
Euler equations on the general linear group,
cubic curves, and inscribed hexagons

Autor(en): Aleshkin, Konstantin / Izosimov, Anton

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 62 (2016)

Heft 1-2

Persistenter Link: https://doi.org/10.5169/seals-685359

PDF erstellt am: 26.04.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-685359


L'Enseignement Mathématique (2) 62 (2016), 143-170 DOI 10.4171/LEM/62-1/2-9

Euler equations on the general linear group, cubic curves,
and inscribed hexagons

Konstantin Aleshkin and Anton Izosimov

Abstract. We study integrable Euler equations on the Lie algebra jj[(3,R) by interpreting
them as evolutions on the space of hexagons inscribed in a real cubic curve.
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1. Introduction

In this paper we study an integrable matrix differential equation

(LD ±x {X\A\

where X e g[(3,E) is a real 3 by 3 matrix depending on the time t, and

A e g 1(3, R) is a real, fixed, 3 by 3 matrix. While we will not need a precise
definition of an integrable system, we will take the point of view of [HSW]
according to which "integrability of a system of differential equations should

manifest itself through some generally recognizable features: i) the existence of
many conserved quantities, ii) the presence of algebraic geometry, iii) the ability
to give explicit solutions." Equation (1.1) shows all these properties. In particular,
the algebraic geometry underlying this equation is geometry of real cubic curves.
This algebraic geometry arises from the possibility to rewrite equation (1.1) in the

so-called Lax form with a spectral parameter (see equation (2.1) below). A Lax

representation with a spectral parameter for equations of type (1.1) was found in
S.V. Manakov's fundamental paper [Man].

Equation (1.1) can be regarded as a special case of several general constructions

of integrable systems. In particular, it can be obtained by the argument shift
method [Man, MF], or by the method based on loop algebras [AvM2, AvMl,
RSTS1, RSTS2]. Depending on the restrictions imposed on the matrices X and
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A, this equation is known under different names. If A is symmetric, and X is

skew-symmetric, it becomes the classical Euler equation describing the rotation
of a torque-free rigid body. If, on the contrary, A is skew-symmetric, and X
is symmetric, this equation is known as the Bloch-Iserles system [BI, BBI + ],

Finally, it is worth mentioning the case of skew-Hermitian X and Hermitian
A. In this setting, Equation (1.1) describes travelling wave solutions for the

famous three-wave equation arising in optics, fluid dynamics, and plasma physics

[ALMR] (see also recent paper [RT] studying equations of type (1.1) for n x n

skew-Hermitian matrices).

In the present paper, we regard equation (1.1) as a dynamical system on the

whole space gl(3,R) of real 3 by 3 matrices. A distinctive feature of this full
system is that, in contrast to the symmetric and skew-symmetric cases, solutions

on arbitrary matrices need not be bounded and, in particular, may blow up in
finite time. Using algebro-geometric technique, we show that for a generic matrix
A Equation (1.1) has both types of solutions, that is blow-up solutions, and

solutions defined for any t e R. We also show that the behavior of a given
solution can be understood in terms of a simple geometric construction. Namely,
with each generic initial condition X we associate a real cubic curve Cx with
fixed points at infinity (the spectral curve coming from the Lax representation),
and a hexagon Hx inscribed in this curve in such a way that its sides are parallel
to the asymptotes of the curve. Then, we show that the behavior of the solution of
Equation (1.1) with initial condition X is completely determined by the number

of ovals of the curve Cx and the distribution of vertices of the hexagon Hx
among these ovals.

It is also worth mentioning that Equation (1.1) may be regarded as an Euler

equation on the Lie algebra gl(3,R), or, which is the same, the geodesic equation
for a certain left-invariant metric on the general linear group GL(3,R). The

study of such metrics originates from V. Arnold's fundamental paper [Arnl],
where Arnold suggests a common geometric framework for the Euler equation

governing the motion of an ideal fluid, and the Euler equation in rigid body

dynamics. In Arnold's approach, both equations describe the geodesic flow of a

one-sided invariant metric on a certain Lie group G. Such a geodesic flow is a

dynamical system on the cotangent bundle T*G, and, thanks to the G-invariance,
it descends to the quotient space T*G / G, which is naturally identified with the

dual Lie algebra g* The corresponding equation on g* is called an Euler equation.

Equation (1.1) is an example of an Euler equation on the Lie algebra gl(3,R).
It describes the geodesic flow of a left-invariant pseudo-Riemannian metric

on the group GL(3,R) given at the identity by

(X,X) := trXA~\X)
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where A(X) \(AX + XA). In particular, the problem of existence of global
solutions for equation (1.1) is equivalent to the problem of geodesic completeness
for the metric

A distinctive feature of the Euler equation (1.1) is its integrability. Note that

a general Euler equation need not be integrable, and integrable examples are in
fact quite rare. In particular, the above equation seems to be the only known

example of an integrable Euler equation on g[(3,E).
The problem of geodesic completeness for left-invariant metrics on finite-

dimensional Lie groups was studied, for example, in [AP, BM]. Note that for

general invariant metrics, geodesic completeness or, equivalently, existence of
global in time solutions of the Euler equation, seems to be a very difficult
problem. For integrable metrics constructed by the argument shift method this

problem was discussed in [BIKO].
We also remark that since equation (1.1) is integrable, its solutions can be

explicitly expressed in terms of theta functions. So, global behavior of solutions

can be, in principle, studied by finding and examining explicit formulas. However,
as we show in the present paper, global properties of solutions can be in fact
understood from purely geometrical considerations, and there is no need in the

analysis of complicated theta-functional formulas.

We tried to make the exposition self-contained. In particular, we do not assume

that the reader is familiar with the general theory of integrable systems and the

algebro-geometric approach to such systems. For most statements which can be,

in principle, derived from this general theory, we give geometric proofs (relations
to the general theory are explained in remarks; see, in particular, Remark 2.18).

The only exception is, perhaps, Proposition 3.4 where we follow the standard

approach on linearization of an integrable flow on the Jacobian. It would be

interesting to find a geometric proof for this statement as well.

Main results of the paper are in Section 2. Section 3 is devoted to proofs of
these results. In Section 4, we discuss possible generalizations of our approach to
the g((7î) case and their relation to general questions of real algebraic geometry.

2. Main constructions and results

2.1. Reduction to diagonal matrices. In what follows, we assume that the

eigenvalues of the matrix A are all distinct and real. The case of complex
conjugate eigenvalues can be treated using similar ideas, but still needs a separate
consideration, and we omit it.
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Denote the eigenvalues of A by a\, a2, «3. Note that equation (1.1) is

invariant under similarity transformations

X ^ BXB~\ A^BAB-1.

