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THE KOSTERLITZ-THOULESS TRANSITION

IN JOSEPHSON JUNCTION ARRAYS

Ch. Leemann, Ph. Lerch, R. Theron and P. Martinoli
Institut de Physique, Université de Neuchâtel, 2000 Neuchâtel, Switzerland

Abstract : A study of the ac response of square two-dimensional arrays of
proximity effect Josephson junctions as a function of temperature, frequency
and applied transverse magnetic field is presented. As a function of magnetic

field, both the real and the imaginary part of the array's conductance exhibit

clear structures at fields corresponding to rational numbers of flux
quanta per unit cell of the array. At an integer number of flux quanta per
unit cell, the temperature and frequency dependence of the conductance show

that the superconducting to normal transition of the array can be described

by the Kosterlitz-Thouless theory and by its extension to finite frequencies.

Introduction

The Kosterlitz-Thouless (KT) theory of phase transitions [1,2], applied
to a two-dimensional (20) superconductor [3], is based on a description of
the superconductor in terms of fluctuations in the phase of its order parameter.

At low temperatures the relevant phase fluctuations are slowly varying
functions of position. As the temperature increases, thermal fluctuations in
the phase result in topological excitations in the form of bound pairs of
vortices of opposite circulation (vortex-antivortex pairs). The transition to
the normal state is triggered by the unbinding of these vortex pairs, i.e.
the creation of free vortices at a critical temperature Tc. The most

obvious consequence of such a transition is the appearance of a dc resistance
with a characteristic temperature dependence [4-8] above Tc. Another mani-
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festation of the KT transition is the crossover in behavior one observes in
the sample's current-voltage characteristics in the vicinity of Tc [7,9].
In the transition region the dynamics of vortex excitations has unique features

which can be seen in experiments probing the response of 2D systems exposed

to ac driving fields [10,11]. In particular, measurements of the complex

dynamic sheet conductance allow to verify two important theoretical predictions

: the temperature dependence of the complex dielectric constant, and

the anomalous temperature dependence of the free vortex correlation length
above Tc. In this paper we report measurements of the complex conductance

of proximity-coupled 2D arrays of Josephson junctions [12] In section II we

introduce the basic concepts of the KT transition. Section III is dedicated

to array physics. We discuss the relationship between arrays and the XY

model, some vortex dynamics and magnetic field effects. Our experimental procedures

and results are presented in section IV. The results are analyzed within

the theoretical framework of sections II and III. Section V contains our

conclusions.

II. Basic features of the KT transition

Consider the classical XY model : a regular lattice of spins on the

XY-plane. The spins are subject to nearest neighbor interactions and are free
to rotate about an axis perpendicular to the XY-plane. The ith spin is
described by <|>i, the angle it makes with a fixed direction in the XY-plane.

The Hamiltonian of the system is given by

H--JÏ cos (?¦ -?¦) (1)
<ij> J x

where the sum is over all pairs of spins and J (positive) is the coupling

energy. Except at zero temperature, where all the spins are aligned, there is
no conventional long-range order in the spin system and thus a vanishing

spontaneous magnetization [13]. In fact, at any non-zero temperature spin
waves (i.e. long wavelength excitations of the spins) lead, at large enough

distances, to uncorrelated spins. On the other hand, at sufficiently low

temperatures, we are not in the presence of liquid-like short range order. Wegner
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[14] found that the spin-spin correlation function decays algebraically, with
a temperature dependent exponent -p(T) kDT/2nJ :

D

<cos («Dj - ?i)> a r.j"T,(T) (2)

where r^; is the distance between the lattice sites i and j. Intuitively,
one expects some type of phase transition from a low temperature phase

characterized by the quasi long-range order described by (2) to a high temperature

liquid-like phase characterized by an exponentially decaying correlation
function. This phase transition was investigated by Kosterlitz and Thouless

in 1972 [1] by taking into account the effects of thermally excited vortices.

