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About the structure - preserving maps
of a quantum mechanical

propositional system

by Dirk Aerts1) and Ingrid Daubechies1)

Theoretische Natuurkunde, Vrije Universiteit Brüssel, Pleinlaan 2, B 1050 Brussels

(2. II. 1978; rev. 26. VII. 1978)

Abstract. We study c-morphisms from one Hilbert space lattice (with dimension at least three) to
another one; we show that for a c-morphism conserving modular pairs, there exists a linear structure
underlying such a morphism, which enables us to construct explicitly a family of linear maps generating this
morphism. As a special case we prove that a unitary c-morphism which preserves the atoms (i.e. maps one-
dimensional subspaces into one-dimensional subspaces) is necessarily an isomorphism. Counterexamples
are given when the Hilbert space has dimension 2.

1. Definition of a propositional system and Piron's representation theorem

According to Piron's axiomatic description of quantum mechanics [1], the
structure of the set of the propositions corresponding to 'yes-no' experiments on a
physical system is that of a complete, orthocomplemented, weakly modular and
atomic lattice which satisfies the covering law. Such a lattice is called a propositional
system. If the physical system has no super-selection rules, the propositional system is
irreducible. We will first give some definitions concerning propositional systems. For
more details we refer the reader to [1].

Let JP be the collection of all the propositions concerning a physical system.

1.1 Definition. fP is called a CROC whenever SP satisfies the following conditions:

(i) SP, <is a partially ordered set with <as partial order relation (1.1)
(ii) SP is a complete lattice, which means thatfor everyfamily {bi}iel of

elements in f£ there exists a greatest lower bound /\i€l b{ and a
least upper bound \/i^jbi. (1.2)

(iii) SP is an orthocomplemented lattice, which means that there exists a
bijection ' : Sf -> SP such that: Vb,ceSf: (1.3)

Wetenschappelijke medewerkers bij het Interuniversitair Instituut voor Kernwetenschappen (in het
kader van navorsingsprogramma 21 EN).
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(bj b
b a b' 0 and b v b' /
b < c => d < b'
where I V*er ° and 0 Abese b

(iv) SP is weakly modular, which means that if b < c then c a (c' v b) b
(LA)

In a CROC it may be interesting to consider pairs ofpropositions. In the following
definition we introduce some pair-properties (see [1], [2], [3]).

1.2 Definition. In a CROC two propositions b and c are said to be

- compatible if the sublattice generated by {b, b', c, d} is distributive,
notation: b<-^c

- a modular pair iffor any d> c: (b v c) a d (b a d) v c

notation: (b, c)M2)

It is easy to see that if b <-> c, (b, c)M. The converse is not true. Moreover, we see

now that the condition for weak modularity (1.4) can be reinterpreted as:
b < c=> b*-*c.

1.3 Definition. Fhe 'center' ofa CROC is the set ofpropositions compatible with all
other propositions.

The center of a CROC is also a CROC which is distributive.

1.4 Definition. If SP is a CROC and be SP we consider the set {x \ x < b, x e SP}.

If we define on this set a relative orthocomplementation xr x' a b, then it is easy to
check that this set becomes a CROC; we will call it the segment [0, b~\.

1.5 Definition. A CROC SP will be called 'irreducible' if the center of SP contains
only 0 and I.

1.6 Definition. Ifb, ce SP,b # c andb < c, one says that c 'covers' b, ifb < x < c

for some xe SS implies x borx c.An element ofSP which covers 0 is called an atom.

Now we have all the notions to define a propositional system. So let SP be again
the collection of all the propositions concerning a physical system.

1.7 Definition. SP is a propositional system if
(i) SP is a CROC
(ii) SP is atomic, which means thatfor every b e SP, b # 0, there exists

an atom p e SP such that 0 < p < b. (1.5)
(iii) SP satisfies the covering law, which means that ifp is an atom ofSS

and be SS and p a b 0, then p v b covers b. (1-6)

In [2] Birkhoff defines two kinds of these pairs: modular pairs and dual modular pairs. In the
following we shall only need one of these two kinds ; since no confusion can arise, we shall call them
modular pairs. Moreover, one can prove that when the CROC is an irreducible propositional system
isomorphic to a P(3f (see further) every modular pair is a dual modular pair in Birkhoff's
terminology, and vice versa. For more details concerning these pairs, see [3].
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Example: If we take a complex Hilbert space JP and if we define P(Jt) to be the
collection of all the closed subspaces of JP, then P(jP) becomes an irreducible
propositional system if we define the operations as follows :

(i) If G, Fe P(Jt), then G < F iff. G c F set-theoretically. (1.7)
(ii) If Gì e P(3P) Vi e /, then A iel Gt fì,t/ G„ (1.8)
(iii) and V,e, Gt is the closure of the linear subspace generated by all

the Gi's. (1.9)
(iv) If G e P(2fe) then G' GL which is the subspace orthogonal to

G. (1.10)
(v) The atoms are the one-dimensional subspaces. (Ill)

P(JP) is the propositional system one uses in ordinary quantum mechanics. As
expected two propositions of P(PC) are compatible iff the corresponding projection
operators commute.

Conversely, we can ask ourselves if it is always possible to represent an irreducible
propositional system by a structure which resembles the given example. This question
is answered by the representation theorem of Piron ([1] and [4]) which says that it is
always possible to realize an irreducible propositional system by the set P(V) of all
biorthogonal subspaces of a vector space V over some field K. The orthocomplementation

defines on K an involutive anti-automorphism and on F a non-degenerate
sesquilinear form; the weak modularity ensures that the whole space is linearly
generated by any element and the corresponding orthogonal subspace. Hence all
irreducible propositional systems are given by generalization of the P(3P") in the
example above. The representation theorem enables us to prove interesting results
about propositional systems. As an example we give the following easy characterization

of modular pairs in an irreducible propositional system.

1.8 Lemma. Let P(V) be the realization ofan irreducible propositional system SS;
let a, be SP and let a,, è, be their realizations in P(V). Fhen

(a, Z?)M<=> at + bx a^ v bx.

Proof: see [3].

