions. Finally, the two approaches are compared and possible
generalizations to dimension n are discussed.

2. Unique asymptotic behavior and Liapunov functions.

We consider in this paper a system of two ordinary differential
equations of the form

dXi/dt - f,(x,, x2, t) (1)

dx2/dt - f2(x1, x2, t) (2)

where x^, x2 and t are scalars and where the functions f^ and f2 are supposed
to be lipshitz continuous in £ (x^, x2) and piecewise continuous in t.
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The practicing engineer needs tools that are readily applicable,
without much knowledge of the theory of nonlinear ordinary differential
equations or dynamical systems. To prepare these tools is the basic task of
circuit theory. We can roughly classify the different methods that are
available for the engineer as follows :

Numerical simulation
Theorems of circuit theory
Criteria that need some computation

1.1. Numerical simulation
This is the only method that is always applicable. Computing power and

general purpose circuit simulation software is almost universally available.
However, numerical simulation is time consuming and unreliable. In order to
establish qualitative properties such as unique asymptotic behavior, in
principle an infinite number of infinitely long time domain solutions have to
be computed. In practice, only a finite number of time limited simulation
runs can be carried out. Usually this number is even quite small.
Consequently, the conclusions that can be drawn from such a numerical
investigation are of questionable value.

1.2. Theorems of circuit theory
Such theorems express the properties of the circuit solutions in terms

of the nature of the circuit components and the nature of their connections.
The following example may illustrate this.

Theorem 1.1:
Let a circuit be composed of
- positive linear capacitors
- positive linear inductors
- linear and nonlinear resistors with a strictly increasing

characteristic in the voltage-current plane. For sufficiently large
positive (negative) voltages, the corresponding currents are also
positive (negative).

- voltage and current sources. If they are time dependent, their
amplitude is bounded.

Suppose that
- there is no capacitor-inductor-voltage source loop nor a

capacitor-inductor-current source cutset.
Then the circuit has a unique asymptotic behavior.

For the proof of this theorem we refer to [2]. Note that the first four
conditions refer to the nature of the circuit elements and the last condition
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Lipshitz continuity in £ and continuity in t is required for the
existence and uniqueness of the solution starting from given initial
conditions £(t0) [3]. At the (isolated) discontinuities in t we use the past
solutions as initial conditions for the future solutions. In terms of
circuits, these discontinuities correspond to the action of switches. The

existence of the solution cannot be guaranteed for all times t e [t0, <*>) but
if we can prove that the solution is bounded wherever it exists in this
interval, it must exist in the whole interval.

Henceforth, we shall assume the boundedness of the solutions in [t0, <=)

and consequently the existence question will not be addressed any more. In
circuit examples, this condition is usually not difficult to establish, using
the energy stored in the capacitors and the inductors as a Liapunov function
[2].

Definition 2.1:
The asymtotic behavior of the system (1,2) is unique, if the following
two conditions are satisfied:
a) A solution starting at an initial time t0 is bounded on the whole

interval [t0, <»)

b) For any two solutions ^(t) and £2(t)

IKi(t) - ?2(t)|| - 0 as t - +CO (3)

Note that this definition does not specify in any way the nature of the

asymptotic behavior. How can (2) be proved for specific examples? The only
non-perturbative method we know of is by inventing a Liapunov function. This
function must have two arguments, since we are considering simultaneously two

solutions.

Definition 2.2:
An incremental Liapunov function for the system (1,2) is a C1 function
W: R4 •* R with the following properties:

a) W(Ç1,Ç2) > 0 for * i2 and W(£1,?2) - 0 for Ç, £2 (4)

b) d W(|1(t),£2(t)) < 0 for C, * £2 and - ° for £l - ?2 <5)

dt

If the solutions of (1,2) are bounded as required by definition 2.1 and

if there exists an incremental Liapunov function, then the asymptotic
behavior is unique.
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Definition 2.2 gives no clue how the Liapunov functions, if they exist,
are to be deduced from the system (1,2). The following methods to define
Liapunov functions can be distinguished:

