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SUBTLETIES OF THE MINIMAX SELECTOR

by Qiaoling WEI

ABSTRACT. In this note, we show that the minimax and maximin critical values
of a function quadratic nondegenerate at infinity are equal when defined in homology
or cohomology with coefficients in a field. However, by an example of F. Laudenbach,
this is not always true for coefficients in a ring and, even in the case of a field, the
minimax-maximin depends on the field.

1. Introduction

Given a Lagrangian submanifold L in the cotangent bundle of a closed

manifold M, obtained by Hamiltonian deformation of the zero section,
the minimax selector introduced by J.-C. Sikorav [14] provides an almost

everywhere defined section M —> L of the projection T*M -4- M restricted

to L. As noticed by M. Chaperon [5, 6], this defines weak solutions of
smooth Cauchy problems for Hamilton-Jacobi equations; in the classical

case of a convex Hamiltonian, the minimax is a minimum and the minimax
solution coincides with the viscosity solution, which is not always the case for
nonconvex Hamiltonians. For a recent use of the minimax selector in weak

KAM theory, see [1].

The minimax has been defined using homology or cohomology with various

coefficient rings, for example Z in [5, 15], Q in [3] and Z2 in [13]. Also,
in [15], the maximin was mentioned as a natural analogue to the minimax. But
there is no evidence showing that all these critical values coincide. G. Capitanio
has given a proof [3] that the maximin and minimax for homology with
coefficients in Q are equal, but the criterion he uses (Proposition 2 in [3])
is not correct — see Remark 3.11 hereafter.
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In this note, we investigate the maximin and minimax for a general function

quadratic at infinity, not necessarily related to Hamilton-Jacobi equations. We

give both algebraic and geometric proofs that the minimax and maximin with
coefficients in a field coincide; the geometric proof, based on Barannikov's
Jordan normal form for the boundary operator of the Morse complex, improves
our understanding of the problem. The Barannikov normal form also plays a

crucial role in the proof of Arnold's 4 cusps conjecture [7].

A counterexample for coefficients in Z, due to F. Laudenbach [11], is

constructed using Morse homology; in this example, moreover, the minimax-
maximin for coefficients in Z2 is not the same as for coefficients in Q.
However, if the minimax and maximin for coefficients in Z coincide, then all
three minimax-maximin critical values are equal.

2. Maximin and minimax

Hypotheses and notation. We denote by X the vector space R" and

by / a real function on X, quadratic at infinity in the sense that it is

continuous and there exists a nondegenerate quadratic form Q\ X —> R such

that / coincides with Q outside a compact subset.

Let fc \= {a I f(x) < c} denote the sub-level sets of /. Note that for c

large enough, the homotopy types of fc, f~c do not depend on c, we may
denote them as /°° and f~°°. Suppose the quadratic form Q has Morse
index A, then the homology groups with coefficient ring R are

rj ffoo f-00. r,x _ J R in dimension A
H*(f X 0 otherwise.

Consider the homomorphism of homology groups

4*: -A ,f~°°,R)

induced by the inclusion ic: (/c,/~°°) -7 C/00,/-00).

DEFINITION 2.1. If S is a generator of ITaC/00,/-00;^), we let

7(f,R) inf{c : S G Im(ic*)},

i.e. 7(f,R) inf{c : ic*Hx(fcJ-°°;R) ,f-°°;R)}.
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Similarly, we can consider the homology group

//,( A \/^,X \fm\ R) [
R dlm» - A

[ 0 otherwise,

and the homomorphism

}„: Hti.X /.A' /-:«) ->• //,!.\ / x A' / x : A' I

induced by jc : (X \f,X \f*>) M- (X \f-,X \f*%,

DEPINITIOS 2,2. If A is a generator of (X\/-°0,X\/00;R), we let

•i/.A'l : sup{e : A S Im(/ )}

sup,.-: *,(.V / .A /-«) //„ ,<X \/-~,X \/°°;R)}.

LEMMA 2.3. One that

7(/,R) — infmax/ : inf max/(a)
[<7]=s*e|<7|

7(f,R) — sup min/ : sup min f(x)
[cr]=A^e|a|

where a is a relative cycle and |cr| denotes its support. We call a a descending

(resp. ascending) simplex if [cr] — S (resp. [cr] — À).

