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On the behaviour of an accelerated clock

By Anton M. Eisele

Institut für Theoretische Physik, Universität Zürich, Schönberggasse 9, 8001

Zürich, Switzerland

(28. Ill 1987)

Abstract. The 'clock hypothesis" of Special Relativity has been checked in the concrete example
of the lifetime of an unstable particle. We show that two particles with the same energy have nearly
the same decay-rate independently of their acceleration. In the example of the CERN g-2-experiment
with a centripetal acceleration of 10,Hg for the muons the here computed deviation from the
behaviour of an ideal clock is really exceedingly small: namely less than 10 25!

1. Introduction

The twin- (or clock-) paradox is one of the most perplexing and perhaps also

one of the most discussed consequences of Special Relativity. Even after one has
understood the asymmetry of the motion with the consequence that the twin who
remained on the Earth (and so always in the same reference frame) has aged
more than the other one who moved (and had at least for some time changed his
reference frame), there remains another problem: Is it correct to integrate the
expression for the differential of the proper time dz Vl - v2/c2 dt over time in
an accelerated frame in order to obtain the total proper time t?

The so-called 'clock-hypothesis' says that in nature there are 'ideal clocks'
with the property that their timekeeping is independent of their acceleration [1]
or at least does not depend on it in a measureable way [2]. Hence such a clock
would always show its proper time r J-,', Vl - v(t')2/c2 dt'. Einstein himself
assumed that the behaviour of his measuring-rods and clocks did not depend
upon the history of their previous motion ([3], p. 34).

Whether such ideal clock really exist must be decided either by experiment or
by a suitable theory which includes the clock-mechanism. Mechanical clocks
evidently are easily influenced by strong inertial forces. So we consider in this
publication an unstable elementary particle that can be used as a clock because of
its characteristic mean life time, and this 'clock' will be examined for its suitability
as an 'ideal clock'.

Although this problem goes beyond the framework of Special Relativity,
there is no necessity to use any General Relativity! We can assume namely that
the particle is moving around a classical orbit in a constant magnetic field, such as

the muons of the g-2-experiment of the 1970's at CERN [4]. Quantum
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mechanically this 'orbiting' can be described as a Landau-level with a fixed (albeit
very high) quantum number in an inertial frame (the lab. frame), and with the
theory of weak interactions the life time of the particle in the magnetic field can
be approximately computed. This lifetime can then be compared with that one of
a free particle with the same energy in order to check the clock hypothesis.

Unless otherwise noted, we put h c 1 throughout the calculation.

2. Free decay

To simplify the calculation we choose the (hypothetical) decay

of a scalar muon into a scalar electron and a scalar neutrino. Analogous to the

phenomenological Fermi-coupling of the weak interaction as the low-energy limit
(Ep « mw) of the Glashow-Salam-Weinberg model, we start from the simple
linear interaction

Hint=f-jd3xe:-ps-v:. (1)

In lowest order perturbation theory the field-operators are expanded as usual to
plane waves with the creation - and annihilation operators as coefficients, e.g.

Ii.(x) (2jt)-3l2jd^(p)(a(p)e-"": + b*(p)eipx) (2)

with the invariant measure dQ(p) d3p/2pü; p° E, px - p°x° - px.
By neglecting the electron-mass with respect to the muon-mass, we readily

obtain for the free decay-rate:

f2 f2 1

lojvp I6jtmp y

3. Decay in the magnetic field

We presume a constant magnetic field B in the z-direction. In order to
illustrate the symmetry (classical orbits, if vz 0), we choose cylindrical
coordinates and the gauge

A° 0, A=-^ev. (4)

The Klein-Gordon equation yields the same wave-function as the
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Schrödinger equation [5]:

VntXx) Cnle-p2/2p<XnL'-"(p2/pl)e,in-n'P^ (5)

with

Cnl (-i)"yf^pX-1 and Po=\/J. (5a)

but with relativistic Landau-levels

En,p. \Jm2 + (2n + \)eB+p2z (6)

independently of /. So we can choose as the initial state a wave-packet with / 0
and pz concentrated around 0:

ipo(x) jdpJ(pz)xp„,P:(x) (7)

with J dpz |/(pz)|2 1 (in order to have \\tp0\\ 1) and

xp (x) i\nn\)-mpô(n + i)e-p:i2p»pne-'n«e-1=e-iE"-p'', (8)

where we have chosen the negative z-direction as field-direction (in order to
maintain the same convention as in [6]) and so substituted cp by —cp.