For this reason, we may assume that A is a diagonal matrix with diagonal entries

d\, a2, a2. Therefore, 9-dimensional family of equations (1.1) boils down to a

3-dimensional family parametrized by three real numbers a\, a2, a3.
So, in what follows, we always assume that A is diagonal with distinct diagonal

entries. We call such diagonal matrices generic.
Provided that A is diagonal, equation (1.1) is invariant under transformations

of the form X DXD~x where D is an invertible diagonal matrix. Such

transformations form a group which may be regarded as the quotient group of
invertible diagonal matrices by scalar matrices. We shall denote this quotient

group by PD(3,M). This group is isomorphic to (IR*)2, and in particular, it is

disconnected. We denote its connected component of the identity by PD+(3,R).
The latter group consists of (cosets of) those diagonal matrices whose diagonal
entries are of the same sign.

2.2. Lax representation and spectral curve. We begin our study of equation
(1.1) by rewriting it as a so-called Lax equation

(2.1) ^~Xx [Xx,Yx]
at

where

(2.2) Xx := X + AA, Yx AX + XA + AA2

and A e C is an auxiliary time-independent parameter, called the spectral

parameter. It is straightforward to verify that equations (1.1) and (2.1) are

equivalent.

Remark 2.1. For details about Lax equations with a spectral parameter and their
algebraic-geometric solutions see, e.g., the monograph [BBT],

The following proposition is well-known.

Proposition 2.2. If a matrix Xy evolves according to equation (2.1), then the

eigenvalues of X\ do not change with time.

Proof. Using induction on k, one can show that
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for any integer k > 1 ; therefore

^-trXl K{XlY,] 0

where in the last identity we used that the trace of a commutator is always equal

to zero. Thus, since traces of powers of the matrix X\ do not depend on t,
neither do its eigenvalues, q.e.d.

Proposition 2.2 implies that the coefficients of the characteristic polynomial

fx (A, /a) := det(X+XA—/xld) are conserved along the solutions of equation (1.1).
Note that only six out of ten coefficients explicitly depend on X, so there are six

conserved quantities. We will not need explicit expressions for these conserved

quantities. Instead, we organize them into an algebraic curve, called the spectral

curve. In affine coordinates, this curve is defined by the equation fx{X,p) 0.

However, it will be convenient for us to work in homogenous coordinates. For
this reason, we give the following definition:

Definition 2,3. For a given X e g[(3,l), the curve

Cx '= {(zl : Z2 : zj) e CP2 | det(z3X + z\A — Z2M) 0}

is called the spectral curve.

By definition, the spectral curve Cx is conserved along solutions of equation
(1.1).

Proposition 2.4. The spectral curve Cx is a real1 projective cubic intersecting
the line at infinity {Z3 0} at points

ooi (1 : a\ : 0), 002 (1 : 02 : 0), 003 (1 : <23 : 0)

where 01,02,03 are the eigenvalues of A.

Proof. The proof is achieved by putting z3 0 in the equation of the spectral

curve.

As we show below, any smooth real cubic curve passing through the points

001, oo2, oo3 is the spectral curve for a suitable matrix X e g 1(3, K). Moreover,
we explicitly describe the topology of the set of matrices X corresponding to
the given curve C in terms of the geometry of C.

'Recall that an algebraic curve is called real if it is invariant under complex conjugation, or,
equivalently, if it can be defined as the zero locus of a real polynomial.
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2.3. Isospectral sets. Since the flow (1.1) preserves the spectral curve associated

with the matrix X, we can restrict this flow to the set

of matrices whose spectral curve is the given curve C. Note that the set 7c
may also be defined as a joint level set for six conserved quantities of equation
(1.1) (recall that these conserved quantities are, by definition, the coefficients of
the equation of the spectral curve). Since the space gt(3, R) is 9-dimensional,

we should expect that the set 7c is generically of dimension 9 — 6 3.

Further, note that the flow (1.1) restricted to the 3-dimensional manifold

7c has a 2-dimensional symmetry group PD+(3,K) acting by conjugation. A
dimension count suggests that the PD+(3, R) orbits of solutions of equation (1.1)

are exactly the connected components of 7c • In particular, all solutions lying in
the same connected component should have the same global behavior.

In what follows, we aim to answer the following questions.

i) For a given cubic curve C, what is the topology of the set 7c In particular,
how many connected components does it have?

ii) What is the global behavior of solutions of (1.1) on each of these components?
In particular, do these solutions blow up or exist for all times?

iii) Given an initial condition X e gl(3,M), how do we determine whether the

solution passing through X blows up, or exists for all times?

The answer to the first two of these questions is given by Theorem 2.5. The

answer to the third question is given by Theorem 2.13.

7c {Xeg[(3,M):Cx C}

(a) (b) (c)

One oval Two ovals, one bounded Two unbounded ovals

and one unbounded

Tc - 4M3 7c — 4R3 U 451 xR2 Tc ~ 4M3 U 2S1 xl2
Figure 1

Types of cubic curves and the topology of the corresponding isospectral sets
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2.4. Topology of isospectral sets. The answer to the above questions i) and ii)
is formulated in terms of the real part of the curve C By definition, the real part
Cr of a real projective curve C is the set of its real points: Cr C HRP2. If
the curve C is smooth, then its real part consists of a finite number of closed

curves, which are called ovals. An oval is called bounded if it does not intersect
the line at infinity. Otherwise, it is unbounded. It is a classical result that a

smooth projective cubic can have either one oval, which is then unbounded, or
two ovals, at least one of which is unbounded (see Figure 1).

Before we describe the set 7c, note that for this set to be non-empty, the

curve C should have the properties listed in Proposition 2.4, i.e. it should be a

real cubic passing through the points ooi, 002, and 003 where oo/ (1 : a,- : 0),
and a.\, a2, «3 are the eigenvalues of the matrix A. The following theorem in

particular says that for smooth curves C these conditions are also sufficient for
the set 7c t0 t>e non-empty.

Theorem 2.5. Assume that A is a generic diagonal matrix, and let C be a smooth

real cubic passing through the points 00 x, 002, and 003. 77ten the following
statements hold.

(1) If the real part of C has one oval, then the set Tc has four connected-

components each diffeomorphic to R3.

(2) If the real part of C has two ovals and one of them is bounded, then Tc has

four components diffeomorphic to R3 and four components diffeomorphic to

Sl xR2.

(3) Finally, if the real part of C has two unbounded ovals, then Tc has

four components diffeomorphic to R3 and two components diffeomorphic to
S1 xR2.

Furthermore, all solutions of (1.1) lying on components of Tc diffeomorphic to

R3 blow up2, while all solutions lying on S'xR2 components exist for all times.

Note that this theorem does not answer the third of the above questions.