- Energy as a Liapunov function: If (1,2) models a dissipative physical
system, the most obvious choice is to use some form of energy as a

candidate for a Liapunov function. In the context of electrical
circuits, it is the energy stored in the capacitors and the inductors.
This leads to the kind of theorems mentioned in 1.2. In the case of
linear capacitors and inductors, an incremental stored energy can be

defined [2]. It is used in particular to prove theorem 1.1.
- Guessed Liapunov functions : By some sort of intuition, a certain

function is taken as a candidate for a Liapunov function. Often, free
parameters are introduced and their values are adjusted until the
requirements for a Liapunov function are fulfilled. This leads to
some kind of optimization procedure. The simplest and most popular
choice are quadratic functions. We shall briefly discuss this
approach in section 3 for a circuit example.

- Constructed Liapunov functions : Sometimes Liapunov functions are
constructed through some other concept. This approach will be pursued
later in this paper. Computer generation of Liapunov functions has
been reported [4].

3. Quadratic incremental Liapunov functions for a circuit example.

Consider the circuit of fig. 1. It is driven by a sinusoidal voltage

' Y Ì j*
L

Ecos utO

S~YYY\_^_
R

i'= g(v)

i'V +

P v h(q)

Fig.l

source. The series resistor and inductor are linear, whereas the shunt
resistor and capacitor are nonlinear. At this point, we do not make any
assumtions about the characteristics of the nonlinear elements, except that
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the resistor is voltage controlled,
written in the form

i.e. its constitutive relation can be

g(v) (6)

and that the capacitor is charge controlled, i.e. its constitutive relation
has the form

V h(q) (7)

where i, v, q are the current, the voltage and the charge, respectively.
The two nonlinear elements together model a diode. The circuit of fig.l

with the diode is known to exhibit a period doubling route to chaos in
certain parameter ranges [5]. The experimental results of [5] have been
confirmed by numerical simulation using the standard circuit analysis program
SPICE [6]. This program uses an equivalent circuit as in fig.l to model the
diode. In SPICE g is an exponential function and the inverse of h is a sum of
an exponential and a fractional power. Again by numerical simulation, it has
been observed that the same qualitative behavior is obtained by reducing the
model to its bare essentials, namely a piecewise linear functions g and h,
with just two linear regions, the blocked and the conducting region of the
diode (fig.2,3) [7]. Note that a nonlinear capacitor has to be included in
the model. Otherwise theorem 1.1 can be applied which guarantees unique
asymptotic behavior, and thus the model does not reproduce the qualitative
behavior of the physical circuit.

slope G.

•U,

slope G

»v

Fig.2

slope C

slope C

>v

Fig.3

While the circuit of fig.l exhibits complex dynamics in some parameter
ranges, There are large regions in the parameter space, where the asymptotic
behavior is unique. We now try to find these regions, or at least some

subregion, by using a quadratic incremental Liapunov function.
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The dynamics of the circuit of fig.l is determined by the state
equations

dq/dt - g(h(q) + i (8)
di/dt - - h(q)/L - iR/L + Ecosut (9)

where q is the capacitor charge and i the inductor current.
Consider two solutions (q^t), i^t)) and (q2(t), i2(t)) of (8,9) and

define the increments

Aq(t) qi(t) - q2(t) (10)

Ai(t) - i,(t) - i2(t) (11)

As a candidate for an incremental Liapunov function we use the quadratic
functon in the increments

W(q1,i1,q2,i2) (Aq)2/2C + (Ai)2L/2 (12)

where C is an arbitrary positive constant which will be chosen later in an

optimal way. Clearly, condition 2.2.a for an incremental Liapunov function is
satisfied. In order to prove condition 2.2.b, we calculate the derivative of
(12) along two solutions (q.|(t), i^t)) and (q2(t), i2(t)) of (8,9):

dW/dt (Aq/C)d(Aq)/dt + (LAi)d(Ai)/dt (13)