A vortex (antivortex) is defined as a configuration of the <t>^ such

that the sum of the phase changes along a closed path is 2ix (-2%). The energy

Ev of an isolated vortex can be computed from (1) and is given by

E itJ log L/a (3)

where L is the system size and a the lattice parameter. For the interaction
energy Ep of a vortex-antivortex pair with cores separated by a distance r,
one finds

E 2-rcJ log r/a (4)
P

Notice that in general Ep«Ev, the thermal excitation probability is
therefore larger for bound pairs than for single vortices. A rough estimate

[l] of the KT transition temperature Tc can be obtained by computing the

free energy F=EV-TS of a single vortex excitation and by requiring that at
T=TC there is a spontaneous nucleation of free vortices, i.e. F(Tc)=0.
This leads to kgTc»-r.J/2. The correct value for Tc is obtained by taking
into account the presence of bound pairs and their interaction. The

interaction between the constituents of a pair of size ro is reduced

("renormalized") by an amount e(ro), due to the presence of pairs of size r<ro. The

calculation of renormalized quantities, which is the main scope of the

theory, is based on the KT scaling equations [l]. The physical interpretation
of e(r) becomes obvious by making an analogy with the 2D Coulomb
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gas, where electric charges also interact logarithmically [1,6,15]. In the 2D

Coulomb gas analogue, e(r) describes the scale dependent screening properties

of a dielectric medium consisting of electric dipoles (corresponding to
the vortex-antivortex pairs in the XY model) of different size.

Thus we have the following picture for the KT-transition : at low

temperatures there are thermal excitations in the form of spin waves and bound

vortex-antivortex pairs. At a transition temperature Tc given by

2kBTc -n; JR (5)

where Jpj J/ec is the renormalized coupling energy and ec the dielectric

constant at infinite scale e(»), pairs of largest separation (r •*¦ <*>)

unbind. The resulting free vortex excitations (corresponding to free electric
charges in the 2D Coulomb gas analogue) destroy the quasi long-range order

existing below Tc. Above Tc one is dealing whith a liquid-like phase

characterized by a correlation function of the form

-r../Ç+(T)
<cos (n) .- ts).)> a e J (6)

The correlation length Ç+(T) has an unusual temperature dependence reflecting
the peculiar nature of the KT transition. It is given by [2]

b[T - Tc]-
Ç+(T) » a e (7)

where b is a nonuniversal constant of order unity. Physically, Ç+(T) is a

measure of the average separation of free vortices. The free vortex areal

density nf is therefore approximately given by nf » Ç+ (T).

III. 2D Arrays

a) Connection with the XY model

Large two-dimensional arrays of superconducting weak links constitute a

very appealing physical realization of the XY model. With modern photolitho-
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graphic techniques it is possible to fabricate large regular lattices of
superconducting (S) islands. The individual islands are Josephson coupled

through an insulator (I) forming arrays of SIS junctions [16] or through a

normal metal (N), forming proximity effect SNS arrays [17-19]. In arrays
where the geometrical and physical properties of the individual junctions are

sufficiently uniform, fluctuations in the magnitude of the superconducting

order parameter are largely suppressed well below the BCS transition of the

individual islands. On the other hand, 2D fluctuations in the phase of the

order parameter are still important. The phase difference (<|>j - 4>i)

between two sites and its time evolution are governed by the Josephson
equations. The supercurrent flowing between islands i and j is given by

ig ic(T) sin (<t>j- ?i)

where ic(T) is the critical current of the junction. The voltage across the

barrier is
v.2L5_ (?.-?.)

2e ôt J 1

With these two expressions the interaction energy Ejh /isVdt of the

islands i and j becomes :

îïic(T)
[1 - cos(<t>. - 4k)] (8)

!J 2e
L J

Summing over all pairs <ij> we obtain the same Hamiltonian as in (1), with a

coupling energy

J ÎÎSÎI1 (9)
2e

The phase of the superconducting order parameter corresponds to the spin-angle

variable of the XY model. With (5), the universal KT prediction for the

transition temperature becomes

ic(Tr) 8ekoC C
» 27 nA/K (10)

Since the coupling energy in (9) is temperature dependent, the statistical
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mechanics of the system is conveniently described in terms of a dimensionless

temperature parameter T kRT/J 2ekRT/(Tii (T)) [20]. In particular it is T

and not T, which enters expression (7) for Ç+.