The field operators of the charged particles are expanded to the complete
system (5) of solutions of the Klein-Gordon equation, while the field operator of
the neutrino remains unchanged. In this way we have instead of (2):

ps(x) \dpz 2 -/-„ (anLp2ipnLp.(x) + b*Lp.xp*Lp.(x)) (9)

with the anti-commutation relations:

Uni.pt, 4*,,;} ànm ô,k ô(pz -p'z), etc. (10)

The time evolution of the initial state (7), (8) in first order perturbation
theory is

t/>, -i f dt'Hin.(t') • xpo, (11)
Jo

and the total decay-probability at time /

P,= fdQ(*)Ur22 l.fcW.-.JV.).2.
J J n-.f

where k describes the neutrino and ipn-r,q, the electron in the final state.
With (11), (1), (2) and (9), (10) in addition to the corresponding formulas for
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the decay-particles, we obtain:

fP'= On?
\dQ{k)\dq> „?), \dpzJ(pZl)jdpZ2r(Pz

(dtxe-i(k°-zX-EX'^dtXk"+^i-
Jo Jo

ld3xx(d3xX'

En,pJt2

k(x2-x,)
n>*,Pz.{xx) xp„,Pn(x2)

V2£„,P;i V2£„„
yn-r.qz(xx)\p*n;.iqz(x2)

2EnT
(12)

The summation and integration over all possible final states [underlined in
(12)] is done in [6]. It gives a Fundamental solution of the Klein-Gordon
equation in the given external field B (0, 0, -B). Since in [6] together with the
more conventional Cartesian coordinates the gauge A (0, —Bx, 0) is used
instead of (4), the action factor underlined in the following equation differs from
that given in Ref. [6], eqns. (43), (44), (51).J) The summation eventually yields

/_"_(*!, i2) ^ exp
—i

87T2

ieB
--2~(.x1y2-x2yl)

C+ic {iy 1

J dyexp[—((x2-xx)2-T2)^

exp
i ,_ x7 n/2y eB

--(x2^Xx±)eB[--ct$- }

2y/eB sin eB/2y

by neglecting the electron-mass and for r: t2- tx <0. For t>0 we have:

K+(xx, x2) K„(x2, xx).
With T :=(<*! + t2)/2 time integration in (12) becomes

hfJo J-i
dx ¦

We consider integrations over long times / (time-scale of jU-decay ~ 10-6 s)
relative to the inverse of the frequencies in the integrand (h/E^ ~10~24s for a

GeV-muon). So we can interprete the integrand over dT as decay-rate and

expand the integration range over r to R. Noting the reality-property of (12)
(conjugated complex by changing the indexes 1 and 2) the decay-rate becomes

f f2
r Re

x jd3xxjd3x2e-^X;(xxJ^ rpn(X)^
') Note that in Ref. [6]'s eqn. (51) [according to equation (50)] the exponential function has the

wrong sign.
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%Jl2

exp

exp
ieB

(xxy2-x2yx) Jrzc
+ îc

dy
o

exp
iy ((z2-zx)2 - x2)

L--(x2i-*lx)2e-3ctg—j
2y/eB ¦ sin eB/2y

(13)

To simplify we put En:=E„iPi=0 prior to the pz-integration, as f(pz) can be
concentrated arbitrarily sharply around pz 0.

