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The history of the Ree groups is an interesting one. Everything began in
1960-61 when Suzuki, in the process of investigating a class of doubly transitive

groups, discovered a new series of simple groups whose existence was hitherto

unsuspected.
In 1961, Ree discovered that the Suzuki groups could be interpreted as "unusual

twisted forms" of the orthogonal groups over a field of characteristic 2, the

existence of the twisting being peculiar to this characteristic. More usual forms of
twisting had been discussed earlier by Steinberg. Thus the Suzuki groups became

the groups 2B2{2ln+l). Now Ree found that the exceptional Lie groups G2 and

F4 also gave rise to new families of twisted groups, in characteristic 3 and 2

respectively. If one tries to characterize the 2G2(32n+l) by means of simple

properties, one notes that

(i) the 2-Sylow subgroups of G are abelian.

(ii) According to Brauer theory, centralizers of involutions can be used to

characterize simple groups. G has only one class of involutions and there

is an involution vu such that

CG((w)) ^ (w)xPSL(2,q), q 32n+1.

(iii) G has no subgroup of index 2.

Definition 1. A group of Ree type is a group satisfying (i), (ii), (iii), q > 5.

The main point is: Every group of Ree type is a simple group. Hence if we

want to find all finite simple groups we must determine all groups of Ree type.
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Theorem 2. Every group of Ree type is one of the Ree groups.

In this talk I want to explain why, without knowing anything of finite group
theory, I got interested in this problem. When accepting to give this talk, I had to

decide whether to give a technical résumé of my proof, pointing out the way one

overcomes difficult points, or give an exposition on how one arrives at certain
ideas. Since in my opinion the technical content of my work is rather limited,
while the major difficulty consists in realizing how useful actually is the scant

information available to us, I opted for the latter choice.1

My first contact with Ree groups was in 1973, when John Thompson gave a

lecture on the problem, at the Collège de France (Paris). After his talk, Thompson
told me that he had reduced the problem to a question about automorphisms of
finite fields. He even wrote it for me at dinner on a paper napkin, and I spent
half a night looking at a seemingly innocuous problem and discovering that the

more I tried the more difficult it became.

I got interested in Ree groups again last March.2 Two main reasons: a group
theory year at IAS and the presence of Danny Gorenstein. So when his report on
the status of the classification of finite simple groups appeared in a long memoir
in the Bullettin of the American Mathematical Society, I tried to read it (with
mixed success) and at last arrived to page 117 where it mentions the problem

again, ending with "Let me emphasize that to work on this problem requires

only a rudimentary knowledge of finite group theory, for it quickly reduces to

specific combinatorial questions about functional equations with coefficients in

GF(3"). Hopefully this discussion will tempt some "nonspecialist" to consider

the problem."
1 was a nonspecialist, therefore I was qualified to consider the problem; also

I was tempted once more. (Maybe it was a challenge!) The next step: Go to the

library and check what the problem was.

Before presenting the problem and explaining how you solve it, I would like
to say a few words on how it got reduced to a question in elementary algebra.

Firstly, Ward in his 1962 thesis, imposing a couple of technical conditions (e.g.
the Sylow 2-subgroups S2 are elementary abelian of order 8; if x e Cg({w))
and (6,\{x)\) — 1 then Cg((x)) 5= Cg({w)) showed that

(A) q 32n+1.

(B) G is simple.
A further partial step was obtained in the meantime by Landrock and Michler

showing that Hall subgroups of order q ±3 ,/| + 1 are cyclic => uniqueness

•The technical exposition is in E. Bombieri, Thompson's problem (ct2 3). Appendices by A.
Odlyzko and D. Hunt, Invent. Math. 58 (1980), 77-100.

2 March 1979.
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of character table.

(C) The character table of G is almost fully determined.

(D) The S3 -subgroups P have |P| q3, [P, P] elementary of order q2,

Z(P) [P, P, P] elementary of order q, if p e [P, P] —Z(P) then

Cp(p) [P, P], if p e P-[P, P] then CP{p) (p, Z(P)), and if |(/?)| 3

then p e [P, P].
(E) G is a doubly transitive group.

(F) further information about the normalizer Ng(P)•
Ward's results exploit character theory. By a delicate piece of local analysis,

Janko and Thompson removed the technical conditions in Ward's theorem.

Moreover, the analysis in the case q — 4 (or q — 5) led Janko to the discovery
of the first new sporadic group J\

Now it is useful to compare this situation with the one encountered by Suzuki.

What Suzuki did was:

(a) determine the S2-subgroup structure as in (D);

(ß) find all 2-groups with the same structure, they are determined up to an

automorphism of GF(22"+1);

(y) use the fact that G contains the group 2B2(2) in a certain way to infer that

a certain compatibility condition on the automorphism has to be satisfied;

(1S) determine the automorphism;

(e) determine the group.