Proof. A descending simplex o defines an element of H\(fc,f~°°,R)
if and only if |cr| C fc, in which case one has max/(x) < c, hence

x£\a\
_7(/, R) > infmax/ ; choosing c — maxf(x), we get equality. The case of 7

is identical.

DEFINITION 2.4. 7(/, R) is called a minimax of/ and 7(/, R), a maximin.

REMARK. As we shall see later, in view of Morse homology, these names

are proper for excellent Morse functions.

One can also consider cohomology instead of homology and define

!)</.«) : inf V: Ç f 0}, i* : // / V/ V«) —| //(/,/
5(/,R) := sup{c: j| ^ 0}, 7* : -A.Proposition 2.5 ([15], Proposition 2.4). W&e« X is R-oriented,

ä(/,R) 7(/,R) a(/,R) 7(/,R).



212 Q. WEI

Proof. We establish for example the first identity : one has the commutative

diagram

^ H"~x(X \f~°°,X \fc,R)

I'" I
^aC/00,/-00;^) ^ H"~x(X \f~°°,X \ f°°-,R)

1 1-.'

Hx(f°°,fc,R) ^ Hn~x(X \fc,X \f°°,R)
where the horizontal isomorphisms are given by Alexander duality ([9],
section 3.3) and the columns are exact. It does follow that ic* is onto if
and only if j* is zero.

DEFINITION 2.6 ([8]). As long as X is finite dimensional, the Clarke

generalized derivative of a locally Lipschitzian function /: X —> R can
be defined as follows : by Rademacher's theorem, the set dom(df) of
differentiability points of / is dense in X ; we let df(x) be the convex
hull of the set of limits of convergent sequences df(xn) with lim.x„ x.
A point x G X is called a critical point of / if 0 G df(x).

Proposition 2.7. Iff is C2 then 7(f,R) and 7(f,R) are critical values

off ; they are critical values of f in the sense of Clarke when f is locally
Lipschitzian.

Proof. Take 7 for example: if c 7(f,R) is not a critical value then, for
small e > 0, /c_e is a deformation retract of /c+e via the flow of — »

hence 7(/, R) < c — e, a contradiction. The same argument applies when /
is only locally Lipschitzian, replacing V/ by a pseudo-gradient [4].

LEMMA 2.8. Iff is locally Lipschitzian, then

7(/,*) -7(-/,*)-
Proof. Using a (pseudo-)gradient of/ as previously, one can see that X\fc

and (—f)~c have the same homotopy type when c is not a critical value of /.
Otherwise, choose a sequence of non-critical values cn c — 7(f,R), then

—c„ > 7(—f,R), taking the limit, we have 7(f,R) < —7(—f,R). Similarly,
taking c'n \ 7(—f,R), then — c'n < 7(f,R), from which the limit gives us the

reverse inequality —7(—f,R) < 7(f,R).
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REMARK. The extension of the minimax selector to Lipschitzian functions
is natural in the framework of Hamilton-Jacobi equations: even for smooth

initial data, the minimax solution at time t is not smooth in general, but it is

Lipschitzian; now, it can be interesting to take it as a new Cauchy datum.

The following two questions arise naturally :

(1) Do we have 7(f,R) — 7(f,R)
(2) Do 7(/, R) and 7(/, R) depend on the coefficient ring R

Here are two obvious elements for an answer:

Proposition 2.9. One has 7(/, Z) > 7(/, Z).

Proof. As the intersection number of S and A is ± 1, the support of any
descending simplex a must intersect the support of any ascending simplex r
at some point x, hence maxf(x) >f(x) > minf(x).

*£|t|

Proposition 2.10. One has 7(/, Z) > 7(f,R) and 7(/, Z) < 7(f,R) for
every ring R.

Proof. A simplex a whose homology class generates H\(f°° ,f~°°\ Z)
induces a simplex whose homology class generates H\(f°° ,f~°°,R), whence

the first inequality and, mutatis mutandis, the second one.

THEOREM 2.11. If F is a field, then 7(/, F) — 7(/, F).

Proof. By Proposition 2.5, it is enough to prove that

7(/,F) a(/,F).