Namely, if the spectral curve Cx has two ovals, then Theorem 2.5 does not allow
us to determine whether the solution with initial condition X blows up or exists

for all times. As we discuss below, the answer to this question can also be given
in terms of a simple geometric construction.

2 In what follows, when we say that a solution blows up, we mean that it does so both forward and
backward in time. Note that equation (1.1) does have solutions which blow up only in one direction,
but these solutions correspond to singular spectral curves.
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Remark 2.6. Note that despite the fact that solutions located on R3 components
blow up, the topology of these components is still compatible with the Arnold-
Liouville theorem [Arn2]. This phenomenon is explained in the first author's paper
[Ale],

2.5. Regularly inscribed hexagons. As was pointed out above, it is not in

general possible to decide from the spectral curve Cx whether the solution of
equation (1.1) with initial condition X blows up. So, we need to supplement the

curve with certain additional data in order to be able to understand the behavior

of a given solution. It turns out that as such additional data we can take a certain

hexagon inscribed in the spectral curve. This hexagon is constructed as follows.
As before, we assume that A is a diagonal matrix with distinct diagonal entries

a\, a2, a3. Under this assumption, the spectral curve Cx has three distinct real

asymptotes which are, by definition, the tangent lines to Cx at the points ooi,
oo2, oo3. Denote these asymptotes by /1, l2, h • Let X e g 1(3, R) be such that
the spectral curve Cx is smooth. Consider the matrix

Xz z3X + z\A — z2Id

xnz3 + axzi - z2 xX2z3 xX3z3
^

x2\z3 x22z3 T- a2z\ z2 x23z3

y X3\Z3 X32z3 X33Z3 + a3Z\ — Z2 y

Recall that the zero locus of the determinant of this matrix is, by definition, the

spectral curve Cx Furthermore, we have the following:

Proposition 2.7. Asymptotes of the curve Cx are the zero loci of the diagonal
entries of the matrix Xz. In other words, the equation of the asymptote /, is

Li 0 where

Li \= xuz3 + atz 1 - z2.

Proof. We have

det Xz L\L2L3 + z|L
where L is a linear function in zi, z2, z3. Therefore, the restriction of the

function L, to the curve det Xz 0 has a zero of order 2 at infinity, which

means that L,- 0 is an asymptote.

Further, let Mij{z\ ,z2,z3) be the (i, j) minor of the matrix Xz. Then, for
i f j, we have Mtj z3Lij where Ly is a linear function in z\, z2, z3.

Explicitly, one has

(2.3) Lij ± det Xki XkkZ3 + UkZl ~Z2\
\ Xji xjkz3 J
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Figure 2

Inscribed hexagon Hx

where (i,j,k) is any permutation of (1,2,3). Note that the function Ly cannot
be identically equal to zero. Indeed, as follows from formula (2.3), if Ly 0,
then either the j 'th row or the i 'th column of the matrix Xz contains two zeros.
The latter implies that the polynomial det Az is reducible, which contradicts the

smoothness of the curve Cx
This way, we obtain six straight lines Zy given by Ly 0 where i ^ j.

Properties of these straight lines are described in the following proposition.

Proposition 2.8. Let (i,j,k) be any permutation of (1,2,3). Then:

(1) The line /y is parallel to the asymptote h of the curve Cx - In other words,

we have

hi II hi II h, hi II ^32 II h, hi II 'i3 II h-

(2) We have /y Uk, and Iji hi-

fi) The points

Pi — hj T Uk - Qi — Iji T hi

lie in the real part of the curve Cx In other words, P\ Q2P3Q1P2Q3 is

an inscribed hexagon (see Figure 2).

Proof. The first statement is straightforward and follows from Proposition 2.7 and

formula (2.3) for the function Ly. Let us prove the second statement. Assume
that /y lik I- Then, since Zy || h and fk || lj, we have <xy,ook e I.
Therefore, I is the line at infinity. At the same time, it easy to see from formula
(2.3) that the line Zy is the line at infinity if and only if xy 0. So, we have

Xji Xki 0. However, if this was so, then the curve Cx would be not smooth
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but reducible. Therefore, our assumption is false, and Uj ^ Hie proof of the

inequality Iji ^ l^i is analogous.

Now, let us prove the third statement. We show that the point Pi lies in the

real part of Cx The proof for other points is analogous. First note that P\ is

the intersection point of two real straight lines, therefore this point is real. So, it
suffices to show that Pi g Cx Let Pi (zi : z2 : z3). Then, by definition of the

point Pi, the first two columns, as well as the first and the last column of the

matrix

are linearly dependent. Note that the first column of this matrix cannot be zero:

if it is zero, then, again, Cx is a reducible curve. Therefore, the rank of this

matrix is equal to one, which implies that det Xz 0, and thus Pi G Cx

Remark 2.9. Note that since the rank of the matrix (2.4) is equal to 1 at the

point Pi, the diagonal minor Mn of the matrix Xz at I\ is equal to zero.

Similarly, M\ i vanishes at the point Q i. Also note that the zero locus of the

minor Mu is a conic whose asymptotes coincide with the asymptotes l2, h of
the spectral curve. The latter implies that the conic Mn 0 has at most two
finite intersection points with the spectral curve, and these points are Pi and

Q\. Similarly, P, and Qj may be defined as finite intersection points of the

quadric Ma 0 with the spectral curve.

Proposition 2.8 implies that to each matrix X such that the corresponding
spectral curve Cx is smooth one can associate a hexagon inscribed in the real part
of the spectral curve. We denote this hexagon by Hx The sides of this hexagon

are parallel to the asymptotes of the curve Cx In what follows, hexagons with
this property are called regularly inscribed hexagons. More precisely, we give
the following definition:

Definition 2.10. Assume that C is a real smooth cubic curve which intersects the

line at infinity at real points ooi, oo2, and oo3. A hexagon regularly inscribed
in C is six points Pi, Q2, P3, Q1, P2, Q3 e Ce such that for any permutation

(i,j,k) of (1,2,3), the third intersection point of the line P, Qj with the curve
C is oofc.

Note that a regularly inscribed hexagon is uniquely determined by any of
its vertices. Indeed, assume that we are given a point Pi e Cg. Then we can

reconstruct the point Q2 as the intersection point of the cubic with the line passing

through Pi and parallel to the asymptote /3. In a similar way, we reconstruct

(2.4)
x22z3 + a2z 1 - z2

X32Z3
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points P3, Qi, Pi, and g3. If it turns out that O3P] is parallel to the asymptote
l2, then we obtain a regularly inscribed hexagon. In what follows, we show that

this is always so. This, in fact, is a simple corollary of a classical result about

nine points on a cubic, known as Chasles, or Cayley-Bacharach theorem. Thus,

there exists exactly one regularly inscribed hexagon with a given vertex P1 (this
is, of course, true for other vertices as well). In particular, the set of hexagons

regularly inscribed in a curve C can be, in principle, identified with the real part
of C.