If one wanted to proceed in this way, (by Ward, Janko, and Thompson) the

first step (a) was done.

Then Thompson proceeded to obtain the other steps. Being in characteristic 3,

everything was triply difficult. Step (ß) was not too hard. I could almost follow
Thompson. It is a standard way of analyzing the lower central series of a p -group
by means of Lie algebras in char p. See Gorenstein's book Finite Groups. Here
the S3-Sylow P is identified with triples (a,b,c) such that a,b,c e GF(32"+1)
and

(a,b,c)(a,ß,y)
(*) (a + a, b + ß + aaa — a°a, c + y + ab + aaa2 + aaï+rT — a2aa)

where a e Aut(GF(32"+1)).
Equation (*) implies that a generates Aut(GF(32"+1)). From the structure

of Ng(P), Thompson shows that there is an integer b such that

xb(o+2) x in gF(32n+1);
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also a being a generator implies that there is an even integer a such that

Step (y) is unbelievably complicated and the calculations are extremely hard.

However, at the end Thompson emerges with <r and d 6 GF(32"+1), and a

certain identity in P. It is implicit in Thompson that a, d determine G. This

was done explicitly by Hopkins, who proved d — 0,1 or — 1 and a determines

d, hence G.
I will refrain from writing Thompson's identity, but I have to write down the

simplest consequence Thompson could obtain.

Thompson's condition, o has the following non-trivial property. Let z, y, u

be in GF{32,!+1) and suppose that and

Let us leave aside Step (5).
Then Thompson proceeded to show

(i) Ree groups have a2 3;

(ii) if a2 3 then d — 0 and G is a Ree group.

Thus it remains:

Step (8) : Thompson's identity implies a2 3.

I will describe now how you prove (8). I want to point out that in order to

study the problem one does not need any knowledge of group theory.
The main difficulty is psychological: What kind of attitude do you take trying

to solve a problem?
First of all, we have three equations in three unknowns and formally, a

If everything is well, we get finitely many solutions (z,y,u). However, one

checks easily with Thompson that (z,y,u) has exactly 32"+1 possibilities. Thus

n cannot be too large unless something "special" happens and "special" should

mean a2 3. Hence our philosophy is: either a2 3 or q 32"+1 is small.

x',a(a+1) x2 in gF(32n+l).

Then3

z(u - l)a - (z - y + IK - y (it + l)a + (u2 - l)fl 0.

3 Note that z 0 implies y 1 and u — 1, thus getting a trivial solution valid for all a, so we
should exclude solutions with z 0 from our considerations.
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Next, a is defined in a most implicit way and one would like to get rid of it.

Here it is how:

a is an automorphism => more equations.

Apply a. Now

za(u - \)aa - {za -ya + l)uaa - ya(u + Ifff + (w2 - If«7 0

and xaa — x2~a in GF(32n+1)*, hence it holds

za(u - 1 )2/(tt - If - (za - y° + l)u2/ua - ya{u + l)2/(w + If
+ (w2 - 1)2/(m2 - If 0.

Apply o again. And again. To see what you get, write

X (u — 1)°, Y ua, Z (u + If,
so if X, Y, and Z are not 0 one finds

zX — (z — y + 1 )Y — yZ + XZ 0,

za(u - \)2/X - (z° -ya + 1 )u2/Y - ya(u + 1)2/Z + (u2 - 1 )2/XZ 0,

- zc2(u - l)2a~2X - {z°2 - y°2 + l)M2ff-2F

-y°2(u + 1 )2<T"2Z + (m2 - \)2a~2 XZ 0,

z°2{u - \)2a2-2a+2/X + (m2 - l)2<j2-2ff+2/ZZ 0.

After clearing denominators, consider this as a system of 4 equations for the 3

unknowns X, Y, Z. A compatibility condition must be satisfied: the éliminant of
the system must vanish.

In order to compute it, J.J. Sylvester comes to our rescue (see, as I did,
Salmon's Higher Algebra) with his dialytic method. The unpleasant result is that

a certain 16 x 16 determinant has to vanish.

The next step is to look at the determinant. When something complicated 0,
do not try to write it as a sum. First, try to write it as a PRODUCT! Indeed one

can factor out two pieces which are 2x2 determinants. Hence

(2x2 det) -(2x2 det) • (12 x 12 det) 0;

look at these 2x2 pieces. By a little work, one shows

2 x 2 det 0 (m2 — 1 )2zy — (l + zy + u(z + y))(z — y + 1) u2 0.
^ "v-

call this F

call 12 x 12 det A (do not try to compute it). We have shown:
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Thompson's condition => FA 0.