An immediate consequence of the lemma is the following property:
(a, b)M => (b, a)M. If we take the field in Piron's representation theorem to be C and
the involutive anti-automorphism of <C to be the conjugation, then the vector space V
becomes an Hilbert space over <C ([4], [5]). Since the set of all biorthogonal subspaces
of a Hilbert space is exactly P(Jf we are now reduced to the case considered in the
example. In the following we will restrict ourselves to the cases where the field is <C.

2. m-morphisms

2.1 Definition. A c-morphismfrom a CROC SS\ to a CROC SP2 is a mapfofSS\ to
SS2 which preserves unions and compatible pairs, i.e.

te/
f\\lbi \ Vf(bi) bteSS, Vie/ (2.1)

b~c=>f(b)~f(c) b,ceSS± (2.2)
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A bijective c-morphism from SSX to SS2 will be called an isomorphism.

The terminology c-morphism is justified because we want (2.1) to be valid for
every non-empty family of bis. Weakening condition (2.1) we find the definitions of a

morphism ((2.1) is only required for finite families) and of a <x-morphism ((2.1) is only
required for countable families). For a general CROC however only c-morphisms
preserve the completeness. It is easy to prove [1] that when/is a c-morphism from SS ^

to SS2 then :

/(0) 0 (2.3)

f(b')=f(b)' Af(I) be SS, (2.4)

/(a*.Ì A/(*i) he SS, Vie/ (2.5)
Vie/ / iel

2.2 Definition. A mapffrom a CROC SS1 to a CROC SP2 is called an m-morphism
if it is a c-morphism which preserves modular pairs, i.e. (b, c)M => (f(b),f(c))M.

Ifwe want to study c-morphisms between propositional systems, we can in general
restrict ourselves to c-morphisms between irreducible propositional systems. Indeed,
let SS x and SP2 be two propositional systems with centers Zx, Z2 respectively. One can
prove that Zj and Z2 are also propositional systems [1]. Let (zi)XEA, (z2)ßeBbe the sets
of atoms of Z1, Z2.

Iff is a c-morphism from SS1 to SS2, we can define

ULO,zn^[_o,z2Pi

X^-f(x) A Z2

These (fxp)XeA,peB are c-morphisms between irreducible propositional systems and the
set offxß determines completely/:

VxeSS1:f(x)= V V fxß(x a z1)
aeA ßeB

If/is an w-morphism, it is easy to check that the/a/3 are w-morphisms too. We will
henceforth restrict ourselves to the study of c-morphisms (or m-morphisms) from one
irreducible propositional system to another one.

It is interesting to remark that any c-morphism from an irreducible CROC SS j to
a CROC SS2 is either injective or the zero-morphism (see [1], pp. 31, 33).

2.3 Definition. A unitary c-morphism f of a CROC SS\ into a CROC SS2 is a
c-morphism such that f(Ix) I2. (2.6)

In the study of c-morphisms we can always restrict ourselves to unitary c-
morphisms because if

/: SP —> SP2 is a c-morphism
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then we can always study/by studying the morphism/defined by

/= JS?! — [0,/(/)] suchthat f(b)=f(b) for b e SPX

This / is a unitary c-morphism.
Taking together all these remarks, and remembering that we decided to consider

only irreducible propositional systems isomorphic to a P(Jf), we see now that we can
restrict ourselves to unitary c-morphisms from an irreducible propositional system
P(Pf) into an irreducible propositional system P(PC).

It is a remarkable fact that when the dimensions of the Hilbert spaces Pt° and 2P"

are at least equal to 3, one can prove that any isomorphism from P(Jf into P(PC) can
be generated by a unitary or anti-unitary map from Jif into PC. This is a consequence
of the following theorem proved by Wigner [6].

2.4 Theorem. Let Jf and PC be two complex Hilbert spaces ofdimension at least
3 and f: P(3P)^> P(PC) an isomorphism, then it is always possible to find a map U:
JP —> JP' which is unitary or anti-unitary and such that:

f(G) {U(x) ;xeG} VG e P(Jf

This is not only an amazing result but it is also very useful because it is always by
using this theorem that one is able to prove the deepest results about problems in
relation with isomorphisms of propositional systems.

Our aim in this paper is to prove a similar result for a more general structure
preserving map of a propositional system, namely an m-morphism. In fact we shall
prove our main theorem with the help of apparently weaker conditions than the one
given in the definition of an m-morphism. These weaker conditions are specific for
atomic CROC's, where our definition of an m-morphism is valid for any CROC. The
following proposition states moreover that these weaker conditions are equivalent
with the fact that/is an m-morphism. To distinguish the individual elements of Kfrom
the linear subspaces they generate, and which are elements of P(V), we will henceforth
write x to denote the linear subspace generated by x.

2.5 Proposition. Let 3^, M" be two complex Hilbert spaces, letf be a c-morphism
from P(JP) to P(jC). Fhen f is an m-morphism iff one of the following is true:

(1) Vx, y non-zero vectors in JP:f(x — y) <=f(x) +f(y) (2.7)

(2) Vx, y, z non-zero vectors in PC: z < x v y=>f(z) <=/(x) +f(y) (2.8)

(3) Vx, y non-zero vectors in JC:f(x) +f(y) is a closed subspace of PC (2.9)

The proof of this proposition is given in the Appendix.
If the/(x) are finite-dimensional, condition (2.9) is automatically satisfied, and/is

an m-morphism. In particular, if the/(x) are one-dimensional, / is an m-morphism.
One can even prove (see the beginning ofthe proofofcorollary 4.2) the following : if for
one atom p in P(jP),f(p) is an atom in P(JC), then/is an m-morphism.

Our main theorem can now be stated as follows :
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2.6 Theorem. Let Pf and PC be two complex Hilbert spaces with dimension greater
than or equal to three, andfa unitary m-morphism from P(Jf) to P(JC). Fhere exists a

family of maps (tp^^jfrom $f to PC such that:

- each <f>j is an isometry or an anti-isometry
- the different q)j(JP) are orthogonal subspaces ofPC, and their direct sum is #C:

PP © <t>ji^)

- (<Pj)jej generates f in the following sense:

\/GeP(Pf):f(G) V <t>}(G) 0 {^(x); xeG}
je J je J

We will prove this theorem and others in Section 3. In Section 4 we restrict
ourselves to the important special case of c-morphisms mapping atoms onto atoms. It
is to be remarked that the theorem we obtain there is still a more general one than
Theorem 2.4 : our results are the same, but where Wigner supposed / to be an
isomorphism, we only use that/is a unitary c-morphism mapping one atom onto an
atom : no surjectivity is needed. Our different theorems hold only if dim Pf > 3 (the
same applies for Wigner's theorem) ; in Section 5 we give some counter-examples for
dim Pe 1.