Also note that Definition 2.10 describes a slightly more general class of
hexagons compared to Proposition 2.8. Indeed, setting Pi Qi 00for
i 1,2,3, we obtain a regularly inscribed hexagon. In what follows, we shall

refer to this hexagon as the degenerate hexagon (note that if Pi 00; or Qi oo;
at least for one value of i, then the hexagon is automatically degenerate). Since

all sides of the degenerate hexagon coincide, the second statement of Proposition
2.8 implies that this hexagon does not correspond to any matrix X. As we
show below, this situation is exceptional: any other regularly inscribed hexagon

corresponds to a 2-dimensional family of matrices X.
Now, we need to discuss certain topological properties of regularly inscribed

hexagons. Note that if the real part of C has two ovals, then different vertices of
a regularly inscribed hexagon may lie on different ovals. To distinguish between

possible configurations, we use the fact that if the real part of a cubic has two
ovals, then exactly one of these two ovals is contractible in MP2. Namely, if
one of the ovals is bounded, then it is contractible, and the other oval is not; if
both ovals are unbounded, then the one which intersects the line at infinity at

two points is contractible, and the other one is not.

Definition 2.11. We say that a regularly inscribed hexagon has type (m,n) if
m of its vertices lie on the contractible oval, and n of its vertices lie on the

non-contractibie oval.

Proposition 2.12. All possible types of regularly inscribed hexagons are depicted
in Figure 3: if one of the ovals of Cr is bounded, then H has type (0, 6) or
(6,0), and if both ovals of Cr are unbounded, then H has type (4,2) or (2,4).

Proof The proof follows from simple topological considerations.

2.6. Blow-up and global solutions. Now, we formulate a theorem which allows

one to determine whether a given solution of equation (1.1) blows up. This result
is stated in terms of the type of the hexagon Fix

First note that, in contrast to the spectral curve Cx, the hexagon IIx is

time-dependent. However, the type of this hexagon obviously cannot change with
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Blow-up solution Global solution

Figure 3

Different types of regularly inscribed hexagons
and the behavior of the corresponding solutions

time. Moreover, the type of Hx stays the same if we vary X within a connected

component of the isospectral set 7c It turns out that the topological type of
Hx allows one to distinguish between R3 and S1 x R2 components of Tc, i.e.

between global and blow-up solutions.

Theorem 2.13. Assume that A is a generic diagonal matrix, and let X e gl(3, E)
be such that the spectral curve Cx is smooth. Let also X(t) be the solution of
equation (1.1) with initial condition X. Then the following statements hold.

(1) If the real part of Cx has one oval, then X(t blows up.

(2) If the real part of Cx has two ovals, then X{t) blows up if and only if the

hexagon Hx is of type (0,6) or (4,2); if Hx is of type (6,0) or (2,4),
then X(t exists for all times.

Example 2.14 (Rigid body). As we mentioned in the Introduction, for skew-

symmetric matrices X equation (1.1) becomes the Euler equation governing the

motion of a rigid body. Let us demonstrate how Theorem 2.13 works in this case.
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Figure 4

Asymptotes of the spectral curve for the rigid body

The equation of the spectral curve, written in affine coordinates A zi/z3,
and ß Z2/Z3, is det(Z + AA — ßld) 0. Using that X' —X, we have

det(X + AA- /xld) det ((X + AA- ßld)')
det(— X + AA — yuld) — det(X — AA + q,Id),

so, for a skew-symmetric X, the spectral curve Cx is symmetric with respect to
the origin. The latter in particular implies that Cx has two ovals both of which
are unbounded.

Further, let us show that if the matrix X is skew-symmetric, then the hexagon

Hx is of type (2,4). Figure 4 depicts the asymptotes l\, l2, 13 of the spectral

curve and six sectors into which these asymptotes cut the affine plane. The

asymptote /; is given by the equation ß a,-A (without loss of generality, we

may assume that a\> a2> a2). According to Remark 2.9, the vertex I\ of the

hexagon Hx may be found as one of the intersection points of the spectral curve
with the conic Mu 0. In affine coordinates, this conic is given by

(ß — a2X){ß — U3A) + x|3 0,

i.e. it is a hyperbola whose branches lie in sectors 1 and 1'. Therefore, the

point Fi lies in one of these sectors. The branch of the curve Cx lying in the

corresponding sector joins the point P\ with at least one of the points oo2 or

oo3. So, Pi lies in the same oval as oo2 or oo3, and thus the hexagon Hx
is indeed of type (2,4) (see Figure 3). The latter allows us to conclude that all

generic solutions of the rigid body equation exist for all times. This is, of course,

very well known (these trajectories are in fact periodic).
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Example 2.15 (Rigid body in a pseudo-Euclidian space). Equation (1.1) may also

be restricted to the Lie algebra so (1,2), which consists of matrices satisfying
the equation XI + IX' — 0 where / is diagonal I := diag(l, 1,-1). For such

matrices X, equation (1.1) may be regarded as the equation of a rigid body in
the pseudo-Euclidian space R1,2. (Rigid body dynamics in non-Euclidian spaces

was considered, e.g., in a recent paper [BoM].)
As in the Euclidian case, the spectral curve Cx is symmetric with respect to

the origin and thus has two unbounded ovals. The difference is that we can no

longer assume that a\ > a2 > a3 due to the special role of the first coordinate.

So, there are two different cases. The first case is when a\ does not lie in the

interval (a2,a3). Then, repeating the argument of the Euclidian case (see Example
2.14), one shows that the hexagon Hx is of type (2,4), and thus all generic

trajectories exist for all times. The second case is a\ e (a2,a3). In this case, a

similar argument shows that the hexagon Hx is of type (4,2). Thus, if at is

between a2 and a 3, then all generic trajectories blow up in finite time.

Now, let us give an informal explanation why Theorem 2.13 is true. First,

assume that the real part of the spectral curve Cx has one oval. Then, as the

matrix X evolves according to equation (1.1), the hexagon Hx, and in particular
its vertex P\, slide along the spectral curve Cx At some point of time t', the

vertex P\ hits the point 001, and the hexagon Hx becomes degenerate. However,
as was pointed out above, the degenerate hexagon does not correspond to any
matrix X. For this reason, the solution X{t) can not be extended to t — t'.

Further, note that if the real part of the spectral curve has two ovals, but the

hexagon Hx is of type (0,6) or (4,2), then the points P\ and 001 still lie in
the same oval (see Figure 3). So, we arrive to exactly the same conclusion as in
the one oval case.

Finally, if the real part of Cx has two ovals, and Hx is of type (6,0) or

(2,4), then the points Pi and 001 lie in different ovals. For this reason, they
can never meet each other, and the solution exists for all times.