Recall that 7(/, F) (resp. a(/,F)) is the infimum of the real numbers c

such that ic*: H\(fc,f~°°,F) -A H\(f°°,f~°°-, F) is onto (resp. such that

Ç: Z/A(/°°,/_00; F) -A Hx(fc,f~°° \ F) is nonzero). Now, as H\(f°°,f~°° \ F)
is a one-dimensional vector space over F, the linear map ic* is onto if and

only if it is nonzero, i.e. if and only if the transposed map i* is nonzero.

REMARK. This proof is invalid for coefficients in Z since a Z-linear map
to Z, for example Z 3 m —> km, k G Z, k > 1, can be nonzero without
being onto ; we shall see in Section 4 that Theorem 2.11 itself is not true in
that case.
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Corollary 2.12. If 7(/, Z) 7(/, Z) 7 then 7(/, F) 7(/, F) 7
/or eve?y field F.

Proof. This follows at once from Theorem 2.11 and Proposition 2.10.

COROLLARY 2.13. Let 7 G R have the following property: there exist
both a descending simplex over Z along which 7 is the maximum off and

an ascending simplex over Z along which 7 is the minimum of f. Then,

7(/, Z) - 7(/, Z) - 7(/, F) - 7(/, F) — 7 for every field F.

Proof. We have 7(/; Z) < 7 < 7(/; Z) by Lemma 2.3 and 7(/; Z) <
7(/; Z) by Proposition 2.9, hence our result by Corollary 2.12.

3. Morse complexes and the Barannikov normal form

The previous proof of Theorem 2.11, though simple, is quite algebraic.
We now give a more geometric proof, which we find more concrete and

illuminating, based on Barannikov's canonical form of Morse complexes. It
will provide a good setting for the counterexample in Section 4.

First, there is a continuity result for the minimax and maximin:

Proposition 3.1 ([14, 16]). If f and g are two continuous functions
quadratic at infinity with the same reference quadratic form, then

|7(/,R)-7(0,R)| < \f-g\co
\y(f,R)-y(g,R)\ < \f - g\co.

Proof. For / < g, from Lemma 2.3, it is easy to see that 7(/) < 7(g).
In the general case, this implies 7(g) < 7(/ + |g —f |) < 7(/) + |g — /|co ;

exchanging / and g, we get 7(/) < 7(g) + \f - g\co.

COROLLARY 3.2. To prove Theorem 2.11, it suffices to establish it for
excellent Morse functions f'.X -A R, i.e. smooth functions having only
nondegenerate critical points, each of which corresponds to a different value

Off.

Proof. By a standard argument, given a non-degenerate quadratic form Q

on X, the set of all continuous functions on X equal to Q off a compact
subset contains a C°-dense subset consisting of excellent Morse functions;
our result follows by Proposition 3.1.
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To prove Theorem 2.11 for excellent Morse functions, we will use Morse

homology.

HYPOTHESES. We consider an excellent Morse function / on X, quadratic
at infinity1); for each pair of regular values b < c of/, we denote by fb>c

the restriction of / to fc D {b <f < c}.

Morse complexes. Let

:= 1 < < mk}

denote the set of critical points of index k of fb>c, ordered so that /(£* < /(££)
for t < m. Given a generic gradient-like vector field V for / such that (/, V)
is Morse-Smale2), the Morse complex of fb,c,V) over R consists of the free

R-modules

rnAcR) {Y,
i

together with the boundary operator d\ Mk(fb,c,R) —> Mk-i(fb,c,R) given by

fii £
m

where, with given orientations for the stable manifolds (hence co-orientations
for unstable manifolds), v/y is the intersection number of the stable manifold
W(£*) of £* and the unstable manifold W*(££-1) of £*-1, i.e. the algebraic
number of trajectories of V connecting £* and ; note that

• is the same for all b,c with /(£*),/(££-1) in [b,c] ;

• 7^ 0 implies /(£$) >/(Ç„-1) : otherwise, the stable manifold
of and the unstable manifold of for V, which cannot be transversal

because of their dimensions, would intersect, contradicting the genericity
of V.

• fm) 0 f°r two distinct critical points of the same index.

This does define a complex, i.e. d o d — 0 : see for example [10, 12]. The

homology HM*(fb>c,R) H*(M*(fb>c,R)) is called the Morse homology3)
of fb,c

1 The theoiy applies as well to functions on a closed manifold, for example.
2) Being Morse-Smale means that the stable and unstable manifolds of all the critical points

are transversal.