3. Construction of the underlying linear structure

We start by stating our main theorem. The formulation as presented here is rather
compact : we will relate it to the former one at the end of this section.

3.1 Theorem. Let Pf and #C be two complex Hilbert spaces, with dimension greater
than or equal to 3. Let f be an m-morphism mapping P(Pf) into P(PC).

Fhen for every couple (x, y) of non-zero elements of Pf, there exists a bijective
bounded linear map Fyx mappingf(x) ontof(y), such that the set ofmaps {Fyx ; x, y e Pf}
has the following properties:

Pxx — l/(x)
F =(F V1x xy x* yx/
F F Frzy* yx *¦ zx

F j. F + F* y + z.x * y. x * *¦ z. x

Pxy.Xx= Py.x Xe<C,XpO
Fyx is an isomorphism if \\x\\ \\y\\

For every non-zero x in Pf, there exist moreover two orthogonal projections P\ and P\,
elements of SS(f(x)), such that

P\-P\ 0

Pi + PÌ *m
py, F P?F i=\ 21 i A yx1- l * xy l x •> ^

and FXXiX XPi + XP\
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The proof of this theorem is a quite extensive one; this is why it has been split into
different lemmas.

If/is zero, the/(x) are zero for every x and the theorem is trivial. We therefore will
restrict ourselves to the cases where/is different from zero.

3.2 Lemma. Let JP, PC,f be as in Fheorem 3.1, with f different from the null-
morphism. For every two non-zero elements x, y in Jf one can define a linear map Fyx,
element of SP(f(x),f(y)), such that

(a) Fyx is bijective (3.1)

(b) Fxy (Fyx)'1 (3.2)

(c) FyzFzx Fyx for every non-zero z in Pf (3.3)

(d) Fxx lfixl (3.4)

(e) FXy Xx Fyx for every non-zero X in C (3.5)

Proof. Since/is different from zero, it is injective. This implies that for any x in
JP, different from zero, the space/(x) is a subspace of PC different from the null-space.
Let x, y be two linearly independent elements in Jf.

We have x a j 0, x a x — y =0 and y a x — y =0, hence

f(x)Af(y) 0,f(x)Af(x-y) 0 and f(y) a/(x - y) 0 (3.6)

Moreover/(x) c/(j) +f(x - y).
If now x1 is an element of/(x), the previous remarks imply that there exist unique

y', u', elements off(y) and/(x — y) respectively, such that

x' =y' + if (3.7)

This correspondence defines a linear map Fyx from f(x) to f(y) :

Fyx(x')=y
This map is bijective ; moreover :

* xy \*yx)
We will now prove that these Fxy are bounded linear maps. From the already proven
results we see that Fxy is an everywhere defined linear map from one F-space to another
(both/(x) and/(j) are closed subspaces). We will prove that Fxy is closed. Indeed, let
iy'n)n be a converging sequence in f(y) with limit /, such that the sequence (x'n

— Pxy(y'n))n converges too: x'n-*x'. Then there exists a sequence u'„ in/(x — y) such
that

un Vn ~ X„

Since both sequences (P„)„ and (/„)„ converge, the sequence (t4)„ is a Cauchy sequence
with limit u'. Since moreover the spaces /(x), f(y), f(x — y) are closed, we have

x' e/(x), y' ef(y), u' ef(x — y). But y' x' + u', hence x' Fxy(y'), which implies
that Fxy is closed. Using the closed graph theorem ([7], p. 57), we see that Fxy is
bounded.
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Up till now, we have proven statements (a) and (b) for x, y linearly independent.
We will proceed further, and prove statement (c) for x, y, z linearly independent, after
which we will re-examine the different cases for linearly dependent vectors.

Take x, y, z linearly independent in #C We have

y - z < y v z and y — z=(y — x) + (x — z)<y-x v x — z

which implies

y — z<(yvP)A(y — x vx — r)
Because of the linear independency of x, y, z we can conclude that

y-z=(yvz)A(y — x v x — z) (3.8)

which implies

f(y - z) - (f(y) v /(f)) a (f(x -y)vf(x- z)) (3.9)

Take now x' in f(x), and define /, z' by

y'=Fyx(x'), z' Fzx(P) (3.10)

From the construction of Fyx, Fzx we know that there exist u', v' with u' ef(x — y),
v' ef(x — z), such that

x' y' + u' z' + v'

This implies that / — z' t/ — u', hence / — z' ef(x — y) v f(x — z). Since/ — z' is

obviously an element of/(j) v/(z), we conclude from (3.9) that / — z' ef(y — z).
This implies y' Fyz(z').

Because ofthe definitions (3.10) of/, z', this implies

F ° F Fyz zx * yx 5

which proves statement (c) for three linearly independent vectors.
Whenever x and y are linearly dependent, i.e. y e x, we define Fyx by

Fyx Fyt o Ftx where t e Pf\x. (3.11)

The fact that this definition of Fyx does not depend on the choice of t is an almost trivial
application of the just proved chain rule for linearly independent vectors. The
bijectivity of Fyx follows immediately from its definition (3.11). It is also easy to check
that statements (b) and (c) hold even when the vectors are not linearly independent.
Statement (d) is now a trivial consequence of (b) and (3.11). Statement (e) is a trivial
consequence ofthe construction ofthe Fxy.

I
Remark. It is a crucial point in this proof that dim Pf > 3. Ifdim JP 2, one can

still construct the Fxy in the same way as was done in the lemma, but it is then
impossible to prove the chain rule. We give a counter-example in the last section.