The derivatives of the increments are calculated by rewriting (8,9) as

follows :

dAq/dt - - [g(h(qi(t))) - g(h(q2(t)))] + Ai(t) (14)

dAi/dt - - [h(q,(t)) - h(q2(t))]/L - AiR/L (15)

Combining (13) with (14,15) yields

dW/dt - (Aq/C)[g(h(qi(t))) - g(h(q2(t)))] + AqAi/C
- (Ai/L)[h(qi(t)) - h(q2(t))] -(Ai)2R/L (16)

Without any assumption on g and h, we cannot prove that dW/dt is
negative. Assume that the slopes of g and h are bounded by positive finite
constants above and below. More generally, we assume that there are positive
finite constants Cmin and Cmax such that for any two charges q.| and q2, we have

(AqVC^ < h(qi) - h(q2) < (Aq)/Cmin (17)
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Similarly, we assume that there are positive finite constants e<>ral-n and u)^^
such that for any pair q1 and q2

(AqK,n < g(h(q,)) - g(h(q2)) < (Aq)W|nax (18)

In the special case of the characteristics of figs.2,3 we have C^^ - Cc, Cmjn

- Cb> "max - Gc/Cc and "rain " °-
Introducing (17,18) into (16), we get

dW/dt - - (Aq)2a/C + AqAi/C + AqAi.b - (Ai)2R (19)
where

"rain * a(t) < «^ (20)

1/C^ < b(t) < 1/Cmin (21)

We now look for the region in the space of the circuit parameters R, L, Cmjn,

cmax' "max» "rain such that the RHS of (19) is negative definite for all a, b

satisfying (20), (21). The RHS of (19) is negative definite if
(1/C + b)2 - 4aR/C < 0 (22)

According to (20), (21), the LHS of (22) is bounded above by

(1/C + 1/Cmin)2 - 4ominR/C (23)

Remember that C is a free positive finite constant. We choose it in such a

way that (23) is minimal. This is our optimization of the Liapunov function
candidate W.

If 2uml-nR > 1/Cmjn the (23) reaches its minimum at a positive finite
value and the minimum is

^rainS - 4"rain2R2 <24>

which is negative if wminR > 1/Cmjn If on the other hand 2um]nR < X/Cm|n (23)
can never be negative. The following theorem summarizes these results.

Theorem 3.1:
The circuit of fig. 1 has unique asymptotic behavior if its elements

satisfy the following inequality

"rain > VRCmin (25)
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where R is the series resistance and wmjn Cmin are the parameters of the
nonlinear elements defined by (17) and (18).

Theorem 3.1 is at the same time a satisfactory and an unsatisfactory
result. Satisfactory, because it gives a very explicit parameter region,
where the circuit has a unique asymptotic behavior. Unsatisfactory, because
this region is much too small. In fact, extensive numerical simulations have
shown that in a far larger region the asymptotic behavior is still unique. It
is generally believed that Liapunov's method will always yield too
conservative results to be useful for engineering applications. We think that
Liapunov's method still has a large unexplored potential.

An obvious method to improve on inequality (25) is to introduce a cross
term in the definition (12) of W:

W(q1,i1,q2,i2) (Aq)2/2C + AAqAi + (Ai)2L/2 (26)

This approach has been pursued in [8]. It needs some computation at the end
and as a consequence, the resulting region in parameter space where the
circuits have unique asymptotic behavior cannot be described as explicitly as
in (25). However, the region is indeed considerably larger than (25), but
still far too small if compared with numerical simulations. We shall present
some numerical results in section 5.

4. A new approach for establishing unique asymptotic behavior.

4.1. Relation between nonlinear systems and linear time-dependent systems.

The idea is to consider the variational equations [3] corresponding to
the system (1), (2). If the solution £(t) of this system is expressed as a
function of the initial condition fp at time t0: f(t,Ç0), then the
variational equation is

d a^t.foi - af(t(t.evi.t) ae<t.e9) (27)
dt ôç0 - a? - a?0 -

If we fix now an initial condition f0 then (27) has the form

dy/dt M(t)y (28)
where
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y(t) aett.ey) M(t) aftett.t^.t) (29)
dio - 3? "

Note that (28) is a linear homogeneous time-dependent differential equation
for the matrix function y(t). Unfortunately, the time-dependence of M(t) is
not known, because it depends on the solution f(t,f0).