The pz- and z-integration yield

2ni

y
,i*§/2y

We put this as well as the ^-wave-function (8), (5a) in (13) and write the whole
expression in cylindrical coordinates with k (k±, a;kz):

r 7^ L2
P

Refr1/2|~6.Q(A0f dxe^'E^\ dPxPx\ dcpxx \ dp2- p2\
\\ZJt) ¦

__.„ I J Jo Jo Jo Jo Jo

X dcp2 exp
eB

- — (p\ + pf) - ik±(p2 cos (cp2 -a)-px cos (cpx - a))

+ic dy I irxih Vy exp I - yx + ikj
2y

x exp I - — [(pf + p|) ctg £- 2p,p2(sin (ç^ - cp2) + ctg e cos (cpx - cp2)y,

e /eB\n + ì 1

sin e \ 2

\"+1 1 1

with

e :

eB

2y'
(14)

Instead of the cpj we take the 0, := cp,¦ — a as integration-variables and rewrite:

r
z2 /£ßy+1i

(2tt)11/2£„ V 2 /
-^Reli1'2 fdQ(k)l dxe ilk°-E„)T

I dp>p"+l I ""*• 1 ***+' I>I *v7exp (2£^+^/2r) shsin e

x exp

eß

eB- — (p2x + p22)(l + ictge)

+ ' y PiP2(sin (<£, - 02) + ctg s cos (0, - cp2))

- ik±(p2 cos </>2 - px cos 0!) + n(tpx — cp2) (15)
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The square bracket in the exponential function can be written as

|[(ctg e - !)«'<?¦-?»> + (ctg e + ->-'<*'-<w]

and the X, := e'*> taken as the new integration variables. In this way the spatial
integrations in (15) become:

=\™dPxPx \ ftt.Ar1 [ dp2px \ <f ~
f ieB a, ,N ieB

x exp |- — (ctg e - i)(p\ + pi) + — pxp2 (ctg £-j')t- + (ctg e + i
A-, »y

+
ikx

Pi(A,+—j-p2^A2 + —

We are solving the A,-integrations around the zero-point of the complex plane
with the residue theorem:

/ -
4jt

.eß(ctg £ — i)
ik\

+
eß(ctg £ — i)
2n2n\ I 2 \"+

- I dpxPX -. §d\x ¦ aX exp [-y PÎ
eB

2 ./^p,
2Àj

e2"Pi-^A
2/3

/'(ctg £ - i) Veß/ eXP
_eß(ctg£ - i)

With small transformations put into (15):

*"' ^i{n)Xr->
/=o V7 V!

ijfcj e2'f - 1

eB ctg £ — i.

r /2
Re \i

2(2jx)7l2En

k2 + eß k2 e2,f - 1

ftìfQ(A:)f dx\
J Jo A)

dy
~V2eXP'
y

(A."-£„)T + |t2

+ ¦

2y eß 2/ J/=0 \j/j
/n\ 1

„Tlttn—f,
»!

'J- /„2("F i\2
2eß

(e2,F - l)2

Putting jc : (k°)2/2y we obtain the intermediate result [with c/Q(&)
2 cW:0 • A:0 djU • 2.T, /i cos ¦&]:

f2

r-^t»«{rwfÄ'=H>f*^"'
tic

X I —p=exp
r~,c dx_

Jo Xx

m
i((I + £')x + ^^] + l-—^ (e2,cx - 1 - 2i£'x)(1+E')x+Xx-)+xx{e

,Ziln—j,e'x !-^2 CA.2ÌCX

L 2fP(ez,fjr-1)2

where

£' : ¦
eß

(Pj"2V x

(16)

(17)

is the correction parameter before the ^"-integration.
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In the following we shall calculate the first non-vanishing correction due to
the magnetic field with the help of suitable approximations.

4. Expansion of the decay rate

For £' 0 we readily obtain the free decay-rate (3). k° is of the order of the

muon-energy, hence £' is of the order eB/m2 or (in the relativistic case) even
smaller. We can write

£___-_____.

m2 Bcr '

where
2 / 2 3\m I m cs

(!8)

ßcr — I actually —--I (18a)

is the critical magnetic field for a singly charged particle of mass m. In the case of
the muon it is 2 • 1018 Gauss. As the critical magnetic field of the electron
(4 ¦ IO13 Gauss) already constitutes a natural limit (the field-energy would create
e+e~-pairs), we have

£' « 1. (19)

In the case of a particle accelerator we would have for a muon

e_B B_^E2 Bcr 1018G

Hence the correction-term in the exponent of (16)

l-u— (e2'ex-l-2i£'x)
2e'

limits the contributing integration range over jetons l/Vf7 and the vicinity of

xs=™, seN. (20)
£

But as here l/Vx in (16) is nearly constant, these latter contributions are smaller
than the main contribution from x s 1/V-s7 by a factor of the magnitude e~ll4e',

and need not be considered. This will be proved in the case n 0:

