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THE HESSE PENCIL Op PLANE (TBIC CURVES

by Michela ArteBANI * and Igor DoLGACHEV 7

ABSTRAGT. This is a survey of the classical geometry of the Hesse configuration
of 12 lines in the projective plane with relation to the inflection points of a plane cubic
curve. We also study two K3 surfaces with Picard number 20 which arise naturally
in connection with this configuration.

1. INTRODUCTION

In this paper we discuss some old and new results about the widely known
Hesse configuration of 9 points and 12 lines in the projective plane P2(k) :

each point lies on 4 lines and each line contains 3 points, giving an abstract

configuration 123,94). Through most of the paper we will assume that k is

the field of complex numbers C although the configuration can be defined

over any field containing three cubic roots of unity. The Hesse configuration
can be realized by the 9 inflection points of a nonsingular projective plane

curve of degree 3. This discovery is attributed to C. Maclauriu (1698-1746)
(see [46], p. 384), however the configuration1) is named after O. Hesse who

was the first to study its properties in [24], [25]. In particular, he proved that
the nine inflection points of a plane cubic curve fonn one orbit with respect
to the projective group of the plane and can be taken as common inflection

* The first author was supported in part by PRIN 2005: Spazi di moduli e teoria di Lie,
Indam (GNSAGA), and by NSERC Discovery Grant of Noriko Yui at Queen's University, Canada.

+ The second author was supported in part by NSF grant 0245203.
1 Not to be confused with another Hesse configuration (124,163), also related to plane cubic

curves, see [15].
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points of a pencil of cubic curves generated by the curve and its Hessian

curve. In appropriate projective coordinates the Hesse pencil is given by the

equation
X(x3 + y3 + z3) + pxyz 0

The pencil was classically known as the syzygetic pencilä) of cubic curves
(see [9], p. 230 or [16], p. 274), the name attributed to L. Cremona. We do

not know who is responsible for renaming the pencil, but apparently the new

terminology is widely accepted in modern literature (see, for example, [4]).

Recently Hesse pencils have become popular among number-theorists in
connection with computational problems in the arithmetic of elliptic curves
(see, for example, [51]), and also among theoretical physicists, for example in
connection with homological mirror symmetry for elliptic curves (see [56]).

Fisijre 1

The Hesse pencil

The group of projective automorphisms which transform the Hesse pencil
into itself is a group G216 of order 216 isomorphic to the group of affine

transformations with determinant 1 of the projective plane over the held F3

The term "syzygy" was used in astronomy to describe the alignment of three celestial
bodies along a straight line. Sylvester adopted this word to express a linear relation between the
covariants of a form. We will see later that the pencil contains the Hesse covariant of each of
its members.
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This group was discovered in 1878 by C. Jordan [31], who called it the

Hessian group. Its invariants were described in 1889 by H. Maschke [36].
A detailed historical account and the first figure of the Hesse pencil can be

found in [21].
The projective action of the Hessian group comes from a linear action of a

complex reflection group G216 of order 648 (110.25 in the Sliepliard-Todd list
[48]) whose set of reflection hyperplanes consists of the 12 inflection lines

of the Hesse configuration. The algebra of invariant polynomials of the group
G216 is freely generated by three polynomials of degrees 6, 9, 12 (see [36]). An
invariant polynomial of degree 6 defines a nonsingular plane sextic curve Cg.

The double cover of the plane branched along the sextic curve C() is a K3
surface X on which G216 acts as a group of automorphisms. Its subgroup

Qs, where Qs is the Sylow 2-subgroup of SL(2,F3) isomorphic to
the quaternion group of order 8, acts 011 the surface as a group of symplectic
automorphisms. In fact, the group F| x Qg can be found 111 Mukai's list [41]
of finite groups which can be realized as maximal finite groups of symplectic
automorphisms of a complex K3 surface.