Of course, to turn this explanation into a rigorous proof, one should understand

the dynamics of the hexagon Hx It turns out that this dynamics is, roughly
speaking, a uniform rotation. More precisely, there exists an angular coordinate
cp e [0,2it) on each oval of the curve Cx such that the evolution of all vertices

of Hx is given by dtp/dt const ^ 0. Thus, if the points Pi and 001 lie in
the same oval, they will inevitably meet each other.

Note that this consideration also implies that for each global in time solution
of equation (1.1), the hexagon Hx returns to its initial position after some time
P. In other words, the evolution of the hexagon Hx is periodic. However, the

evolution of the matrix X itself is, in general, not periodic but quasi-periodic.
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To be more precise, we have the following.

Theorem 2.16. Assume that A is a generic diagonal matrix, and let C be a

smooth real cubic passing through the points oo1; oo2, oo3. Further, assume

that the real part of C has two ovals3. Then there exist a real number T > 0

and a diagonal matrix M e PD(3,R) such that for each lying in Tc global in
time solution of equation (1.1), the following statements hold.

(1) The dynamics of the hexagon Hx is periodic with period T.

(2) The dynamics of the matrix X is quasi-periodic:

X(t + T) MX(t)M~l.

Furthermore, we have M e PD+(3,R) if Hx has type (6,0), and

M £ PD+(3,R) if Hx has type (2,4).

Example 2.17 (Rigid body revisited). Let us again consider the case of a skew-

symmetric matrix X. Then, as follows from considerations of Example 2.14,

the hexagon Hx has type (2,4). Therefore, X(t + T) MX(t)M~1 where

M 6 PD(3,R) \PD+(3,R). On the other hand, all generic trajectories of the

rigid body are closed, so we should have Mk — Id for a suitable integer k > 0.

Clearly, this is only possible when the diagonal entries of M are equal to ± 1,

and thus M 2 Id. Note that M itself is not ±Id since M <£ PD+(3,R). So,

we have X(t + 2T) X(t), i.e. the period of a generic trajectory of the rigid
body is twice the period of the corresponding hexagon.

Remark 2.18. Let us comment on the relation between the hexagon Hx and

the general approach of the algebro-geometric integration theory. In this general

approach, one considers eigenvectors of the Lax matrix X\ as a line bundle E

over the spectral curve. The fiber of the bundle E at the point (A, p,) is the

eigenspace of Xx corresponding to the eigenvalue ji (one can show that for
smooth spectral curves this eigenspace is always one-dimensional, and that the

line bundle E extends to the points at infinity). The isomorphism class of the

line bundle E defines a point in the Jacobian of the spectral curve. The main
result of the algebro-geometric integration theory is that the evolution of this

point according to the Lax equation is linear with respect to the addition law on
the Jacobian (see, e.g., the above-mentioned monograph [BBT]; cf. Proposition
3.4 below). From the latter it, in particular, follows that equation (1.1) can be

solved in terms of theta functions (cf. [Man]).

3 Recall that if the real part of C has one oval, then there are no global in time solutions lying in
Tc.
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The relation between the line bundle E and the hexagon Hx is as follows.
For any regularly inscribed hexagon H, we have

(2.5) Pi + oo2 + oo3 ~ 001 + P2 + oo3 ~ 001 + oo2 + P3 »

where D\ ~ D2 denotes linear equivalence of divisors D\, D2. Indeed, the

divisor of the function L13/L23, where is given by (2.3), is Pi+oo2-ooi-P2
(see Figure 2). Therefore, Pi+oo2 ~ ooi+P2, and Pi+oo2+oo3 ~ ooi + P2+oo3,
as desired. The proof of the equivalence 001 + P2 + 003 ~ 001 + oo2 + P3

is analogous. Furthermore, one can show that the line bundle corresponding to
divisors (2.5) is isomorphic to the eigenvector bundle E. Thus, the data contained

in the hexagon Hx and the line bundle E are equivalent. However, it turns out that

it is easier to read off the information about the matrix X from the corresponding
hexagon rather than from the line bundle.

3. Proofs of the main results

3.1. Regularly inscribed hexagons and Chasles' theorem. In this section we

prove that for any point lying in the real part of a cubic curve, there exists a

unique regularly inscribed hexagon whose vertex Pi is at that point. Of course,
there is nothing special about the vertex Pi, so the result is also true for any
other vertex.

Let C be a smooth real cubic curve, and assume that C intersects the line
at infinity at three real points ooi,oo2,oo3. Then C has three real asymptotes
Zi,/2,/3. Take any point P\ e Cr and consider the line passing through Pi and

parallel to /3, that is the line passing through Pi and oo3 (if Pi oo3, then

the line passing through Pi and 003 is, by definition, the tangent line to C at

003, i.e. the asymptote I3 By Bézout's theorem, this line should meet the curve
C at one more point which we call Q2 (see Figure 2). Clearly, Q2 e Cr Now,
consider the line passing through Q2 and parallel to l\, and denote its third
intersection point with C by P3. Continuing this procedure, we obtain points

Pi, 02, P3, Qi,Pi, 03, p* e Cr such that

P1Q2 II h, Q2P3 II Zi, P3Q1 II h, Q1P2 II h, P2Q3 II h, Q3P* II h-

Now, we need to show that the points P* and Pi in fact coincide, so that

the polygon Pi Q2P3Q1 P2Q.3 is a regularly inscribed hexagon. For simplicity,
assume that the nine points

Fi, ß2,P3, öi,P2, Ö3,ooi,oo2, and oo3

are pairwise distinct (the general case follows by continuity). We shall apply the

following classical result, known as Chasles', or Cayley-Bacharach theorem:
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Theorem 3.1. Let C\,C2, and C3 be three cubic curves in CP2. Assume that

C\ intersects C2 at nine distinct points R\,..., Rg, and that C3 passes through

eight of these nine points. Then C3 also passes through the ninth point.

To apply this result in our setting, consider the curves

C\ — C, C2 — P1Q2 U P3Q1 U P2Q3, and C3 02-^3 U Ö1P2 U Ô3-P*-

Then

C\ H C2 {Pi, Q2, P3, Qi, Pi, 03. 001. °°2, 003},

and thus C3 passes through all points of Ci fl C2 except, possibly, Pi. Therefore,

by Theorem 3.1, the curve C3 also passes through the point Pi, so

Pi e C\ C\ C?, {Q2, P3, Q\, P2, Qi, P*< 001,002, 003},

and hence Pi P*, q.e.d.

3.2. Reconstructing a matrix from a curve and a hexagon. In this section we
show that a matrix X can be reconstructed from the spectral curve Cx and the

hexagon Hx uniquely up to conjugation by diagonal matrices. For the sake of
simplicity, we shall assume that the spectral curve satisfies the following genericity
assumptions: (i) it does not have inflection points at infinity, (ii) intersection points
of asymptotes do not lie on the curve. It is easy to see that under these assumptions

every regularly inscribed hexagon which is not degenerate has at most one side

at infinity. The proof of the general case is similar.