3) Morse homology is defined in general for any Morse function.
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LEMMA 3.3 (Barannikov [2]). If R is a field F, then this boundary operator

<9 has a special kind of Jordan normal form as follows: each A4(/t>c,F)
has a basis

(1) 2* := ^2 + 0
i<&

such that either <93* 0 or dEk — S^~1 for some m, in which case no t' t
satisfies <93*, — 3^_1. If {©*) is another such basis, then <93* — 3^_1 (resp. 0)
is equivalent to <90* — 0^_1 {resp. 0); in other words, the matrix of <9 in
all such bases is the same.

Proof. We prove existence by induction. Given nonnegative integers k, i
with i < m/c, suppose that vectors Sfq of the form (1) have been obtained for
all (p,q) with either p < k, or p — k and q < i, possessing the required

property that either <93fq — 3^"?) (with jp(q) ^ jP{q') for q ^ q') or <93pq — 0.

If <9ff+i — 0 (e.g., when k 0), we take £*+1 := 3j+1 and continue the

induction. Otherwise, <9£*+1 — a73*_1, G F. Moving all the terms

3*"* — dE*,# < i from the right-hand side to the left, we get

d(?f+i_ 1

q<i j
Let

Wk tk _ V" r^k
1—'i-l-l ' Si+1 / v ^jk(.q)^q •

q<i

If ßj — 0 for all j, then <93j+1 — 0 and the induction can go on. Otherwise,

öHf+1 X&F1 =' Wlth * °;
J<J0

as dEk~l — <9<93*+1 0, we can replace 3*_1 by E*_1 and continue the

induction4).

DEFINITION 3.4. Under the hypotheses and with the notation of the

Barannikov lemma, two critical points f* and of fb,c are coupled if
<93* — 3^_1. A critical point is free (over F) when it is not coupled with any
other critical point.

In other words, f* is free if and only if 3* is a cycle of Mk(fi,tCl F) but

not a boundary, hence the following result:

4) Note that if F were not a field, this would not provide a basis for noninvertible ßjQ
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COROLLARY 3.5. For each integer k, the Betti number dimpHMk(fb)C,F)
is the number offree critical points of index k of fb>c over F.

Theorem 3.6.

(1) The Barannikov normal form of the Morse complex of fb>c over F is
independent of the gradient-like vector field V.

(2) So is the Morse homology HM*(fbtC,R) it is isomorphic to H*(fc,fb; R).

(3) For b' <b < c < c', the inclusion i: fc fc restricted to the critical
set CJJbtc), induces a linear map 4: M*(fb>c,R) —> M*(fb'tC',R) such

that do 4 — 4 ° d and therefore a linear map 4: HM*(fbtC,R) —>

FIM*(fb>,C',R), which is the usual 4: H*(fc,fb\R) -A H*(fc ,fb ,R)
modulo the previous isomorphism.

Idea of the proof [10]. (1) Connecting two generic gradient-like vector
fields Vq V\ for / by a generic family, one can prove that each of the Morse

complexes defined by Vo and V\ is obtained from the other by a change
of variables whose matrix is upper-triangular with all diagonal entries equal

(2) When there is no critical point of/ in {b <f < c}, both HM*(fb>c,R)
and H*(fc,fb,R) are trivial (the flow of V defines a retraction of fc onto fb).

When there is only one critical point £ of / in {b <f < c}, of index A,

the class of £ obviously generates HM\(fb>c,R), whereas a generator
of H\(fc,fb,R) is the class of a cell of dimension A, namely the stable

manifold of £ for F|{£<f<c} ; the isomorphism associates the second class to
the first.

In the general case, one can consider a subdivision b — bo < • • • < b^ c

consisting of regular values of / such that each fbj,bj+i has precisely one

critical point. One can show that the boundary operator d of the relative

singular homology <9: Hk+i(fbi+l,fbi) —> Hk(fb',fb'~') can be interpreted
as the intersection number of the stable manifold of the critical point in

{bi <f < bi+1} and the unstable manifold of that in {£;_i <f < bi}, i.e.,

their algebraic number of connecting trajectories.