However, we are not directly interested in (27) but rather in the
distance between two solutions of (1), (2) that start from different initial
conditions f0 and f1. Using the linear interpolation

tx (l-A)Co + Ml (30)
we can write

1

Ç(t,ç0) - £(t,É,) J df(t.ex) d\ od
0 dA

1

S afft.fp (?o - ?» dA (32)
0 a?o

It follows that if we can show that for t -* «o a£(t,fA)/3f0 -+ 0, uniformly in
A, then ||f(t,f0) - <(t,^n) | | -? 0. Again, 3£(t,fA)/af0 is the solution of an

equation of the form (28) with unknown M(t).
While the matrix-valued function M(t) in (28) is unknown, its set of

possible values at time t can be deduced from the original system (1), (2).
Indeed, it is the set of Jacobian matrices (Bf/af)(f,t), where £ varies over
the whole R2. Therefore, if we can prove that all solutions of (28) converge
to 0 for all functions M(t) with this specification on their range, then it
follows that the original system (1), (2) has unique asymptotic behavior.
Note that it is sufficient to consider this problem for vector-valued
solutions y(t).

In the next paragraph, we will discuss families of equations of the
form (28) with functions M(t) having a given range in general.

4.2. Linear time-dependent homogeneous systems

Motivatad by the results of the last section, we consider the following
general problem

Problem 4.2.1:
Let S be a set of 2x2 matrices. When do all solutions x : [t0, <=) -» R2 of
all equations

dx/dt - M(t)x (33)
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where M : [t0, «) ¦* S is piecewise continuous, converge to zero as t -» °°?

The answer to this problem depends evidently on the set S. In the
trivial case where S contains a single matrix A, the function A(t) must be a

constant, A. In this case, all solutions of (33) converge to zero, iff both
eigenvalues of A are in the complex open left half-plane.

On the other hand, if S contains any number of matrices, but at least
one of them, say A, has an eigenvalue in the right half-plane, including the
imaginary axis, then not all solutions of all equations (33) converge to
zero. Indeed, take M(t) ¦ A and as an initial condition an eigenvector with
an eigenvalue in the right half-plane on the imaginary axis. Then the

corresponding solution of (33) diverges to infinity.
This suggests that we exclude from S matrices that have eigenvalues in

the closed right half-plane. Note that this exludes in particular singular
matrices. For convenience, one is tempted to require in addition that the
matrices of S be uniformly bounded. It turns out, that this condition is at
the same time too weak and too strong. The condition adapted to the problem
is point b) of the following general hypothesis on S that will be adopted
henceforth.

Hypothesis 4.2.2:
The matrices

"
a b

A
c d

(34)

of S satisfy the following two conditions :

a) The eigenvalues are in the open left half-plane, i.e.

a + d < 0 (35)
ad - be > 0 (36)

b) The expression

a2 + b2 + c2 + d2 (37)
C

ad - be

is uniformly bounded on S.

In numerical analysis, C is known as the condition number of matrix A.
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Ax

ï

A

(«pì

Ax

Fig.4 Fig.5

The idea how to solve problem 4.2.1 is as follows. Consider, for fixed
x £ R2' all vectors Ax, A £ S (fig.4) and, in particular, their angle 0A with
x. Note that this angle is the same on the whole ray spanned by x. Therefore,
this angle can be considered a function of the argument <p of x, 8 s\(<p)

(fig.5). Since we want the solutions of (33) to converge to 0, the "worst"
vectors Ax are those which point "farthest away from 0", i.e. whose angle
with x is extremal. Thus we define the two functions

Jmin(<p) - inf{«A((p)| A e S}

9mx(ip) sup{0A(<p)| A e S}

(38)
(39)