Proposition 3.2. Let C be a smooth real projective cubic passing through the

points 001, 002, 003, and satisfying the above genericity assumptions. Let also

H c C be a regularly inscribed hexagon which is not degenerate. Then there

exists a matrix X e gl(3,R), unique up to conjugation by a diagonal matrix,
such that Cx X, and Hx H.

Proof. First note that the spectral curve Cx and the hexagon Hx are invariant
under transformations X DXD~l where D is a diagonal invertible matrix.
Therefore, uniqueness up to conjugation by diagonal matrices is the best result

we can expect.
Now, let us show how to reconstruct X from C and H. Note that by

Proposition 2.7 the diagonal entries xn,x22,*33 of the matrix X are uniquely
determined by the spectral curve. So, we only need to reconstruct the off-diagonal
entries.

First, assume that none of the sides of H are at infinity. This also implies
that none of the sides of H are asymptotes of C. In terms of the matrix X to
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be constructed, these conditions mean that all off-diagonal entries of X do not
vanish (cf. formula (2.3)). Take any two non-zero real numbers a, ß e M*, and

set jc3i a, x32 ß. Now, we find the remaining entries of X by using the

equations of sides of H. First, we find xl2 from the equation of l23. Since the

side 123, is parallel to the asymptote l\, its equation has the form

ci(x\\z3 + a\Z\ — z2) — bz3 — 0

where a,b are constants. Note that since l23 is neither the line at infinity, nor
an asymptote, these constants do not vanish. On the other hand, in terms of the

matrix X to be constructed, the equation of l23 should be

x32(xnz3 + a\Z\ - z2) - X31X12Z3 0,

so
*32 _ *31*12
a b

which allows us to find x\2 In a similar way, we find X21 from the equation of
l\3, then X23 from /12, and, finally, xi3 from l32.

Now, let us show that the curves Cx and C are the same. As follows from the

construction of X, the hexagons Hx and H have four common consecutive sides

^23, /13, /12, and l32. Therefore, they have three common vertices Q3,P\, and

Q2 By Proposition 2.8, these points are not collinear. So, the curves C and Cx
are two cubics which have common asymptotes and three common non-collinear

points. As it is easy to see, such cubics must coincide. This, in turn, implies that
the hexagons H and Hx coincide as well: they are two hexagons which are

regularly inscribed in the same cubic and have a common vertex P\.
Now, assume that H has one side at infinity. Without loss of generality,

it is l3\. Then the two adjacent sides of H are necessarily asymptotes of the

curve, namely l32 l\, and /2i — h As above we fix a,ß e R* and set

x3i a,X32 ß Apart from this, since the side /31 is at infinity, we should set

x13 0 (see the proof of Proposition 2.8). Further, similarly to the above, we
find X12, x2i, x23 using the equations of l23, l\3, and li2 respectively. Note that

since X13 =0, the sides l32 and l21 of the hexagon Hx automatically coincide

with the corresponding sides of H, that is with asymptotes l\,l3. So, Hx and

H have five sides in common and thus, similarly to the above, Cx coincides

with C, and Hx coincides with H.
So, we showed that in both cases a matrix X satisfying the desired conditions

is uniquely determined by its non-zero entries X31, X32 Conjugating such a matrix
with a suitable diagonal matrix, we can always assume that x31 1 and x32 I.
Therefore, X is indeed unique up to conjugation by a diagonal matrix.
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3.3. Description of isospectral sets. In this section, we prove the topological

part of Theorem 2.5. Namely, we describe the topology of the sets 7c {X e

0I(3,M):CX C).
Let He be the set of hexagons regularly inscribed in the curve C. Let also

IId e 'He be the degenerate hexagon. Proposition 3.2 allows us to conclude that
the set 7c is the total space of a principal ?D(3, R) bundle over He \ Hd Also
note that, according to Section 3.1, the space He \ Hd can be identified with the

real part of the curve C without a point.
A trivializing cover for the bundle 7c -> He \ Hd can be constructed as

follows. Let

U\ {H e Hc : l13 + hi U2 {H eHc: hi + h}-

It it easy to see that, under the genericity assumptions of the previous section,

\ U\. U2) is indeed a cover of He \ Hd. As coordinates on fibers over U\, we
take the entries x2i and x32 of the matrix X. Since l\3 / /2, these entries are

non-zero (cf. formula (2.3)), and thus they uniquely determine a matrix X within
its PD(3,R) orbit. Similarly, we take x12 and x23 as coordinates on fibers over
U2.

Now, let us prove the first statement of Theorem 2.5. If the real part Cr of
the curve C has one oval, then the set He — Cr is diffeomorphic to a circle S1.

Therefore, the set He \ Hd is diffeomorphic to M, and hence 7c He \Hd is a

trivial bundle: 7c — IxPD(3,l). The latter set has four connected components
diffeomorphic to R3, q.e.d.

Further, let us prove the second statement. Assume that the real part of C has

two ovals one of which is bounded. In this case, the set He has two connected

components distinguished by the type of a hexagon. Let

H'çj :={H eHc-H is of type (i, j)}, := {X eTc:Hxe H^}.
Then

Hc H6c° u H°c6, and Tc TZ'0 u 7^'6.

Note that since the degenerate hexagon Hd has type (0,6), we have

He \Hd H6/ u (H°c6 \ Hd).

Therefore, the set T^'6 is the total space of a principal PD(3,R) bundle over
H°q6 \ Hd Since the latter set H^6 \ Hd is diffeomorphic to R, this bundle is

trivial, and thus T^'6 ~ 4R3.

Now, let us study the component T^'°. By definition of the set H^0, all
vertices of any hexagon Hx e H^° lie on the bounded oval, and therefore none
of the vertices are at infinity. In particular, the side l\3 of Hx cannot coincide
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with the asymptote l2. So, the component is completely covered by the

chart U\, and thus the bundle T^'0 —> is also trivial. Since ~ 51, we
have T^'° ~ 451 xl2, q.e.d.

Finally, let us prove the third statement of Theorem 2.5. Assume that the real

part of C has two unbounded ovals. Then

Similarly to the above, we have H^2 \ Hd ~ M, therefore the bundle T^'2 —>

H4/ \ Hd is trivial, and 7^'2 ~ 4M3.

Now, let us show that the bundle Tq'a -» H2q4 is not trivial. Note that there

are only two different principal PD(3,R) bundles over the circle 51, namely
the trivial one with the total space 451 xl2, and the non-trivial one with the

total space 2S1 xl2. So, as soon as we prove that the bundle is non-trivial, the

topology of the total space is uniquely determined.