There is one important limitation to the isomorphism between the XY model

and 2D arrays. In 2D arrays, as in all 2D superconductors, the vortex-
antivortex interaction no longer depends logarithmically on the separation
distance at distances larger than the effective penetration depth A [21 ]. It
turns out, however, that at Tc, ATc»2cmK [20]; in the interesting
temperature region A is therefore a macroscopic length scale.

b) Vortex dynamics in arrays
The dynamical properties of the KT transition were studied by

Ambegaokar et al [22,23]. An important result of their model is that the

vortex response to an applied field of angular frequency to is controlled by a

frequency dependent length r (14D/w) / where D is the vortex diffusion
constant. Bound vortex pairs of size larger than r^ do not respond to the

applied field, whereas the response of the smaller pairs (r<rw) is described

by a complex dielectric constant which is derived from the static KT

dielectric constant e(r) in the following way [22,23] :

Re e(u) e(rw)

Im etto) £ fr äst)
4 l dr

(11)
r=r„.

According to the physical interpretation of £+(f), at finite frequencies the

vortex unbinding transition will be seen at a temperature Tu such that

ru Ç+(Tu) (12)

By making use of the 2D Coulomb gas analogue, the contribution, ef, of the

free vortex charges to the dielectric constant above Tc can be written in
the form

ef i^L£v (13)
I 111 '
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where ov=(e/h)rnic(T)[a /Ç (T)] is the free vortex conductivity [12], proportional

to nf " V (T), and rn is the resistance of an individual junction.

In the experiments reported below (section IV), the physical quantity
of interest is the complex sheet impedance, ZD(co,T) of the array. It is related

to the complex vortex dielectric constant e(u,T) by

ZD(w,T) i(oL«De(u),T) (14)

where L|(0 t./(2eic(T)) is the sheet kinetic inductance of the array and

e(io,T) e'(io,T) + ie"(o),T) with, according to Eqs. (11) and (12),
e'(-j,T) e(ru) and e"(u,T) ir/4[r(ü(de/dr) I r=r ] + 4it av/io.

c) Magnetic field effects
A magnetic field 5, perpendicular to the plane of the array, introduces

vortices with a tendency to form a regular 2D lattice, the lattice parameter

being controlled by the magnitude of B. The interaction of the field-induced
vortices with the periodic pinning potential provided by the array leads to
commensurate (C) and incommensurate (I) vortex phases. The array can now be

described by a uniformly frustrated lattice spin model [24-27], with a Hamiltonian

H - J ï cos(4>. - 4k- A (15)
<ij> J i !J

where the argument of the cosine is the gauge-invariant phase difference
between islands i and j, 4>0Aji/(2it) is the line integral of the vector
potential A from site i to site j and 4>0 is the superconducting flux quantum

The Aji's satisfy the condition § Aji=2.if, where the sum is over all the

links in an elementary cell and f, the frustration parameter, represents the

magnetic flux per elementary cell in units of 4>o: f=Ba /$0. If the magnetic

field is uniform, f is a constant over the entire array. Quite clearly,
the Hamiltonian (15) is periodic in f with period 1. Furthermore, as f changes,

the energy of the system goes through a series of local minima,

corresponding to rational values of f (C-vortex phases). As a consequence, the

transition temperature and the critical currents show a complex periodic
dependence on f [24,27-29].
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IV. Experimental results and discussion

Arrays consisting of NxN Pb/Cu proximity-effect junctions, with N^IO

were fabricated on sapphire substrates using standard evaporation techniques,

photolithography and sputter-etching. Fig. 1 shows a scanning electron micrograph

of a typical array. The square lead islands, 200 nm thick, form a square

lattice on a 200 nm thick copper film. The lattice parameter a is 8 nm,

the distance L between the squares is 1.7 p.m. Fig. 2 shows the resistance of
an array as a function of temperature. There are two distinct transitions, as

observed by other groups [17-19] : the proximity-effect reduced BCS transition

of the lead islands at 6.8 K and a transition to zero resistance at Tc

» 3.9 K. In the temperature region 3.9 K < T < 6.8 K the coherence length in
the copper increases with decreasing temperature leading to an increase of
the effective size of the superconducting islands and thereby a decrease in
resistance [l7].