In order to avoid ambiguities, the determination [0, 2tt) is taken for 0A(<p)

It follows that

o < 0mi.n(<p) < e^Yv) s (40)

It can be shown that due to hypothesis 4.2.2, the lower and upper limit in
(40) are never reached [9],

Normally, 0min(cp) < n and 0min(cp) expresses the "worst counter-clockwise
direction". However, 0raln(<p) > vt is also possible. In this case fimln(<p) points
clockwise, but 0man(<p) is a "less favorable clockwise direction". Hence we

loose nothing by limiting the range of 0mjn(ip) to [0,tt] and, analogously, the
range of ^„(çp) to [ir,27r]. Thus we define

y(ip) min{0mjn((p), jr}
.(ip) max(flmax(ip), tt)

(41)
(42)
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Now the interpretation that 8+(<p) is the "worst counter-clockwise direction"
and S.(tp) the "worst clockwise direction" is appropriate. The subscript "+"
stands for "direction of increasing tp" and "-" for "direction of decreasing
<P".

If for an angle tp, 8+(<p) - 8_(<p) > w then it easy to construct a
function M(t) and an initial condition f0 such that the corresponding
solution of (33) diverges to =°. One chooses f0 with an argument close to tp

and switches with M(t) back and forth such that M(t)f(t) points alternatively
close to the directions 0+(<p) and 8.(<p) while the solution f(t) remains in
a sector close to <p (fig.6). This leads to the following proposition. For a

complete proof, cf. [9].

A 2

r <t)

>

Fig. 6

Proposition 4.2.3:
Suppose that the set of matrices S satisfies hypothesis 4.2.2. If for
an angle tp

0+(<p) - B.(tp) > n (43)

then there is a piecewise continuous S-valued function M(t) and an

initial condition f0 such that the solution f(t) of (33) with f(0) f0
satisfies f(t) -» » as t ¦+ «°.

Consider now a solution of (33) and express it in polar coordinates:
f(t) - (r(t) <p(t)) Then from (33) the following equation can be deduced.
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1 dr/dt cot 0M(tj(ip) (44)
r dip/dt

Note that in general r need not be a function of ip, since d<p/dt may change

sign.
We shall compare the solutions of (44) with the functions r+(ip) a and

r.(ip) defined by

(45)

(46)

Since 8+(<p) is the "worst counter-clockwise direction", it is expected that
whenever for a solution of (33) one has dip/dt > 0, then the orbit of this
solution approaches zero faster than r+(cp) Indeed, if at time t a solution
of (33) is at the point (r0, ip0) then the solution of (45) starting at the
angle <p0 with the radius r0 satisfies

1 â£+(<P0) - cot 0+(<Po) > cot 0M(t)(«PO) - 1 dr/dt(t) (47)
r0 dip r0 dp/dt

An analogous inequality involves r.
If we can prove that r+(ip) ¦+ 0 as ip -» +°° and r.(ip) ¦+ 0 as tp ¦* -<», then

i(t) -+ 0 as t -* +CO, since the solution of (33) approaches 0 faster than r+(cp)
and r.(ip). The question whether or not r+(ip) converges to zero as ip -» +«> is
easily settled. In fact, it is sufficient to integrate (l/r+)dr+/dip, which is
given by the RHS of (45), from 0 to 2vt. If this integral is negative, then
ln(r+(0)) > ln(r+(?r)) and thus r+(0) > r+(?r) Due to the fact that (33) is
linear homogeneous, the solution from vt to 27r is proportional to the solution
from 0 to Tr, with the proportionality factor r+(ff)/r+(0) < 1. Continuing
this way, it is clear that r+(ip) spirals in to 0. A similar argument can be

given for r. (ip).
This reasoning leads to the theorem 4.2.4 below. Again, the detailed

proof can be found in [9]. One of the technical details is that the RHS of
(45) and (46) is infinite when 0+(ip) or 0_(ip) take the value tr. The way out
of this difficulty is to limit the maximum of 0+(<p) in (41) to 7r-e and the
minimum of 8.(<p) in (41) to ic+e, rather than to n, where e is chosen
sufficiently small.