3.3 Lemma. Let Pf, PC ,fbe as in Lemma 3.2. Let {Fxy; x, y e Jf, x # 0 p y) be
the set of maps constructed in the proof of Lemma 3.2, and let x, y, z be three non-zero
vectors in Pf with y + z ^ 0. Fhen the following holds:
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for every x/ in f(x): Fyx(x!) + FZX(P) ef(y + z)
and Fyx + Fzx Fy+Z<x (3.12)

Proof. Suppose first that x, y, z are linearly independent. We rewrite (3.8) in two
different forms :

y + z=(yvz)A(xvx — y — z) (3.13)

and

x — y — z (x — y v z) a (x — z v y) (3.14)

Take P in f(x), and define /, z' by

/ F,x(xO, z' Fzx(P) (3.15)

Since x' — y' ef(x — y) and x' — z' e/(x — z), we have

x' - / - z' e (/(x - j) v /(z)) a (/(x - z) v/(.y)) =/(x - j - z)
(because of (3.14))

Hence

/ + z' x' - (x' - / - z') e/(x) v/(x - y - z)

which implies

y' + z'e (f(y) v f(z)) a (f(x) v f(x - y - z)) =f(y + z) (because of (3.13))

We have now

x' y + z' + x' — y — p

with

y' + z' ef(y + z), x' - y' - z' e/(x - y - z),

hence

Fy + z,x(x')=y' + P.

Because of (3.15) this implies

Py+z,x Pyx + Pzx f°r x, j, z linearly independent

Suppose now that z and y are linearly dependent, i.e. y e z with y + z # 0, and suppose
x$y. There exists a ; such that {x, t,y + z] and {x, t + y, z} are both linearly
independent.

We have

Ft + y + z,x ^t + y,x + *'zx ^tx + "yx + ^ zx
^tx + -T'

y + z,x

which implies

Fi F + F1 y + z,x * yx < x zx-

We have only one more case to check : suppose xey v z and y + z # 0 (y and z
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may be linearly dependent). We can choose a t such that t $y v z. We have

Fy + z,x "y + z.fftx ~ ^yt^tx + ''zd'tx
* yx ' "zx m

3.4 Lemma. Let Jtf, JtP,f, {Fxy} be as in Lemma 3.3. Let x, y be two non-zero
vectors in JP with \\x\\ \\y\\. Fhen Fyx is an isomorphism.

Proof. Consider first the case where x±.y. Since ||x|| \\y\\, this implies

x — y 1 x + y and thus/(x - y) 1 f(x + y). Take x', x" in/(x) and define y', y" in f(y)
by

y' Fyx(x') y" Fyx(x") (3.16)

Because of Lemma 3.3 we know that

xf + Y ef(x + y) x" -y"ef(x-y) (3.17)

From (3.16), (3.17) and the fact that f(x) l/(y), we infer that

0 (x' + /, x" - y") (x-, x") - (/, /')
But this leads to

(Fyx(P), Fyx(x")) (x-, x")

which implies that Fyx is an isomorphism.
If x and y are not orthogonal, we can choose a vector z such that

\\A\ IMI IIjII and z±x,z±y
Because ofthe previous result, we know that Fzx and Fyz are isomorphisms. From the
chain rule (3.3) it follows now immediately that Fyx Fyz ° Fzx is an isomorphism too.

I
We have now proven the first part of Theorem 3.1. To prove the second part,

which gives in fact a spectral decomposition of the operators FXx x, we need the
following two remarks.

3.5 Remarks.
1. Let JP be a Hilbert space, and let G, H be two commuting bounded self-adjoint

operators on M' with G > H. Let a(G) be the spectrum of the operator G and
g(H) be the spectrum ofthe operator H. Fhen inf a(G) ^ inf o(H) and sup a(G)
> sup a(H).

2. Let Pf be a Hilbert space, A a bounded normal operator such that A2 —1.
Fhen o(A) <= {— ;', /}.

(These remarks are easy to prove if one uses the Gel'fand isomorphism for
commutative C*-algebras: see [8].)

3.6 Lemma. Let Pf, PC',/, {Fyx} be as in Lemma 3.3. For every x in Pf, x # 0, there
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exist two orthogonal projectors Pf, Pf in SS(f(x)), such that the following holds:

(a) Pf-Pf 0

(b) Pf + Pf lm
(c) Vx, y non-zero vectors in Jf: PJ FyxPfFxy /=1,2 (3.18)

(d) VAeC, X # 0: FAXjX XPf + XPf (3.19)

Proof. To alleviate somewhat our notations, we will write A(X;x) for FXXix. From
(3.5) we see that

A(X; px) A(X; x) (3.20)

On the other hand, (3.3) implies

A(X; y) FXy>y FXy.XxFXx>xFxy FyxA(X\ x)Fxy (3.21)

These two relations (3.20) and (3.21) imply that the same structure will be found for all
A(X ; x), since they are all equal up to a unitary transformation :

AiX; y) (Fy^l^x^Xiy)~1A(X; x)F\\y\\i\\x\\x,, (3.22)

From (3.12) we see that

A(X + p; x) Fa+IÂ)XyX FXXtX + F„XiX A(X; x) + A(p; x) (3.23)

while (3.3) and (3.5) imply

A(Xp; x) FXllXtX FXliX^xF^x FXXtXFßx<x A(X; x)A(p; x) (3.24)

From (3.23) and (3.24) we infer that the map

A(-;x):€^SS(f(x))
A—> A(X; x)

is in fact a representation of the (commutative) field C in SS(f(x)). But we can prove
more.

Let x, y be two non-zero vectors in Jf, with ||x|| ||j|| and xLy. Choose
X e C\{0}. We have Xx + y 1 x - Xy, hence

f(Xx + y)±f(x-Xy) (3.25)

Let x', x" be elements of/(x), and / Fyx(P), y" Fyx(x"). Then:

Fxx+y,x(x')'= A(X; x)x' + y' _Px-Iy,x(x") - x" - FXyiyFyxx" x" - A(X; y)y"
From (3.25) and f(x) -Lf(y) we see that

0 (A(X; x)x' + /, x" - A(Y y)y")
(A(X;x)x',x")-(y',A(X-y)f)
(A(X; x)x', x") - (Fyx(x') A(X; y)Fyx(x"))

Using (3.21) and the fact that Fyx is an isomorphism (see Lemma 3.5), this leads to:

(A(X; x)x', x") (x', A(X; x)x"),
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hence

(A(X; x))* A(T; x) (3.26)