Since xs » 1, the term (k°x)2/4x in the exponent of (16) can be neglected. So

we have for the contribution to the *-integral in (16) in the vicinity of x xs for
c 0:

x'+s dx r 1 - u2
/(1 + £')x + —~- (e2ie'x - 1 - 2iE'x)~Xs v^e

1 fö d
^exp[,V + £'K]j_öVn: w/x

r 1-c.2
x exp

1-M2
/(I + e')w + —-^- (e2,f" - 1 - 2/e'w)

2e'
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with w x -xs. The w-integral becomes approximately

J
dw(l- ^-) exp [i(l + e')w - (1 - fi2)£'w2],

and therefore with (20)

le' (l + £')2 /IJ-2 \ 1 / 1 + e'
4= y— exp ' -"-'

4(l-f*2)e'
+ w -+lk 1 +

4;r(l - p)s
The next step is the p-integration in (16). Because of (19) only p « 1 contributes
significantly. With 1/1 — /x2 ==1-1- u2 we have

2 \ / 1

- ins • 1 + -jodpIs(p)^^exp(-^ + ins)jodpexp(-^ „_/ y. ^
We sum the contributions for all xs:

£ f ./MO*) ^Vn£' exp (-l/4£') • £ -J
s l Jo s l ¦SVI \/4ÌJZS

0(£' • e 1/4e) as required.
Now we expand the integrand over x in (16) for e 'jc « 1 in the following way:

I(x) ±(n;)yiGj(x)FJ(x)-e'^4x (21)

with

/=o\///"!

G,.(jc) -rexp i{l + 2[(n -/) + l]e'}jc (21a)

and

Fj(x) exp [-(1 - p2)£'x2] ¦ [1 + 1(1 - mVW + ¦ • 'I

x [2(1 - p2)£'(ix)2(\ + le' ¦ ix + ¦ • •)]'

exp (-£"x2) • [2e"(ìx)2]' • [1 + 2je' ¦ ix + §£'£"(«)3 + ••¦]. (21b)

where

£" (1-(ì2)e'. (22)

The C/A:) are exact. In the iy(jc) the real part of the exponent was treated with
horse-step method, the rest was expanded in powers of ix. We shall see that the

missing terms (indicated by three dots) make no contribution.
Now we are expanding the Fj(x) by Fourier, because for the G,(x) we can

treat all integrations without difficulty:

Fj{x)=h\\dye'xyp'{y) (23)
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with

^)=\/|^exp(y2/4Ê")
e" 2'

H2ì(z) + IiVi1
H2i+X(z) +

1 Ve1

Ï2VI-1U ;H2/+3(z)VTV
z=y/2V^.

With (21), (21a), (23) put into (16):

(23a)

(24)

x exp /{[1 + (2(n - j) + \)e']x + yr^"i • f dyeixyFj(y). (25)

Because of the strongly decreasing term exp (—y2/4£") in (23a) that limits the
contributing y-integration range to a small interval around y 0 (even with the
maximum powers ~y2n in the Hermite-polynomials this becomes only of order of
magnitude 1), the y-integration can be exchanged with the other integrations:

f2 7±{%fdp[ dy[dk%(y)
'n 1=0 \/ ' ] • Jf) •>--- J()

Xx)2'1

r 16;r7/2E„ fz

x Re{r1/2J^Te"*"-£»)Tf^exp/ ' 4x
(26)

(27)

where

^ l+y + [2(rt-/) + l]£'.
Now we can perform the x- and then the r-integration, and we obtain for the

real part in (26):
tnJl

Re{---} ^ô[/c,)(l + V^)-£„].

The differentiation of the argument of the ô-distribution with respect to k°
[consider (27) and (17)] at the point where this argument is zero is

ex/kaX

with
kSy,

K/(y) l + {l-[2(n-i) + l]X}y,

eB
X

K" E

E2n'

(28)

(28a)

(29)
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Therefore we have for the A:"-integration in (26):

* «j (30)

The integration range over y is limited to the range -1/1 - [2(n —j) + l]x to oo by
the condition that the argument of the ô-distribution must be zero.