Theorem 4.2.4:
Suppose that a set of matrices S satisfies hypothesis 4.2.2 and that
the following three conditions hold:
a) for all ip

0+(<p) - 8.(<P) < t (48)
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b)

c)

2)i

J* cot fl+(ip) dp < ?r (49)
0

2*

J" cot 8_(<p) dtp > n (50)
0

In (49) cot vt has to be set to -œ and in (50) to +o>.

Then all solutions of all equations (33) with piecewise continuous
S-valued functions M(t) whose values are in S, converge to zero.

While Proposition 4.2.3 shows that condition 4.2.4.a) is necessary, no

information has been given so far what happens if conditions 4.2.4.b) and

4.2.4.C) are not satisfied. Suppose that the LHS of (49 is strictly greater
than jr. Then the r+(ip) spirals out to infinity. It is possible to construct
an S-valued function M(t) and to give and initial condition such that th
orbit of the corresponding solution of (33) follows exactly, or at least
closely, r+(<p) [9] This implies the following proposition:

Proposition 4.2.5:
Suppose that the set of matrices S satisfies hypothesis 4.2.2 and that
one of the following two conditions are satisfied:
a)

2*

/ cot 0+(ip) dip > vt (51)
0

b)
2*

J* cot 0.(<p) dtp < tr (52)
0

Then there is a piecewise continuous S-valued function M(t) and an

initial condition such that the corresponding solution of (33) diverges
to infinity as t -» «°.

Propositions 4.2.3, theorem 4.2.4 and proposition 4.2.5 give a complete
solution to problem 4.2.1, except for the special cases where there is an

equality in (48), (49), or (50). Problem 4.2.1 has been formulated because of
its connection to the problem of unique asymptotic behavior of nonlinear
systems. We shall come back to this point in the next section. In addition,
however, problem 4.2.1 is of interest in its own right for switched linear
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systems. The following simple example shows the kind of result that can be
obtained.

Example 4.2.6:
Let S be composed of the two matrices

A
-a +1

-1 -Q

•1/5 +1

0 -1
(53)

The eigenvalues of A are -a ± j and those of B -1/5 and -1. Hence

hypothesis 4.2.2 is satisfied for any a > 0. It is not difficult to
show [9] that the conditions of theorem 4.2.4 are equivalent to the
positivity of the function 1(a):

where

1(a) - a(ir - tan^z, + tan"1z2) + (l/4)ln(z1/z2) (54)
- (5/4)ln[(Zl + 4/5)/(z2 + 4/5)]
+ (l/2)ln[(Zl2 + l)/(z22 + 1)]

z, 2 [1 + 4a/5 ± (1 + 12a + l6a2/5)1/2/75]/(2(l-a) (55)

It turns out that 1(a) < 0 for a < a0 and 1(a) > for a > a0, where a =*

0.0075. Hence, if a > a0, all solutions of all equations (33) converge
to zero, where M(t) is piecewise constant, switching at arbitrary times
back and forth between A and B. On the other hand, if a < a0, a certain
switching M(t) between A and B can be found, and an initial condition,
such that the corresponding solution of (33) diverges to infinity.

Note that the criterion for convergence to zero obtained in example
4.2.6 is almost completely explicit. Only at the very end, the zero of the
function 1(a) has to be determined numerically. By a finite number of
computations, the monotonicity of 1(a) can be established and arbitrarily
close lower and upper bounds for a0 can be obtained. Thus, for any a * a0, a

finite number of computations permits to decide whether or not all solutions
of all equations (33), switching back and forth between A and B at arbitrary
times, converge to zero. This information is infinitely more precise than
direct numerical simulation, whereby only a finite number of finitely many

equations (33) can be calculated.