We will now use the three relations (3.23), (3.24) and (3.26) to prove the lemma.
First of all, it follows from (3.23) and (3.24) that for any rational number q one has

A(q;x) qtnx) (qe<S>) (3.27)

If r,, r2 are real numbers with rt > r2, then we have

A(r,; x) - A(r2;x) A(r^ -r2;x) A2(y/r1 - r2; x)

A*(Jri-r2; x)A(^r[-r2; x) > 0 (3.28)

which implies that the restriction to IR ofthe map A( ¦ ; x) preserves the order. Let r be a
real number, and qx, q2 two rational numbers such that

q,<r<q2. (3.29)

From (3.27) and (3.28) we see that

qitnx)<A(r;x)<q2tnx)
Since A(r; x) is self-adjoint, we can apply the first remark in 3.5 to obtain

inf o(A(r; x)) > qx, sup a(A(r; x)) < q2

This holds for any two rational numbers satisfying (3.29), which implies

A(r;x) rif(xl (3.30)
Since r was arbitrarily chosen, it is obvious that (3.30) holds for any real number. On
the other hand we have that (A(i;x))* A( — i;x), and (A(i;x))2 A(— l;x)
— tf(x), which implies that A(i; x) is a normal operator satisfying the conditions in the
second remark in 3.6. Applying remark 3.5 leads to

a(A(i;x)) c {/, -/}

This implies the existence of two orthogonal projections Pf, P2 in SS(f(x)) such that

PfPf 0 (3.31)

Pf + Pf lfix) (3.32)

A(i; x) iPf - iPf (3.33)

Using (3.28), (3.30) and (3.33), we conclude that

A(X;x) XPf + XPf

From (3.22) we see that

A(X;y) XP\ + XP\

where the P\ Fy.\\y\\i\\x\\xPiP\\y\\i\\x\\x.y are st^n orthogonal projections satisfying,
mutatis mutandum, the relations (3.31) and (3.33) (we use the fact that Fy< y,^nxnx is an
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isomorphism). We have moreover that

P' -F>>.llyll/!l*||x-p?/ii)>||/||x||x,.v'

F Afi^-x)p?a(^-x)f
F P?F* yx* i* xy

which was the last relation we had to prove. I
Theorem 3.1 is now completely proven: if we gather the results of Lemmas 3.2,

3.3,3.4 and 3.6, we get exactly Theorem 3.1. We introduce now the following definition
which is motivated by the results of our theorem.

3.7 Definition. Let Pf, PC be two Hilbert spaces, with dim 2ff > 3. Letf be an m-
morphism different from the null-morphism, mapping P(Pf) into P(3P").

-f is called a linear m-morphism ;/ the Fyx constructed in Lemma 3.2 have the

property:

P).x,x ^f(x-)

-f is called an anti-linear m-morphism if they have the property

Pkx,x — ^f(x)

-f is called a mixed m-morphism if it is neither linear, nor anti-linear.

In the following theorem we show that any mixed m-morphism can be written as a
combination of a linear one and an anti-linear one. This decomposition turns out to be

unique if/ is unitary. We formulate the theorem only for the mixed case : the same
techniques as used in the proof yield trivial results if the m-morphism is linear or anti-
linear, which implies that the theorem works also in these cases. One should however
drop then the condition that the Jtt are non-trivial since either 3/fx or Pf2 would be

zero.

3.8 Theorem. Let Jf, PC be two Hilbert spaces, with dim Pf > 3. Letfbe a unitary
mixed m-morphism mapping P(Pf) into P(PC). Fhen there exist two non-trivial
orthogonalsubspaces Jf\, 3ff2 offPC, a unitary linear m-morphismf\ mapping P(Pf) into
P(Pf\), and a unitary anti-linear m-morphism f2 mapping P(Pf) into P(Pf2) such that

PC Pfx®Pf2 (3.34)

Va e P(Pf):f(a) =ft(a) v f2(a) (3.35)

Phis decomposition is unique.

Proof. We first remark that/is different from zero (it is unitary), hence injective.
For any x in Pf, put

f(x) Pf(f(x)) /=1,2 (3.36)

We see immediately that/(x) =/t(x) v/2(x). We define Pf 1; Jf 2 by

Mi V Mx). (3.37)
xeje
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Let x, y be arbitrary non-zero elements in Pf. We shall prove that/^x) Pf2(y). Ify e x,
then/2(j) =/2(x) and so /i(x) 1 f2(y). If y£x, then there exists a z_I_x such that jl/\\x\\2(x,y)x + z. Take x'e/^x), y"ef2(y). We have

(x', /') tx', -^ F(je.,„,,(/) + Fzy(y")
„x\\

1

Ff* > P(x,y)x,y(y

\ï\x',P\
l|x||2V ' ^«„„„GO.

Applying (3.18), and using the fact that F? (/') 0, we see that the right-hand side
is reduced to zero, which proves /i(x)l/2(j). Because ofthe definition (3.37) ofthe
Pfi, this implies:

Jt^lJfa (3.38)

On the other hand we have

*"«/(¦*) V/(*)=¦ V C/i(*) v/2(x))

V k(x) v V /2(*) Jf i v Pf 2 (3.39)
\i6Jf / \xe.je /

Combining (3.39) with (3.38), we have

jf ' ^fj © jf2

For any arbitrary element a of F(^f we define

Ma) =f(a) a .Pfi (3.40)

Since/is injective, the restriction of this definition to the set of atoms coincides with
(3.36). On the other hand (3.40) defines an m-morphism/ mapping P($f) to P(PfA.

We have indeed

Md) \ y f(x)\APf

V/i(*))v( \/f2(x)
x<a

- VMx)

A Jfi

/f A fl* =/ A ak a jf, A fiak) a jf,
\teX / \keK f • \keK

A (/(a*) a jr,) A Mak)
keK keK

Ma)' {zf e Pfi-, z'lf(a)} =/(a)x a jf,
/(«') a *», =/(a')
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We have moreover

Aia) v f2(a) V A(x)) v V /2(*)
\x<a / \x<fl y

V C/i(*) v/2(x)) V f(x) =f(a)
x<a x<a

Suppose now that Pf t is the zero-subspace of PC. Then/^x) P\f(x) 0 for
every x in Pf, which implies F2 tnx) for every x. This is however equivalent to saying
that/is antilinear, while it was supposed to be mixed. This proves that Pf x cannot be
the null-space in PC. In the same manner one proves that Pf2 is different from the null-
space, which implies that both Pf j and Pf2 are non-trivial.