FA is a rational function over G F (3) in the variables

z> J

za,ya,u
2 2

z" ,ya ,u"
3 3 2

za ,ya ,ua

Substitute
M Zff+ 1 - Ja+ 1

Ma Z0^ - J°'2+0'

Ma2 z<t3+ct2 _ ct3+<T2

substitute
1 + zcr+2

y2

1+z<r2+2<x
^ „ .„^2 V '

(1 + Za+2)2

y
3 1 + zor-+2o- (1 + z<T+2)4

(1 +za+2a)2 y
clear denominators, and get

R(z,z°,z°2,z°3-,y) 0

where R(z0, zx, z2, z3; y0) is a polynomial over GF(3) with

degZo R 119

degZi F ^ 73

degZj R ^ 38

degZ3 F 12

degyo F ^ 106.

It is now plain that it is almost hopeless to calculate F explicitly. This does

not mean that you have to give up. So let us stop here and go to the next two

questions.

Can a computer do it? Maybe there is some simplification at the end.

\ Do I really need to compute it?

What kind of information on F do I need in order to know a?
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A good trick in mathematics means looking ahead and find first what you need

for a proof, then prove exactly what you need and no more. Then the proof is

complete.
So go boldly forward making one giant step. When we started, our initial

2

program was to to eliminate u, y and obtain a polynomial equation in z,za,za
However, what is the point of doing this? Do we really gain something?

New problem. Let q pm. Let o Aut(GF{q)). Let H(z, za,..., z°k) 0

for all z e GF(q)*, where H(zq, z\, zjf) is a polynomial (not identically 0)
in k + 1 variables. What can we say about o

Let
H(zo,..., zk) xv0,...,vkzv0° ...zvkk

so that

H(z,za,...,zak) J2xvo,..,vkzVo+na+'"+Vlcak 0.

Let z* be a generator of GF(q)* and put z 1 ,z*, (z*)2, (z*)3,..., (z*)e,...
We get

YJ{{z*)V0+Via+~+Vkak}1 xVOt...,Vk=0

I — 0,1,2, 3, Let us do this for I 0,1,..., N — 1 with

N # coeff. of H.

Then we have a homogeneous linear system of N equations in N unknowns.

Hence

det({(z*)v°+Vl<T+"+v^}){v;£} 0-

This is a Vandermonde determinant (my favorite determinant!) which factorizes

as

Yl ^(z*yo+vw+~+vkak _ (z*yo+v'\a+~+v'kak^.

Since the determinant vanishes, some factor has to vanish, and we have obtained

a great simplification without doing a gigantic calculation! Hence we have

(•z*-jtZ£<AH haiCT+ao _ ]

with the aj not all 0, and clearly

KI L degz> H.

Tlris holds for z*. Taking powers, it holds in GF(q)*. Identify o with an integer.
We have shown

aicak + + a\o + ao =0 (mod q — 1).

On the other hand a p',t 0. Does this put restrictions on u? YES.
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Example. Suppose H is known to the extent of having a bound

de§zy H < pd.

Say a p' and 0 5! t 5! j- — d where q pm. Then

\ülcok + + Uicr + a0\

â (Pd ~ 1 ){pm~kd + pm-(k-Vd + • • • + pm~2d + pf~d + 1)

< Pm(P~d + P~2d H + P^ + pd < pm - 1 q - 1

if say m > 2kd + d. The left-hand side is 0 (mod q — 1) but less than q — 1.

Hence it must be equal to 0. Now we have an equation for o (we may assume

This is very strong. For example, a — p' divides a0 (the congruence mod q — 1

has become a congruence modulo a power of p)\ However, 1 5! \a0\ < pd.
Hence 0 ^ t < d and the whole interval d ^ t ^ j - d is excluded! Moreover,
d is the logarithm (in base p) of max, degz H, thus d is fairly small even if
H has very large degrees. What happens if a p' with t > j- — d7 Nothing
new. The argument is identical, with oh pth replaced by pth (mod m). If we
clean up this carefully we emerge with the sharp result:

Theorem 3. Let H(z0,...,z,t) be a polynomial over GF(q), not identically 0,

let

degz. H < pd, (p Frobenius, o e AutGF(g),

and let H(z, za, z"2,..., z°k) 0 on GF(q)*.
Then one of o, o2,..., ok equals one of (p~d+l ,(p~d+2,..., 1, cpd~1.

It follows that in our elimination game we have only to keep track of degrees,
the actual expression which comes out of the elimination being totally irrelevant.
This we can do\

ao 0):
a^ok + + a\o + flo 0.

We had

1 + za+2
Let us apply a and use y" to obtain

y

yielding a new relation



Solution of the Ree group problem 309

Ri(z, za, z"2, zff3, zff4 ; y) 0.

Eliminating y means: take a resultant of R and R\ with respect to y and get

H(z,za,za2,za\z'j4) =0.