4.3 Application to nonlinear systems.

The results of sections 4.1 and 4.2 can now be combined to the following

theorem:
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Theorem 4.3.1:
Consider the system of equations d£/dt f(f,t), where Ç e R2 and f: R3

-» R2 is continuously differentiable in f and piecewise continuous in t,
i.e. there may be isolated discontinuity points, which divide the time
axis into intervals within which f is continuous. Suppose that the
solutions are bounded as t ¦* «>. If the set of Jacobian matrices

S - {(3f/30(£,t)| f £ R2 and t0 < t < »} (56)

satisfies the conditions of theorem 4.2.4, then the solutions defined
in t0 < t < a> have unique asymptotic behavior.

The continuous differentiability of f implies the variational equations
(27) [3]. The proof of theorem 4.3.1 follows the argments of section 4.1. For
details cf. [9]. If f is only lipshitz continuous, some generalized partial
derivative would have to be used [10]. Of practical interest is the case of
piecewise linear f. In this case the variational equations remain applicable
[11]. Indeed, it can be shown that the following theorem holds [9]:

Theorem 4.3.2:
Consider the system of equations df/dt f(f,t), where Ç e R2 and f: R3

-* R2 is piecewise linear and continuous, i.e. the plane R2 is divided by

straight lines into N regions and the equation for region i is

d£/dt A,* + b,(t) (57)

where b,(t) is piecewise continuous and at each instant t, the RHS of
(57) of the neighboring regions coincide on the dividing lines. If the
set of matrices

S {Ajl i 1 N) (58)

satisfies the hypotheses of theorem 4.2.4 then the asymptotic behavior
of the solutions of df/dt f(f,t) is unique.

Note that for piecewise linear systems only a finite number of matrices
has to be considered. The procedure for checking the conditions of theorem
4.2.4 can be automated, relying on explicit expressions for the integrals in
(49) and (50), as in example 4.2.6.

On the other hand, the application of theorem 4.3.1 requires the
determination of inf{0A(ip)| A e S) and sup{0A(ip)| A e S} where S is an
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infinite set and, in the worst case, the numerical computation of the
integrals in (49) and (50). However, results as explicit as in example 4.2.6
are also possible, as shows the following example.

Example 4.3.3:
Consider the circuit of fig.l. Suppose that the nonlinear characteristics

(6), (7) are continuously differentiable and satisfy the inequalities

(17) and (18), i.e.

0 < 1/C^ < 1/C(q) dh/dq < 1/Cmin < » (59)
0 < «,min < w(q) - d(goh)/dq < umx < «j (60)

With this notation, the Jacobian of the RHS of (8), (9) is

(3f/3?)(q)
-u>(q) 1

-l/LC(q) R/L
(61)

and S is the set of all matrices (61) when q varies over the real
line. It is not difficult to show that due to the positivity of R, L
and the constraints (59), (60), hypothesis 4.2.2 is satisfied. Furthermore,

if A(q) is the matrix (61), then

cot 0A(q)(ip) - r(tan cp, C(q), u(q)) (62)
where

(63)

It follows that
f(z,C,u) - -fa> + (1 - l/LC)z - z2R/L

-1/LC + (w - R/L)z - z2-

dÇ/dC - (z - fa>)(z2 + D/LC2 (64)
(-1/LC + (u - R/L)z - z7)7

ar/dis> - zR/L + 1/LCUz2 +1) (65)
(-1/LC + (w - R/L)z - z2)2

At the points where the denominator vanishes, #A(q) ff and cot ^A(q) °°-

The values of cot 0mjn(ip) and cot 8mx(<p) coincide with the finite
extremal values of cot 0A(q)(ip) According to (64) and (65), the finite
extremal values of f(z,C,fa>) for fixed z and C, w varying in the intervals

(58) (59) are reached by replacing C by C^,, or Cmjn and fa> by oj^x
or fa>mjn_ The choice depends on z. Hence, the integrals (49) and (50) can
be evaluated explicitly and the results are similar to (54), (55).
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5. Comparison with quadratic Liapunov functions.