(3) The first claims are easy. The last one follows from what has just
been sketched.

to 1.
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COROLLARY 3.7. Iff is an excellent Morse function quadratic at infinity,
then it has precisely one free critical point £ over F ; its index X is that of
the reference quadratic form Q and

:</.!•') =m-
Proof. Clearly, the dimension of

HMk(f,F) /M4C/-oo(oo,F) - Hk{f°°J~°°\ F) Hk(Q°°, ß-°°; F)

is 1 if k X and 0 otherwise. The first two assertions follow by Corollary 3.5.

To prove 7(/,F) /(£), note that 7(/) is the infimum of the regular
values c of / such that the class of £ in HM\(f_00,00? F) lies in the

image of ic*: HM\(f_oo,c?F) HM\(/_oo^,F) by Theorem 3.6(3), which
means c >/(£).

Proposition 3.8. The excellent Morse function —fb,c (—f)-c,-b has

the same free critical points over the field F as fb>c.

Proof. Assuming V fixed, this is essentially easy linear algebra:
• One has C*(—/) C„_^(/) and the ordering of the corresponding critical

values is reversed. Thus, the lexicographically ordered basis of M*(—/)
corresponding to ($)i<e<mk)o<k<n is (C7_*-^+i)i<i<mn-k,o<k<n-

• The vector field — V has the same relations with —f as V has with /,
hence IS^-ï+i*"

That is, the matrix of the boundary operator of M*(—fb>c) in the basis

(m~kk-£+1) is matrix M obtained from the matrix A of the boundary

operator of M*(fb>c) in the basis (f*) by symmetry with respect to the second

diagonal (i.e. by reversing the order of both the lines and columns of the

transpose of A).
Lemma 3.3 can be rephrased as follows: there exists a block-diagonal

matrix
P diag(P0, • • •, Pn)

where each P* G GL(m^,F) is upper triangular, such that

(2) P~lAP B

is a Barannikov normal form, meaning the following : the entries of the column
of indices \ are 0 except possibly one, equal to 1, which must lie on the line
of indices J71 for some m and be the only nonzero entry on this line. The
normal form B is the same for every choice of P and V. Clearly, is a
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free critical point of fr>c if and only if both the line and column of indices *

of B are zero.

Equation (2) reads

Now, P and P — (P )_1 are block diagonal upper triangular matrices
whose kth diagonal block lies in GL(m„_^,F); therefore, by (3), as B is a

Barannikov normal form for the ordering associated to —/, it is the Barannikov
normal form of the boundary operator of M*(—fb>c), from which our result

follows at once.

COROLLARY 3.9. For any excellent Morse function f quadratic at infinity,
the sole free critical point of —f over F is the free critical point £ of f ;
hence 7(/,F) /(£) - -(-/)(£) - -j(-f,F) - 7(/,F) by Corollary 3.7
and Lemma 2.8, which proves Theorem 2.11.

Before we give an example where 7(/, Z) > 7(/, Z), here is a situation
where this cannot occur:

Proposition 3.10. Assume that M*(f,Z) can be put into Barannikov
normal form by a basis change (1) of the free Z -module M*(/, Z) :

i<£

Then, 7(/, Z) — 7(/, Z) — /(£), where f is the sole free critical point off
over Z.

Proof. We are in the situation of the proof of Proposition 3.8 with
Pk G GL()ft£,Z), which implies that the Barannikov normal form B of the

boundary operator is the same for Z as for Q ; it does follow that there is a

unique free critical point f of/ over Z (the same as over Q) and that it is the

unique free critical point of —f over Z ; moreover, the proof of Corollary 3.7
shows that 7(/, Z) — 7(/, Z) =/(£). We conclude as in Corollary 3.9.

Now that the coefficients are in Z, the classical method called handle

sliding [10, 12] states that, under an additional condition imposed on the

index of the change of basis in (4), namely 2 < k < n — 2, the Barannikov
normal form can be realized by a gradient-like vector field for /.

More precisely, let P: Mfrf) -A M*(/) be a transformation matrix where

P — diag(Po? Pn) with each P* G GL(m^, Z) such that P^ — id fork 0,l

(3) PAP
1

=5.

(4)
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or n — l,n, and P* is upper triangular with ±1 in the diagonal entries for
2 < k < n — 2. Then one can construct a gradient-like vector field V' such

that, if the matrix of the boundary operator for a given gradient-like vector
field V is A, then the matrix for V' is given by B — P~1AP.