On the other hand we have

fitjt) =f(Pf) a Jfi pf ' a Pfi Pfi,
which proves that the/ are unitary.

As an immediate consequence of (3.18) and of the construction of the/ we have

%x Fyx\fM (3.41)

where {lFyx} is the set of {Fyx} corresponding to/. From (3.41) we see that

I'Xy.x F».y,x\ft(x)

Fyx\fl(x)o(XPf + XPf)

— ^-Fyxlf^x) A. Fyx,

which implies that/ is a unitary linear m-morphism. The fact that/2 is anti-linear is

proven in the same way.
The proof of the existence of the decomposition is now complete.
Unicity can be proven as following. Suppose that J^lt $f2,A>7i satisfy all the

conditions. Combining (3.34) and (3.35) we get

fix) =/i(x) ®/2(x) with /l(x) -L/2(x) for every x in Jf
It is now easy to check that

Fyx 1Fyx + 2Fyx for any two non-zero vectors x, y in Pf

which implies

A(X\ x) FXx x FXXtX + FXxx

Al/lW + Xlf2(xi (3.42)

From (3.42) we conclude Pff(x) =/(x), which implies

fi(x)=fi(x) VxeJf, x#0
Since both f, fi are c-morphisms, we see that/ =/, and

fi(jf)=fi(jf) jtfi /=1,2
This implies that Pf{ =f(JP) is contained in #f. Since the #; are orthogonal
subspaces, and J>f 2ffx ® Pf2, this leads to

yf i yf i I 1, Z
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This proves the unicity of the decomposition. |
We have now achieved our goal : Theorem 3.1 gives us a complete characterization

of the linear structure underlying a unitary m-morphism, and permits us to define two
special types of m-morphisms, i.e. the linear and the anti-linear ones. In Theorem 3.8
we proved that any unitary m-morphism can be written as a 'direct union' of at most
two of these special m-morphisms. Applying the remarks made in Section 2, one can
extend these results to general (i.e. non-unitary) m-morphisms. Before passing on to
the next section, We want to show the connection between Theorem 3.1 and the
statement made at the end of Section 2 : we will construct explicitly a family of maps
satisfying all the conditions in Theorem 2.6.

Let #f, JP" be two Hilbert spaces,/a unitary m-morphism mapping P(Jff) into
P(Pf '). Let x be a normalized vector in Jf : ||x|| 1.

Since/(x) can bte written as the direct sum ofthe orthogonal subspaces P\f(x) and
Pifix), we can choose an orthonormal basis (Xj)jeJ in/(x), and a partition {/,, J2) of
J such that

jeJi<^P}ePff(x) /=1,2
We define now a family of maps {<pj\ :

\/jeJ: (pf.Pf^PC
0->0
y^Fyx(x'j) ifyPO

It follows from (3.12) and (3.19) that for Je Jy the 4>j are linear maps, while fory e J2
the 4>j are anti-linear. Applying Lemma 3.4 we get the following result:

\\y\\ i => Uj(y)\\ l V/e/,
which implies that the tpj are isometric. Moreover, one can prove that the <pj(Pf) are
orthogonal subspaces. Indeed, let y, z be two non-zero vectors in Pf. There exists a
vector u (which may be zero) such that :

z YYY (y' z^y + u with u -^ y

We have

<t>j(P> Fzx(x-)
FzyFyx(Pj) Fzy(Yj)

y^2 F(y,z)y,y(y'j) + Ày(yj)

iPijT <Piiiy' z))(^') + Fuy(y'j)

where tpj is a map from C to C which is the identity if/ e J±, and the usual conjugation if
jeJ2. We have now

(4>k(y), 4>j(z)) |-|2 cpjiiy, P))(y'k, y'j)

<Pjiiy, z))(x'k,x'j)
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where we have used that l/\\y\\ Fyx is an isomorphism. From this result we infer that for
different k andj vectors (j)k(y) and c/)j(z) are orthogonal. This implies that the different
<j>j(X) are orthogonal. On the other hand, the unitarity of / implies that the
(tj)j(x);j e /, x e JP) form a total set, hence

X' © <PjiX)
jej

We define now a map of P(3f) to P(PC) by

/: F(Jf)-> F(Jf')

a-V^(«)
ieJ

It is easily seen that for each non-zero vector j in jf, we have :

Ry) V ^(JO V Hy) \/y'j =/O0
/e7 je/ yeJ

Since each <^ is unitary or anti-unitary, each (pj generates a c-morphism, and the
following holds:

/(fl) V 4>;(fl) V V </>/(*) V V 4>j(x)
je J jeJ x<a x<a jeJ

V fix) fia)
x<a

which proves that/and/are identical.
We can now sum up all these remarks, and state the results : we have constructed a

family of maps ((pj)jeJ mapping Jf into 2ff. Each of these maps is an isometry or an
anti-isometry ; their images are orthogonal subspaces <j>j(X) of 3tf" such that

X' © (PjiJtf)
jeJ

This family generates the unitary m-morphism/in the following sense:

VaeF(^):/(a)=V<,j(fl)
je J

This proves Theorem 2.6.
It is to be remarked however that this family (4>j)jeJ is not unique.

4. A special case:/maps atoms into atoms

In this section we shall consider the special case where the f(x) are one-
dimensional subspaces of #C, i.e. where/maps the atoms of P(JP) into the atoms of
P(jC). The physical meaning of this condition is that states are transformed into
states. In this case we can prove that the c-morphism/is automatically generated by an
isometric or anti-isometric map. More specifically:
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4.1 Theorem. Let Pf, 3/f" be complex Hilbert spaces with dim JP > 3; let fbe a c-
morphism mapping P(Pf) into P(PC) such thatfor any atomp in P(Pf),f(p) is an atom in
P(PC). Fhen fis an m-morphism, and thefollowing holds: For any non-zero x in Pf, and

any non-zero x' infix) there exists a unique closed bounded linear or anti-linear map </>

from Pf into JC such that

(p(x) x'
<f) generates the c-morphism f.