Without loss of generality, we may assume that the points 002,003 lie on the

contractible oval 0\, and that the point 001 lies on the non-contractible oval 02

(if this is not so, we renumber these points). Then Px e 0\, and Q3 e 02, as

depicted in Figure 5. Let us consider the intersection of the chart U\ with the

component Ti2^4. The complement to U\ consists of those hexagons for which
/13 l2. The latter is possible if either Pi oo2, or O3 — oo2. However, for

Hx e ç4, the points g3 and oo2 lie on different ovals (see Figure 5), therefore
the chart U\ covers the whole set Plj-:4 except one hexagon H0 distinguished by
the condition P1 oo2. This hexagon can be obtained by moving the point Q3

in Figure 5 to the right till it reaches the asymptote l2. The domain PL2^4 \ Ho
is covered by the chart U\, therefore in this domain we have a trivialization of

Pic\Hd= U2c4 U (H4c2 \ Hd).

Figure 5



Euler equations on the general linear group 163

the bundle given by x2i,x32. Let us analyze what happens to these coordinates

as the hexagon Hx passes through Hq, or, which is the same, as the vertex

Q3 crosses the asymptote l2. First, note that the side l\2 of the hexagon H0
is at infinity, therefore for this hexagon we have x21 0 (see the proof of
Proposition 2.8), which shows that the trivialization {x2i,x32} is no longer valid
for Hx H0. However, since //0 has only one side at infinity, we have x32 / 0.

Therefore, to determine whether the bundle 7^'4 -»• 'H2C4 is trivial, we should

study what happens to the sign of x2i as the point Q3 crosses the asymptote
l2. By formula (2.3), the side l\3 is given by the equation

X3l(x22Z3 + 02Zi — Z2) — X2\X32Z3 0.

At the same time, x22z3 + a2z\ — z2 0 is the equation of the asymptote l2.
Therefore, provided that x3\ ^ 0, i.e. that the side /i3 is not at infinity, the

sign of the product x2Jx32 has the following geometric meaning: it is positive
if the line l\3 lies on one side of the asymptote l2, and negative if it lies at the

other side. Now, notice that as Q3 crosses the asymptote l2, the line l\3 gets

from one side of the asymptote to the other (see Figure 5), therefore the sign
of the product x2ix32 changes to its negative. Since x32 does not vanish as Q 3

crosses the asymptote, this means that the sign of x2i changes, and therefore the

bundle is non-trivial. So, we have T^' —2S1 xl2, thus the third statement of
Theorem 2.5 is proved.

3.4. Dynamics of the hexagon. Let us fix the spectral curve C and describe the

evolution of the hexagon Hx under the flow (1.1). As before, consider the matrix
Xz z3X -\~Z\A—z2Id. Recall that the zero locus of the determinant of this matrix
is the spectral curve C. We shall describe the dynamics of the hexagon Hx by

relating its vertices to eigenvectors of Xz. Note that since a regularly inscribed

hexagon is uniquely determined by any of its vertices, it suffices to describe the

dynamics of one vertex. As before, let Mjj be the (/, j minor of Xz. Then

the vector (M\i,—M\2, Mi3)1 belongs to the kernel of Xz. Normalizing this

vector by dividing its components by M11, we obtain the following meromorphic
vector-function f on C :

1 ^

M\2

f '=
^13

V Mil J

Denote the components of this vector by i/q ,\fr2,\]s3. By construction, we have

Xz\j/ 0 identically on C
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Proposition 3.3. The component f2 of xfr has poles at oo2 and 0 \ and zeros
at ooi and Q2; the component xfr2 has poles at 003 and Q \ and zeros at 001

and 03.

Proof. As follows from Remark 2.9, zeros of Mn on C are the points Pi, Qi,
and the points oo2, 003 taken with multiplicity 2. Further, we have M12 z3L 12

where L\2 is a linear function whose zero locus is the line /\2 Therefore, zeros of
Mi2 are the points P\, Q2, ooi, oo2, and the point oo3 taken with multiplicity
2. Dividing M12 by Mn, we obtain the desired statement about zeros and poles
of i//2. Zeros and poles of \jp are computed analogously.

So, the vertex Q\ of the hexagon Hx is the only movable pole of the

eigenvector xj/ (clearly, vertices 02 and 03 can be interpreted in the same way;
to obtain these vertices as poles, one needs to renormalize the vector 1// by

setting i/^ 1 or f3 1 This allows us to describe the dynamics of Q1

using standard technique (see e.g. the reviews [DKN, DMN, RSTS3]). Let co be

a holomorphic 1 -form on C ; such a form is unique up to a constant factor. In
the affine chart A z\/z3 and p z2/z3, it is given by

dp dX
(3.1) co —

3a fx 3ßfx

where fx (A, p) — 0 is the equation of the affine part of the curve C.

Proposition 3.4. Assume that X evolves according to equation (1.1). Then, for
the holomorphic form co normalized by (3.1), we have

Ï)dt

Proof. We work in affine coordinates A zi/z3 and p z2/z3. Equation
Xz\(f 0 can be rewritten as

(3.2) (Xx - pld)f 0

where Xx X + XA. Assuming that X-A evolves according to Lax equation (2.1)
and differentiating (3.2) with respect to time, we get

(3.3) (Xx - /rid)^ 0.

Note that rank (XA — pld) — rank Xz 2 at every point of C. Indeed, if
rank Xz 1 at some point P e C, then this point is a common zero for all

2x2 minors Mp of the matrix Xz, which means that all vertices of the hexagon
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Hx coincide. However, as follows from Proposition 2.8, this is impossible. Thus,

(3.3) implies that

(3.4) ^7 (£-Id -W,at
where f is a function on the curve C. Using that fi 1, we find that £ is

equal to the first coordinate (FaVOi of the vector

Now, let us consider the point g t at some moment of time t0, and let u be

a local coordinate on C near this point. Let also uq(t) be the u-coordinate of
Q i at moment t. Provided that Q \ does not coincide with oo2 or oo3, we have

hit)
(3.5) \js(t) h terms holomorphic in u

U — Uq (t)

where h(t) is a vector holomorphic in u. Substituting (3.5) into (3.4) and equating
coefficients in (u — uq(t))~2, we get

dir

where (Fa/z)i is the first coordinate of the vector Y-Ji. The coordinate free-form
of this equation is

(3.6) co Res2i {(Yxf)iu)

where co is the holomorphic form defined above. Now, note that the form (Yxir)ico

may only have poles at those points where either Fa or \jr have a pole, i.e. at

points gi, ooi, oo2, oo3. Therefore, by Cauchy's residue theorem, we have

3

(3.7) Resej ((Fa 1/01 &)) - ^Res^- ((Y^fhco)
1 1

Further, note that Y\ X~x(X^ — X2) (cf. Formula (2.2)), therefore,

ReSoo^Fu/Oift)) ReSoo; ((2f^)i^_1ft)) ~ ReSoo,- ((X2f)1X~1co)

ReSoo,- {n2\~lco)

where we used the identities X^xfr )ii//, \jr\ 1, and that the function

{X2ijr)\\~l does not have a pole at the point oo;-. Combining the last formula
with (3.6) and (3.7), we conclude that

(3.8) &) (^jYj - Xj ReSoo<
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Note that although we assumed in the proof that Q i f oo2 and Qi f oo3,
formula (3.8) still holds for these points by continuity argument. Now, to complete
the proof, it suffices to compute the residues. This can be easily done using formula

(3.1) and the explicit expression for the polynomial fx (note that only cubic terms
of fx affect the residues).