Roughly speaking, one modifies V, each time for one i < £, by sliding
the stable sphere5) Sl(0) of for V so that it sweeps across the unstable

sphere Sr(Ç^) of with indicated intersection number. In other words, S'L(^f)

for the resulted V' is the connected sum of Sifjff) and the boundary of a

meridian disk of Sr(Ç^) described in section 4.4 of [10]. One may refer to the

Basis Theorem (Theorem 7.6 in [12]) for a detailed construction of V'.

REMARK 3.11 (on the "proof" of Corollary 3.9 in [3]). Capitanio uses

the following:

CRITERION. A critical point Ç of f is free (over Q) if and only if, for
any critical point rj incident to there is a critical point incident to rj,
such that

1/(0 --/('))I < 1/(0 -/('))I,
where, given a generic gradient-like vector field V for f, two critical points
are called incident if their algebraic number of connecting trajectories is

nonzero.

Unfortunately, this is not true: one can construct a function /: R2" —> R,
n > 2, quadratic at infinity with Morse index n, having five critical points,
two of index n — 1 and three of index n, whose gradient vector field V
defines the Morse complex

00=0-0 00 0-0 00 0.

This complex can be reformulated into

00 (0-i-.0-0+0-1
0(0 + 0) (0-1 - 01) + 20-1

0(0 + 0) 0-1

Hence, for a change of basis

0-1^0~1-0-\ 0^0+0, 0^0+0
5) The stable and unstable spheres are Sl(£*) VF(£*) HL and Sjj(£f) W"(£f)nL where

L =/_1(c) for some c (/(£?),/(£*))
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one can construct a gradient-like vector field V' for / by sliding handles,

such that

mt 1+er1, as af+^r1. er1

Obviously, g is the only free critical point, but g satisfies the criterion

(with incidences under V').

4. An example of Laudenbach

Proposition 4.1. There exists an excellent Morse function f : R2* —> R

as follows :

1. it is quadratic at infinity and the reference quadratic form has index and
coindex n > 1 ;

2. it has exactly five critical points : three of index n, one of index n — 1 and

one of index n + 1 ;

3. its Morse complex over Z is given by

jit1 o

(5) d§ -$r1
my & - 2f,

hence, for anyfield F2 ofcharacteristic 2 and any field F of characteristic ^ 2,

(6) 7(/, Z) 7(/, F2) 7(/, F2) /(g)
> /(&) 7(/, F) 7(/, F) 7(/, Z).

Proof that (5) implies (6). The Morse complex of / over F2 is written

açr1 0

m as o, «f + *p o

•~n

>2 ï

implying that g is the only free critical point, hence, by Corollary 3.7,

7(/,F2) 7(/,F2)=/(g);
as 7(/,Z) > 7(/,F2) by Proposition 2.10 and 7(/,Z) </(g), we do have

7(/,Z) =/«?)

3?;,+1 s
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Similarly (keeping the numbering of the critical points defined by /) the

Morse complex of —f over F has the Barannikov normal form

it-agf4) o

ds -24+1, 0(4 + ig) o, ô(-4 -24 + 4) o

«r1= -4-^+4*
showing that the free critical point is hence, by Corollary 3.7 and

Proposition 3.8,

g/-1'''
finally, as we have 7(/,Z) < 7(/,F) by Proposition 2.10, and 7(/,Z) >/(£"),
we should prove 7(/, Z) >/(£?), which is obvious since and are
boundaries in M*(—/, Z).

tfow to construct such a function f. It is easy to construct a function

/o : R2" —>• R with properties (1) and (2) required in the proposition and

whose gradient vector field Vq provides a Morse complex given by
1 o

ôg çr\ S4 o, Sg o

04+1 4-
For a change of basis

4^4-4, 4^4-2(4-4)
one can construct a gradient-like vector field V for /o by sliding handles,
such that

0gfJ 0

#4 4_1, ff -C*. 4 -24^
-04+1 - -24 + 4.

Since (/o, V') is Morse-Smale, the invariant manifolds of those critical
points of the same index are disjoint, hence one can modify /o to / such that

• / has the same critical points as /o ;

• the ordering of critical points for / is /(£") > /(£") > /(£")
• V' is a gradient-like vector field for /.

This can be realized by the preliminary rearrangement theorem (Theorem 4.1

m [12]).
In other words, we have made a change of critical points 4 ^4* hence

obtain the required Morse complex in the proposition.
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