The complex sheet conductance GQ Z"_ of the arrays was measured

using a variation of the mutual inductance technique devised by Fiory and

Hebard [11,30]. Two coaxial cylindrical coils consisting of an external drive
coil of diameter 4 mm and an internal astatic pair of receive coils, 2 mm in
diameter, were immersed in stycast. After appropriate machining, the coil
assembly was positioned directly on the sample, the distance between the sample

and the first winding of the detection coil being of the order of 10 \im. An

Figure 1. Scanning electron micrograph of an array. Lighter colored squares

are the Pb islands on the top of the darker Cu film.
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S 2

I 10/M rms T

T, ~ 3.9 K

T K

Tcs 6.76 K

10

Figure 2. Dc resistance vs temperature of a 2D array of Josephson junctions.
1 cs BCS-transitions of the Pb islands. Vortex unbinding
transition.

ac current of amplitude In^ and angular frequency <o flowing through the

drive coil will induce screening currents in the array proportional to Ip^
and u and, in the weak screening limit [30], also to GD the complex sheet
conductance of the array. These currents will, in turn, induce a voltage
ôV^j a u iQjjGp at the receive coil which can be phase-sensitively detected.

Using Eq. (14) for Ga Zq in the weak screening limit appropriate to
discuss our experiments in the transition region, the signal voltage can be

written as :

ÔVJT) iCcoI Doj
e(ta_,T)

(16)

where C is a constant depending on the sample-coil geometrical configuration,
whose numerical value was estimated to be ~ 0.74 Vs/A At low temperatures
(T<TC) the weak screening condition is no longer satisfied and Eq.(16) must

be modified to include the geometrical inductance of the sample.
Since ic(T) is a monotonically decreasing function of temperature,

any unusual behaviour of the signal voltage ôVu in the transition region
will be determined by e~ (io,T). Calculations of e (to,T) based on Eqs. (11)
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Figure 3. Temperature dependence of the receive coil signal ôVu proportio¬
nal to the array's sheet conductance at a frequency of 1663 Hz.

and (13) show that a peak in Im(e and a roll-off in Re(e~ are expected

in the neighborhood of Tc. This is quite clearly demonstrated by the
measurements shown in Fig. 3 which exhibit a peak in dissipation [Re (ôVw)]

and a drop in superfluid density [im (ôVu)]. Structures similar to those
shown in Fig. 3 were observed in uniform 2D superconductors [11] and in
superfluid helium films [10],

The evolution of the signals with increasing frequency is shown in
Fig. 4, where the signal voltage is normalized with respect to the angular
frequency of the driving current. Notice that, with increasing frequency, the
structures in both Re (ôV^) and Im(ôVu) shift to higher temperatures.
This is consistent with the theoretical prediction implied by Eq. (12) : as

the frequency increases, the probing length r^ becomes smaller and the

vortex unbinding transition is observed at a higher temperature TM.

Also shown in Fig. 4 are the signals measured in a magnetic field
corresponding to one flux quantum per unit cell of the array, the f 1 case.
The response for f 1 is similar to that for f 0, in qualitative agreement

with the conclusion of section III, that the Hamiltonian of the system is
periodic in f with period 1. We conjecture that in the f 1 case the thermal

excitations are highly mobile positive and negative vacancies, which can be

viewed as vortex-antivortex excitations superposed on a pinned commensurate

background of one field-induced vortex per unit cell of the array. Notice

however, that the transition for f 1 in Fig. 4 occurs at a slightly lower
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hH
f 0

a 0.20 kHz
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d 8.45 kHz0.5

" 0
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- 1

IhHI

T[K

Figure 4. Temperature dependence of the complex ac response of a 2D array at

different frequencies for f=0 and f=1. Signal voltages are normalized

with respect to angular frequency.

temperature than in the f 0 case. The finite size of the junctions causes
the critical current of the individual junctions to be slightly reduced by

the magnetic field. The KT transition is thus also expected to occur at a

slightly reduced temperature in the case f 1.