In order to compare the new method with the more traditional approach
by quadratic Liapunov functions on a specific example, we consider again the
circuit of fig. 1, with the piecewise linear characteristics of fig. 2 and 3

for the nonlinear resistor and capacitor. We start from the referenc values R

25mn, L - 919mH, Gb - 0, Gc 5000"1, Cb - 27.57mF, Cc - 183.78F, Uj - 0.75V.
This is the normalized version of the parameters used in [7] for the
numerical simulations which have shown the period-doubling route to chaos
when the amplitude of the source is increased from 0 to 6V. All methods to
establish unique asymptotic behavior mentioned so far rely on incremental
variables and their differential equations (14), (15), or the Jacobian
matrices of (8), (9), where the source amplitude and frequency play no role.
Therefore, all criteria, when applicable, guarantee unique asmptotic behavior
for all source amplitudes and frequencies. This property does not hold for
the circuit with the reference values.

In order to assess the power of the two approaches, we vary the parameters

Gu one at the time, and determine for both criteria the
interval of values where it guarantees unique asymptotic steady state. On the
other hand, we determine by numerical simulation, how far from the reference
value we still find, for some source amplitude and frequency, multiple
asymptotic behaviors. This gives an idea, how close to the actual limit of
unique asymptotic behavior for all source amplitudes and frequencies the two

criteria get. Of course, the actual limit can only be determined by an

infinite number of numerical simulations. However, the finite number of
simulations show how good the criteria are at least. Additional simulation
can only diminish the gap between established multiple asymtotic behavior and

guaranteed unique asymptotic behavior.
The first criterion we apply is criterion 2.2 of [8]. This is the best

result we have obtained from quadratic Liapunov functions. Theorem 3.1 gives
no result for the sets of parameters we consider. The second criterion is
deduced from theorem 4.3.2. The corresponding figures are reported in table
1.

Parameter
varied

Unique asymptotic beha-v
by criterion 2.2 of [8]

fior guaranteed for
by theorem 4.3.2

Multiple as.
behavior found for

Gb
Gc
Cb
Cc

Gb > 0.364/fi
Gc > 67/n
Cb > 3.52F
Cc < 1.45F

Gb > 0.138/n
Gc > 8.7/n
Cb > l.OF
Cc < 10.6F

Gb 0.138/n
Gc - 5.6/n
Cb 0.60F
Cc - 16F

Tab1Le 1
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Table 1 shows that the results obtained by the new method are considerably

better than those produced by quadratic Liapunov functions. The

guaranteed limit for unique asymptotic behavior is sufficiently close to the
actual limit to be useful for technical applications. We have not explored
the whole parameter space in order to give a global view of the capabilities
of the new method. Finally, other examples should be considered.

6. Generalization to dimension n.

As it stands, the new method is only capable to handle systems of
dimension 2. The connection between the nonlinear problem and the linear
problem as described in section 4.1 is not limited to dimension 2. The notion
of "worst directions" can also be generalized to higher dimensions. For each

x, a cone would be obtained. However, it is not evident, how to define a

hypersurface that encloses 0 such that all cones lie inside.
A more crude way is to consider the projections of the solutions of the

linear equations to the planes spanned by two coordinates. If all these
projections converge to zero then the solution itself converges to zero.
Consider equation (33) for x e Rn and M: [t0, «>) -* {n x n matrices). Let P be

any projection to a linear subspace of dimension 2. Then

dPx/dt - PM(t)x (66)

We can, for each x, determine the "worst directions" among the vectors PAx,
where A £ S and apply the results of section 4. We have not tried this
approach so far.

7. Conclusions.

We have presented a new method to prove the unique asymptotic behavior
of nonlinear nonautonomous ordinary differential equations of dimension 2. It
has been illustrated by circuit examples that the results are better than
those obtained by quadratic Liapunov functions. The question, how far
Liapunov's method can go at all, remains of course open.

The method is easy to apply. In many cases, only a zero of an explicitly
known function on the real line has to be determined numerically. The few

examples that have been worked out indicate that the method could be useful
for engineering purposes, which is generally not the case for most criteria
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derived from Liapunov functions. However, the limitation to dimension 2 has

to be overcome.
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