Instead of integrating over y, we integrate over z, (24), where e" according
to (17), (22), (29) also depends on y. Moreover after the ^"-integration k° must
be replaced by K°, (29), also in the Ff(y). With

dz " WXl-[2(n-j) + l]X'

/C" 2VT3/?^z^1-[2^V]^:^^
y 2 \ + VrXVxz 2g(z)

we substitute (23a), (30) into (26), and obtain

f2 « /*,\ 1 rl

(31)

r J --^\i)öü\\dA r—3
-dZe~

„i=o \// a-J- Jo J-iaVi^PVx16X2E,

gX) Hli{Z) + Vl -^g(z)[Ì ' H2,+ liZ) + A*W*4 (32)

Because #«1 [(19), (28a)] the upper z-integration limit can be reduced to
5VI - u2Vx- Then the functions l/g(z), (31) and l/g2(z) can be expanded in the
whole integration range into powers of z. In this way we have for the z-integral in
(32):

/„,= dze~z fnj(l-2Viïz + 3X'z2----)H2j(z)+-^X
J-iaVr L l-jw
x (1 - V^z + x'z2 )(/ • H2/+X(z) + è//2y+3(z)) (33)

where the /„. are defined in (31) and

*'(1 - H2)X- (34)

For powers z' with l«l/x in the integrand of (33) we now can increase the

integration-range to IR. Higher powers do not contribute because of x (and so
also *')«1.

It now becomes clear why we can omit the higher powers of e' ¦ ix (but not
those of e' ¦ (ix)2) in (21b). According to (17) every e' ¦ ix Ve' • (ìx^Ve7 would
yield an additional factor l/k" and hence with (31) an additional factor g(z) in
(32). The expansion of gp(z) would result in terms in (33):

Jkl:=\ dze~zl ¦ Hk(z) ¦ z1
J —oc
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with k > I that vanish because of the orthonormality of the Hermite-polynomials.
For k < / with the aid of the generating function of the Hermite-polynomials we
get

¦>2p,2q

•'2p+ 1,2-7 + 1 ~

y/n(2q)\

4"-"(q-p)\
Vjt(2q + 1)!

4"-p(q-p)\
p,q e N0, p<q

'2p,2q +1 o.

In every term of Inj, (33), we can perform with (34) also the ^-integration:

(2q + 1) • J2p,2q \ dpx'" 22p t-^—t-, XqV^r,
jo \q~p)-

And with the z-integration in (33) over IR :

[dplnj 22> £ -SX- x«[fn, - 2jx - z,(q - j)x]yfc.
J0 q=;\^~J)1

Finally we get for the decay rate (32) with (31):

<-xxml6jtEnJ=o\jJ j\ q=,(q-j)\
Xq[l-(2n + l)x-ï(q-j)x\

-r,É(*)?Ì^/1i-P- + ite-tel_-v.,.,~ (35)

where T0 is the free decay rate (3) for a muon with energy E„.

(a) Expansion in the nonrelativistic case

Because of (6), (28a) we have n « \j%, and

^eB_B_
X~m2~Bcr

[see (18)] can be taken as a parameter of the expansion. We get then from (35)
the first non-vanishing correction:

r^To[l + HB/Bcr)2l (36)

(b) Expansion in the relativistic case

According to (6) and (28a) we have for pz 0, ß Vl - (1/y2):

E2 - m2 ß2
ln + 1 ^Tx' °r {n + 2)x iß2- (37)
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So n has the same order of magnitude as 1/x- We expand (35) systematically until
o(\/n2), taking into consideration that 1 - (2n + l)x 1- ß2:

r^r0(i-ß2)2 n\

;=0 («-/')!
(2xV

x l + (/ + l)< x^-\f)x2 (38)

(2xY
ß2 X(ß2^

n + 1/2/ V n
1

y /(; + i)
2« 8«2

(w-/)! Vn

1V'
_ n(n - l)(n - 2) ¦••(»-/ + 1)

n ¦ n ¦ n

s /0-1) ,/•(/- 1)0 - 2)(3/ - 1)