The frequency dependence of the signals, through Eq. (12), can be used

to verify the unusual temperature dependence of the vortex correlation length
£+(T) given in Eq. (7). The r^-values were calculated with D (c/4>0)2rna2kBT

for the vortex diffusivity, as derived in Ref. 20, and rn= 2.2 mû, inferred
from the array sheet resistance at TqS. The temperatures Tw were deduced from

the Im (6VU) vs T curves by extrapolating the steep portions to zero. In
order to determine T kgT/J 2ekf)T/(î.ic(T) low temperature measurements

of the array's critical current in zero field, ic(T,0), and in a f 1

field, ic(T,1), were fitted to the expression

ic(T,f) i0(f)[l-(T/Tcs)]2exp[-L/ÇN(T)] (17)

yieling 5n(Tcs) 85 nm for the Cu coherence length, i0(o) 0.78 A and

i0(1) 0.26 A. Finally, introducing the scale parameter A-,, - AnCr^/a),
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Figure 5. Dependence of the scale parameter Xw=An(r(0/a) on the dimensionless

temperature Tu. Solid lines are fits according to Eq. (18). On the

upper axis the real temperature for f 0 is shown.

Eq. (12) can be cast into the form

V2 b-2[Tw - Tc(f)] (18)

As can be seen in Fig. 5, our measurements confirm the linear relationship
A, -*A

between H~ and Tu. By extrapolating the fitted straight lines to infinite
scale, corresponding to the limit lo+O, we find ic(Tc,0)/Tc(0) 49 nA/K

and ic(Tc,1)/Tc(1) 143 nA/K, wich leads, with Eq. (10), to ec(0)
1.81 and ec(1) 5.3. Our ec(0) value is in excellent agreement with a

Monte Carlo calculation performed by Tobochnik and Chester [31], who found

ec 1.75. The ec(1) value, on the other hand, seems somewhat large, even

though additional screening by the commensurate vortex background is expected
to enhance ec.

At this point, having studied the temperature dependence of the response

at integer values of f, we would like to consider the dynamic response of
the array also at rational and irrational values of f. Real and imaginary
parts of the signal as a function of the frustration parameter f are shown in
Fig. 6 at four different temperatures. The structures occurring at integer f
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Figure 6. (a) Real and (b) imaginary parts of the ac response at 4033 Hz as a

function of the frustration parameter f 4>/4>o at four temperatures

values, as well as half-integer f values (f=p/2) and at f=p/3, reveal the

presence of low energy commensurate vortex phases. At integer f values the

evolution of the structures with temperature is the signature of the

vortex-unbinding transition discussed above. The temperature evolution of the

signals at low-order rational f values is similar to that observed at integer
f values, leading to speculations about the possibility of a KT-like phase

transition at rational values of f. However, a theory describing the dynamics

of field-induced vortices and their interaction with topological excitations
such as thermal vortices and domain walls at non-zero temperatures is not

available. A detailed analysis of the data shown in Fig. 6 is therefore not

yet possible.

Conclusions

Our measurements of the dynamic response of 2D arrays, in magnetic

fields corresponding to integer values of the frustration parameter f, as a

function of temperature verify the qualitative behavior of the dielectric
constant e(u,T) predicted by the KT theory for phase transitions in two
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dimensions. The analysis of the frequency dependence of the measurements

provides a quantitative check of the exponential-inverse-square-root temperature

dependence of the free vortex correlation length above Tc.

The nature of the phase transition in magnetic fields corresponding to

non-integer f values is an unsolved and challenging problem. In particular,
the case f 1/2, corresponding to the fully frustrated XY model, has recently

received a considerable amount of attention and some progress is being made,

both theoretically and with numerical computer simulations [27, 32, 33].
Our experimental work to-date on 2D arrays cannot unambiguously settle the

question of the nature of the phase transition, KT- like or Ising-like at f
1/2.

This work was supported by the Swiss National Science Foundation.
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