Note that the conclusion of Proposition 3.4 is obviously true for other Q-
vertices of the hexagon Hx as well, i.e.

For P -vertices, we have

The latter can be proved by noting that (1.1) is anti-invariant with respect to the

transformation which preserves the spectral curve C and interchanges
P -vertices with Q -vertices.

Now, for each oval Oi of the curve C, fix a point RL e Ol and consider the

function

f(R) f co.
J Rj

Then f is a periodic coordinate on 0,. In terms of the coordinate <j>, the

dynamics of vertices of Pix is linear: df/dt ±1. This in particular implies
that the dynamics of the hexagon Hx is monotonous and periodic. The period is

given by the integral of co along any of the ovals of C (note that this integral
is the same for both ovals since they are homologous cycles in C).

3.5. Complete and blow-up solutions. In this section, we prove Theorems 2.13

and 2.16, i.e. we investigate the dynamics of (1.1) at each connected component
of the set 7c • As we know from Section 3.3, the set 7c is the total space
of a principal PD(3,M) bundle over the set He \ Tfi where He is the set

of all hexagons regularly inscribed in C, and is the degenerate hexagon.

Furthermore, flow (1.1) is invariant with respect to the PD(3, M) action on 7c-
This allows us to apply the following classical result.

Theorem 3.5 (A. Lichnerowicz [Lie]). Let n : E -> B be a principal G -bundle,
and let v be a vector field on E which is invariant with respect to the G -action.
Then an integral trajectory x(t) of the field v is complete if and only if the

corresponding trajectory of the field jt* v on the base is complete.
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This result implies that one can study the behavior of solutions of (1.1) by

considering their projections to the space of hexagons. Dynamics on the space
of hexagons was studied in the previous section: it is linear.

To prove Theorem 2.13, we consider separately each of the components T^]
defined in Section 3.3. For example, consider a solution X{t) of equation (1.1)
such that the corresponding hexagon Hx has type (0,6). The latter means that

X{t) e 7^'6 in the notation of Section 3.3. The set T^'6 is a principal bundle

over T-L°(f \ Hj. Furthermore, as follows from Section 3.4, the dynamics on H^6
is linear in terms of the coordinate cf>, so the projection of X{t) to the base

7\ lid meets the degrease hexagon H\i and thus blows up in finite time.

Therefore, by Theorem 3.5, the trajectory X(t) itself also blows up.
An analogous consideration shows that trajectories of (1.1) corresponding to

hexagons of type (4,2) also blow up, while trajectories corresponding to types

(6,0) or (2,4) exist for all times. Thus, Theorem 2.13 is proved.
Note that this consideration also proves the dynamical part of Theorem 2.5

since all IE3 components of 7c correspond to hexagons of type (0,6) or (4,2),
while all S1 xM2 components correspond to (6,0) or (2,4) (see Section 3.3).

Now, let us prove Theorem 2.16. As follows from the previous section, if
a trajectory X(t) exists for all times, then the dynamics of the corresponding
hexagon is periodic with a certain period T. Now, the formula

X(t + T) MX(t)M~l.

easily follows from the PD(3,R) invariance of the flow (1.1). Further, let us show

that M e PD+(3,R) if Hx has type (6,0). Consider the bundle t£'° ->
By definition of the number T, the matrices X(t + T) and X(i) lie in the

same fiber of this bundle. Furthermore, since it is a trivial bundle, X(t + T)
and X{t) should lie in the same connected component of the fiber, and thus

M e PD+(3,R).
Analogously, since the bundle Tq4 —> Wç is not trivial, we have M £

PD+(3,R) if Hx has type (2,4), so Theorem 2.16 is proved.

4. Discussion

Note that equation (1.1), as well as the definitions of the spectral curve and the

corresponding set Tc, can be without any difficulty generalized to gl„(R). It is

an interesting question how to generalize our results to this case. In particular, is

it always true that the topology of 7c is completely determined by the geometry
of Cr It is particularly interesting whether the structure of the set 7c depends

on the way the ovals of C are nested into each other. (Recall that description of
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all possible relative positions of ovals for a real algebraic curve of degree n is

the Hilbert 16th problem which is still unsolved in full generality.)

We also note that the problem of description of the set 7c can be reformulated
in purely algebro-geometric terms. Similarly to the gl(3,R) case, let a\,...,an
be the eigenvalues of the matrix A. For simplicity, let all eigenvalues a\,...,an
be real, so that we may assume that A is a diagonal matrix. Further, let

00,- (1 : at : 0) e CP2, and let C be a smooth real projective curve of
degree n passing through the points ooi,..., oo„. Then, as follows from the

results of [Bea], the manifold Tc {X e gl(n,P) : Cx C} can be described

as a principal (R*)"-1 bundle over the real part of Jac(C) \ 0 where Jac(C) is

the Jacobian of the curve C, and © c Jac(C) is the theta-divisor (the latter can
also be deduced from the earlier papers [VMM, AvM2, RSTS2]).

Further, it is a classical result by Comessatti (see e.g. [SS]) that the topology
of the real part of Jac(C) is uniquely determined by the number of ovals of
C. However, one still needs to understand the structure of the (R*)"-1 bundle

7c (Jac(C) \ ©)r. For n 3 this is (in much more elementary terms) done

in the present paper.

Also note that there is a more explicit algebro-geometric description of the set

7c due to L. Gavrilov [Gavj. Namely, consider the singular curve Cs obtained

from the smooth curve C by identifying the points ooi,..., oo„ and let Jac(C.s)

be the generalized Jacobian of Cs. Then, as follows from [Gav], the set 7c is

diffeomorphic to the real part of Jac(Cs) \ :r-1(0) where jt\ Jac(C5) -> Jac(C)
is the canonical projection. Thus, to describe the set 7c > one needs to describe

the real part of the generalized Jacobian Jac(Cv), and to study how it intersects

the preimage of the theta divisor under the projection n.
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