(A polynomial with up to 2.295... x 1023 terms, but we have no need to write
it down, we need only its degree.)

Apply the theorem. In our case, degz. H < 47007 < 310. Hence

2 3 4 o—9 o—8 o7 p 8 p9a or a or a or a 3 or 3 or or 3 or 3 or 3

giving us 76 possibilities. Getting close

One difficulty: How to prove that H is not identically 0 without computing
it? Let's put this aside. How to reduce the 76 possibilities to only o2 — 31

Idea. Take for example o4 3. We had

R(z, za, z"2, z"3 ; y) 0.

Now

thus

and

0.3 itzar3+2(j2 (i + za+2)4
y

(1 + za2+2a)2 y8

3 ff4 1 + Z3+2g3 (1 + Za2+2a)4
16

y y
(1 + zo-3+2a2)2 (1 + z<r+2)8

(1 + z3+2a3)( 1 + za2+2a)4y13 - (1 + za3+2a2)2(l + za+2)8 0.

This is a new relation. Eliminate y and something like

K(z, za, z^2, z"3) — 0

appears, use the Theorem 3 and get

a or er2 or er3 3~7 or 3~6 or or 36 or 37.

Now er4 3 and om 3ß with m 1, 2 or 3 and \p\ 5= 7.

If we eliminate <j then a compatibility condition on q appears.
We get identity (<74)m(CTm)~4 3m~4n_ now yn-^n identity <£>

In + \ \m — 4p and tn — 4/x ^ 0. Also

\m — 4p\ S 3 + 4- 7 31.

Hence:
CT4 3 => 27? + 1 £ 31, i.e. q ^ 331
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Question. What happens to a2 3 Since it is a non-trivial solution, something
special must occur here. Not all difficulties are over.

One last difficulty. How to prove that K is not identically 0 without computing
it? We need this, because once we control H 0 and K ^ 0 we see that 2n + 1

is bounded. A little work shows that indeed 2n + 1 £ 83.

In general we do not compute H and K directly but instead keep their

expressions as products of determinants. Several entries in the determinants are 0

and the entries themselves are polynomials of relatively low degree. Then explicit
calculations of the determinants, after specializing well-chosen variables to 0 or

oo, become doable.

Fact 1. H is not identically 0 if we modify the construction. The idea:

3 4
H 0 =>• R(z,..., z° ; y) and R\{z,..., za ; y) have a common factor in y.

4 4
Now this factor cannot contain z° Hence we may specialize za to oo and

see that this factor is a common factor of R{z,..., z0"3; y) and the coefficient
of zl2cr in R\(z,... ,za ; y). This coefficient can be determined explicitly and

shown to factorize very well. This determines the possible factors. However,

factors 0 => F — 0.

F was a factor of R. Modifying R\, wc may assume that the unknown common
factor is F. This we check directly. There is a little handwaving here but it is

dealt with in the paper.4

Fact 2. K is not identically 0 unless a2 3. Idea: the same as before. Now
the second equation is explicit and irreducible,5 To check that it does not divide
R we specialize z, z°\... to 0 (with some care, however). Then the specialized
R becomes computable. If a2 3, the second equation becomes y — I and (no

surprise) it divides R, so the method for determining a stops here.

Conclusion. If q > 383, then a2 3. If q 383, we have 178 pairs (q,a) to
check.

Finally. Now it is the right time for calculations! If q ^ 383, use a computer.
This was done independently by A. Odlyzko and D. Hunt.

"Indeed there was some handwaving requiring a minor addition, see the note at the end.
5 This uses Bourbaki Algèbre Ch. V, §11, Ex 12, p. 178.
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Additional note (2015). During my attempt to solve the problem I was in
correspondence with Thompson and he enthusiastically encouraged me to persevere

till the end when I communicated to him a short list of possibilities for a. He

also informed me that he had obtained earlier a result of a similar type but his

list of possibilities was much too large for examining all possible cases.

The whole proof of the uniqueness of the groups of Ree type was, as part
of the revision of the classification of finite simple groups, carefully redone and

simplified by Enguehard.6 It turned out that at the end of the argument for Fact 11

claimed that the polynomial G(z0,zi;y) y3Fa was irreducible, by means of a

specialization argument (which I left to the reader). Gaps and errors sometimes are

left to the reader to discover them! Well, I did not realize that the specialization
I used allowed the possibility of a factor depending only on z0. Actually, z0 was

such a factor. So G was reducible. The correction in the argument consisted in

replacing G by z^ 1G, which was irreducible. Since z0 e GF(q)*, the factor z0

was irrelevant and could be removed before doing the elimination of the variable

y. The presence of the factor z0 should not be surprising because z 0 implies

(z,y, u) (0,1,— 1), which satisfies the Thompson equation for all a.

(Reçu le 9 novembre 2015)
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