Phis <p is equal to an isometric or an anti-isometric operator multiplied by a constant.

Proof. We define tp : Jf -» Pf ' by :

<K0) 0

<p(y) Fyx(x') forj#0.
We have trivially

4>(x) Fxx(x') xf.

Since all the/(j) are one-dimensional,/is either a linear or an anti-linear m-morphism.
Suppose that/is linear. Then <p is linear:

<p(Xy + pz) FXy + flZ:X(x')

*-Fyx(xf) + pFzx(x')
X<p(y) + p<p(z)

If H^ll ||x||, then Fyx is an isomorphism; hence

\\<t>(y)\\ \\Fyx(x')\\ llx'H !|0(X)||

This proves that ||x||/||x'||0 is an isometry.
Since Hxll/llx'll qb is an isometry, we know that <p generates a c-morphism mapping

P(Pf)\n\o P(PC) ; since <p(y) f(y) for any y in Pf, this c-morphism is/. Suppose now
that ^ is a linear or anti-linear map satisfying the conditions in the theorem. Take
y e Jf, y $ x. Put y" <p~(y). We have

y" Fxy(y") + Fy.x,y(y") (AA)

On the other hand

y" $(y) $(x) + $(y - x) (4.2)

Since <p generates/ we know that <p(x) is contained in/(x), and tp(y — x) \nf(y — x).
The decomposition (4.1) is however unique (see the proof of Lemma 3.2) which implies

4>ix) Fxy(y")

hence

$(y) y" Fyx($(x)) Fyx(P) <p(y)

If y e x, then we can choose t $ x and apply the same reasoning. This yields

$(y) Fyt($(t)) FytFtx(xf) Fyx(xf) 4>(y).

This proves the unicity. |
This theorem has the following interesting consequence.
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4.2 Corollary. Letfbe a unitary c-morphism mapping P(Pf) into P(3P") such that
for one atomp in P(jP),f(p) is an atom in P(PC). Fhenfis an isomorphism, and every
isometry (or anti-isometry) generating f is a unitary (or anti-unitary) operator.

Proof. The injectivity of/is a consequence ofthe fact that/is different from zero.
Let x be a non-zero vector such that x p. For any non-zero y in JP we have that
fiy) +f(x) is closed (f(y) is closed and f(x) is one-dimensional), hence f(y)
c f(x) v f(x — y) f(x) + f(x — y). Using the same arguments as in the proof of
Lemma 3.2 we see that/(x) and/(j) are isomorphic, hence that all the/(j) are one-
dimensional, which implies that we can apply Theorem 4.1.

Suppose/to be linear, and let cj) be an isometry generating/. Let (e;)>e/ be an
orthonormal basis in JP. Since Pf \ZieJëi we have:

V 4>(ed y Red =f(3tf) PC
iel iel

which implies that (^>(e,))ie/ is an orthonormal basis in PC.
Since tp is an isometry, this implies that <p(X) PC, hence that (p is unitary. For

each atom q in P(JP") there exists a y in PC such that y eq. For this y there exists an x
4>~ l(y) in X such that <p(x) y, hence/(x) (f>(x) y q. Since any element of

P(JP") can be written as a union of atoms, this proves the surjectivity of/. |
All the results we have obtained were only proven for dim Pf > 3. The proof of

Lemma 3.2 for instance relies rather heavily on this condition. One would thus expect
counter-examples to occur for dim jf 2 (the case where dim Pf 1 is trivial). They
do indeed exist : some of them are given in the next section.

5. Counter-examples in the case where Pf has dimension 2

We first construct a counter-example against Theorem 3.1, more specifically
against Lemma 3.2 : we define a unitary c-morphism of P(<£2) into F(C4) for which the
corresponding Fyx do not satisfy the chain rule.

5.1 Counter-example. Take Pf (C2, and let {ex, e2) be the standard basis in C2.
Then we can write P(<F2) as:

P(<F2) {0,11} y {Fe,„; F„,„ C ¦ (cos G e, + e* sin 6 e2) with

06 „ tt
°'2 ,<pe[0,27t[}.

It is easy to check that the orthocomplementation on P(<C2) is given by

P^lPe^o-i
+ 9' y and \q> - q>'\ n if 0 # 0 # ff

+ 0'=| if0 Oor0' O
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Define

<x: 0, 0, by a(0) - (1 - cos 20)

This function has the property that a(7t/2 — 0) n/2 — a(0), hence

0 + 0'=^Ua(0) + a(0') |
Take now JP' <C4 with standard basis {fi,f2,A,fi}> and define

fe,<p cos6f1 +é"sinef2
n

(5.1)

(5.2)

0, cp e [0, ln[ge,9 cos a(0)/3 + <?'* sin a(0)/4 for 0 e

Qe,<p Lin (/,,„,#„„)
It is easy to check that for (0', cp') P (0, cp) we have

Qe.v a G>,„. 0

For 0 + 0' re/2 and |<p — <p'| n we have moreover that

Qe-,q>' ße,<p (this is a consequence of (5.2)).

It follows immediately that the map/from P(<F2) to F(<C4) defined by

/(0) 0

/(1) 1

n
f(Pe,v) Qe,v for 0e 0, <p e [0, 2tc[

is a unitary m-morphism.
One can now construct the Ffl>-^ Fe9V,e9s) where e9^ cos 0^! + e"" sin 0e2.

A rather lengthy but straightforward calculation yields

''ie <p+ n.Bip ° re<i>,o<i>(9o<p)

cos (a(20) - a(0/2)) cos a(0/2)

cos (a(0) + a(0/2)) cos (a(0)

cos a(0)
(do«)2$ <p + n, o<p\fdo<p.

«(0/2))

926 q> + n

9ie y-t

cos (a(20) - a(0)) '

Since a is a strictly convex function on ]0, n/A[, we have for 0 < 0 < 7t/8 :

F26 (p + n, 6(p „(9oV) XF.28 (p+ n,o<p (gov) withA<l. (5.3)

We see immediately from (5.3) that the chain rule (3.3) does not hold in this case.