2n 24n2

By substituting into (38) and changing the summation index we get

1 r-i+£/?2/o-D2
7=0

r r0 i +
12n2

(39)

Here we extend the summation to oo (instead of n), also to compute the zero
order T0. This means that we neglect ß2n with respect to 1. This is straightforward
in the relativistic case and with ßcr/ß a IO5 [see (19a) and section before (19)]

y2Ba
because of (37) and x ~2~ [(18), (28a)]:

fl2" (1 - l/y2\l/2lß2YHBcr/B)-li <e-t/2[ß2(B„/B)-llY2i_

We evaluate (39) (with y2 1/1 - ß2):

s £ ß2'(j -1)2 y2[£ ß2'(i -1)2 - £ ß2{,+X -1)2
/-o L;=0 7=0

(40)

(41)

For the last summation we write T.J=\ß2'-j2 and consolidate. In the new
summation we also compute with the same change of index and so obtain in two
steps for (41):

S y2

and so for (39):

r r0

4+2 (2/-3)|83
7=0

:4y2-5y4 + 2y6

1

12"^2
1 + 7^3 (y2 - !)2(2y2 - 1) + 0(l/n3) (42)

With the transformation of the exponent of (40) and ß2y2 y2 - 1 we can
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write

y2-l B
2n + 1 Bcr

This leads in (42) to our first non-vanishing correction due to the magnetic field of
the order 1/n2 or (ß/ß„)2:

r=r, i +
2y2 - 1 / ß *2

(43)
3 \ßc,

For y 1 we obviously get (36).

5. Conclusions

We notice that the results (36), (43) contain no first-order correction to the
parameter ß/ßcr (resp. y • B/Bcr). This means that up to the order y ¦ ß/ßcr only
the energy (6) is responsible for the decay-rate (and so for the clock-behaviour) of
the muon. In the simplest case pz 0, at 0 we have E mVl + B/Bcr, which
means that the energy given by the magnetic field ~mB/2Bcr contributes in the
first order to a larger lifetime in the same way that an equal kinetic energy
(y Vl + B/Bcr) would in the free case.

So it seems to be a general fact that the time-keeping of this kind of 'clock'
E

depends essentially on its energy, with At At, where Ar is the proper time
Eo

of the "clock", E0 its rest energy in a field-free space and E its total energy:
independently of whether the increase of energy comes from a kinetic energy or
from a "zero-point-energy" in a magnetic field! Note however that in the case of
(negative) gravitational energy because of the gravitational redshift exactly the

Eo
opposite result is true: Ac — • At.

The appearance in the second-order correction of the parameter y • B/B„ is

actually very small due to the fact that the critical magnetic field of the electron
(which is in view of the section before (19) almost 5 orders of magnitude smaller
than that of the muon) constitutes a natural limit for B. The remaining correction
can be understood by the interaction of the particle with the magnetic field. One
could say that the field 'induces' some additional muon-decay.

The y-factor in the correction-parameter can be simply explained by the
Lorentz-transformation, because y • ß is the magnetic field 'seen' by a particle
moving perpendicularly to the magnetic field.

Evidently the 'clock hypothesis' explained in the introduction seems to be

(almost) perfectly true! To give some illustration: The g-2-experiment at CERN
[7] with orbiting muons having y ~ 30 had as a by-product that the time dilatation
of Special Relativity was tested and confirmed with an accuracy of 10~3. But thé
deviation computed here from the behaviour of an ideal clock would be [with
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(19a) and (43)] less than 10-25, although the muons are experiencing in their orbit
a centripetal acceleration of 1018g!!

Finally a more speculative extension of our considerations to the very
extreme conditions of astrophysics: Near radio-pulsars (quickly rotating neutron-
stars) magnetic fields up to 2T013 Gauss \Bcr(e~) are estimated to exist.
Moreover it is believed that there is an e+e~-plasma with y-factors up to 106.

With a possible transition into p+n~, a y-factor of almost 104 would result for the
muons. In this case y-B/Bcr would be «10 per cent and the correction (43)
would now give almost 1 per cent! But the most interesting point of this
calculation surely consists not in any possible application like this but rather in
the possibility in principle to verify the clock hypothesis in this special case with
the help of an accepted physical theory.
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