In Section 4 we proved some theorems about c-morphisms mapping atoms into
atoms. The first one stated that any such c-morphism was generated by an isometry or
an anti-isometry. This theorem uses explicitly Theorem 3.1, which can only be proven
when ,?f has dimension greater than two (see Counter-example 5.1). It might however
happen that pathologies such as the one in this counter-example drop out if the/(x) are
one-dimensional. The following counter-example shows that this is a false hope.
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5.2 Counter-example. Take Pf PC C2, and define the map/from P(€2) to
P((C2) by

/(0) 0

/(1) 1

j(Pe,<i>) °a(9),c>

where we use the same notation Fe„, as in Counter-example 5.1, and where a is the
function from [0, n/2'] to [0, n/2] defined by (5.1). Suppose now this/to be generated
by a linear map (p. Since this linear map conserves the orthogonality, it conserves the
angles. For <p different from 0, n/A or n/2 we have however

<p(ee, o) e <?«<»), o

Since (p(ex) eex, this implies

(<t>(et), <p(e6r0)) cos a(0) p cos 0 —-1' e'°

:l^t)ll \\<p(ee,o) e.oll

This is a contradiction, which implies that no linear map generating / exists. In a
completely analogous manner we can prove that/can not be generated by an anti-
linear map.

In Corollary 5.2 we proved that a unitary c-morphism mapping P(Pf) into P(PC)
with the additional condition that it maps atoms into atoms has to be an isomorphism
if dim Pf > 3. In the proof of this corollary we used the fact that such a c-morphism is

generated by an isometry or an anti-isometry, but it might be that the surjectivity-
statement follows already from much weaker conditions : the c-morphism in Counterexample

5.2 is not generated by an (anti)isometry, and yet it is onto. In the following
counter-example however we construct a non-surjective c-morphism from P(<£2) to
F(C2) satisfying all the conditions, which implies that even the first statement in
Corollary 4.2 does not hold for dimension 2.

5.3 Counter-example. Take Pf Pf ' C2, and define the map/from P(<F2) to
P(<C2) by

/(0) 0

/(1) 1

f(Pe.J Pm if(pe[0,n[_
Pe,(<p+n)/2 if (p e [«, Irti

For tp < n we have

f(P'ocp) =f(Pnl2-e,y + iA

Pnl2-6,nl2 + (<t> + li)/2 Pn/2-e,<i>/2+n

P'e,<p/2 =f(Pe,q>)'

The same property can be proven for tp > n.
» From the definition and the properties of/it is now easy to see that/is a unitary
c-morphism mapping atoms into atoms, although it is obviously not surjective.

It is amusing to remark that cases like this one, i.e. non-surjective injective
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c-morphisms from P(<F2) into F(C2) can be exluded if/is required to be continuous
with respect to the topology induced on F(C2) by the usual norm-topology on SS(<C2).

6. Conclusions

We have proven that any map/from a quantum-mechanical propositional system
P(P') to a quantum-mechanical propositional system P(JP'), which preserves the
complete orthocomplemented lattice structure of P(Pf), and which maps modular
pairs to modular pairs, is generated (in the sense of Theorem 2.6) by a family of
isometries or anti-isometries from Jf to 2P". As a consequence of this main theorem we
can prove that any map/from P(jf) to P(PC) which preserves not only the complete
orthocomplemented lattice structure of P(Pf), but also the property of a proposition to
be a state of the quantum system, is automatically an isomorphism of P(Pf) onto the
segment \_0,f(Pf)] of P(PC). This implies that we are able to consider Wigner's
theorem as a special case of our theorem ; moreover it turns out that Wigner's theorem
holds even under weaker conditions than originally.

Our main theorem, as well as Wigner's theorem, is only valid if dim JP > 3. That
this is a vital restriction is illustrated by several counter-examples showing that both
the main theorem and its weaker corollaries can be violated if Pf has dimension 2.

Appendix

We prove Proposition 2.5.

Proposition. Let Pf, PC be two complex Hilbert spaces with dim Pf > 3; letfbe a
c-morphism from P(Pf) to P(PC). Fhen the following are equivalent:

(1) fis an m-morphism
(1) Vx, y non-zero vectors in Pf:f(x — y) <=/(x) + f(y)
(3) Vx, y non-zero vectors in Pf: z < x v y^-f(z) c/(x) +f(y)
(A) Vx, y non-zero vectors in f/f:f(x) + f(y) is a closed subspace of PC.

Proof. We prove (1) => (4) => (3) => (2) => (1). The implication (1)=>(4) follows
immediately from the fact that x v y x + y, which implies (x, y)M. Hence
(f(x),f(y))M or f(x) +f(y) =/(x) v f(y) is a closed subspace. The implication
(4) => (3) is trivial if one remarks that (4) implies f(x) + f(y) f(x) v f(y). The
implication (3) => (2) is immediate.

To prove the implication (2)=>(1) we use the results of Theorem 2.6. Since
Theorem 2.6 is a consequence of Theorem 3.1, and since we used only condition (2) to
construct the Fxy and to prove their properties, we are allowed to do so.

Let (4>j)jsj be a family isometric maps generating/. Let a, b be a modular pair in
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P(Pf). Because of Lemma 1.8 we have a v b a + b. Hence

f(a)vf(b)=f(avb)
© <pj(a v b)
JeJ

© <pj(a + b)
jet

© </>,((« A (fl A b)') + b)
jeJ

(we have split a + b into two disjoint parts which form again a modular pair: see [3]).
Take

x — E Xj e © <pj((a a (a a b)') + b)
jeJ jeJ

Then for any7 e /, there exist unique y,, z, in <pj(a a (a a b)'), (pj(b) such that Xj y,
+ Zj. One can prove3) that £jey||x;||2 < oo implies

Xiloli2 <œ and Xiloli2 <°o
jeJ jeJ

Hence

x=TJyj+TJzje® cpj(a a (a a by) + © cpj(b)
jeJ jeJ jeJ jeJ

This holds for any x in (BjeJ (pj(a + b), which implies

f(a)vf(b) ®cPj(a + b)
jeJ

CZ © <p}(a A (fl A b)') + © <t>j(b)
jeJ jeJ

<= © <Pjia) + © <Pjib) =/(«) +f(b)
jeJ jeJ

Applying again Lemma 1.8, we see that this implies (f(a), f(b))M, which completes the
proof of (2) => (1). I
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