The linear system of plane sextics with double points at 8 inflection
points of a plane cubic is of projective dimension 3. The stabilizer H of
the ninth remaining inflection point in G216 is isomorphic to S 1.(2, Fi) and

acts 011 this space by projective transformations. There is a unique invariant
sextic Cg for this action, having cuspidal singularities at the inflection points.
The double cover of the plane branched along C'6 is birational to another

K3 surface X' and the action of H can be lifted to X'. We show that

X' is birationally isomorphic to the quotient of X by the subgroup Ff
and that the induced action of the quotient group É§ii/Ï3 m sl(2,f3)
coincides with the action of H on X'. Both K3 surfaces X and X' are

singular in the sense of Slfioda, i.e. the subgroup of algebraic cycles in
the second cohomology group is of maximal possible rank, equal to 20.

We compute the intersection fonn defined by the cup-product on these

subgroups.

The invariant sextic C() cuts out a set of 18 points on each nonsingular
member of the pencil. We explain its geometric meaning, a result which we

were unable to find in the classical literature.

It is a pleasure to thank Bert van Geemen who kindly provided us with
Iiis informal notes on this topic and made many useful comments on our
manuscript. We thank Noam Elkies and Matthias Schnett for their help in the

proof of Theorem 7.10. We are also indebted to Thierry Vust for his numerous
suggestions for improving the exposition of the paper.
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2. The Hesse pencil

Let k be an algebraically closed field of characteristic different from 3

and E be a nonsingular cubic ill the projective plane P2(k) dehned by a

homogeneous equation E(x, v. z) 0 of degree 3. The Hessian curve He(£j
of E is the plane cubic curve dehned by the equation I Ic(/ j 0, where
I Ic(/*') is the determinant of the matrix of the second partial derivatives of F.
The nine points in E il I Ic(/:) are tlie inflection points of E. Fixing one of
the inflection points p0 defines a commutative group law © on E with p0

equal to the zero: pflflq is the unique point r such that po,r and the third
point of intersection in p. q fl E lie on a line. It follows from this definition
of the group law that each inflection point is a 3-torsion point and that the

group £[3] of 3-torsion points on E is isomorphic to (Z/3Z)2. Any line p, q

through two inflection points intersects E at another inflection point r such

that p. q, r form a coset with respect to some subgroup of £[3]. Since we
have 4 subgroups of order 3 in (Z/3Z)2 we find 12 lines, each containing 3

inflection points. They are called the inflection lines (or the Maclaurin lines

[16]) of E. Since each element in (Z/3Z)2 is contained in 4 cosets, we see

that each inflection point is contained in four inflection lines. This gives the

famous Hesse configuration (123,94) of 12 lines and 9 points in the projective
plane. It is easy to see that this configuration is independent of the choice of
the point po

The Hesse pencil is the one-dimensional linear system of plane cubic

curves given by

(1) E,o,,! : to(x3 ©f + Z3) -t hxyz 0, (/„. fj e P1.

We use the affine parameter A ij j to and denote E\ by E\ ; the curve

xyz 0 is denoted by /:,x.. Since the pencil is generated by the Fermât cubic

E0 and its Hessian, its nine base points are in the Hesse configuration. In fact,

they are the inflection points of any smooth curve in the pencil. In coordinates

they are :

p0 (0,1,-1), pi (0,1,-e), P2 (0,1,-e2),

p3 (1,0,-1), p4 (l,0,-e2), Ps 1,0,-e),
p6 (1,-1,0), p7 (1, -e,0), p8 (l,-62,0),

where e denotes a primitive third root of 1.

If we fix the group law by choosing the point po to be the zero point, then

the set of inflection points is the group of 3-torsion points of each member
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of the Hesse pencil. Hence we can define an isomorphism

a: E\[3]Po > (Z/3Z)2

by sending tlie point p% (0,1, —e) to (1,0) and the point (1,0,-1)
to (0,1). Under this isomorphism we can identify the nine base points with
elements of (Z/3Z)2 as follows:

Po Pi P2 (0,0) (1,0) (2,0)
(2) P3 P4 PS (0,1) (1,1) (2,1)

P6 Pi PS (0,2) (1,2) (2,2)

It is now easy to see that any triple of base points which represents a row, a

column, or a term in the expansion of the detenninant of matrix (2) spans an
inflection line (cf. [38], p. 335).

The existence of an isomorphism a not depending on the member of
the pencil can be interpreted by saying that the Hesse pencil is a family of
elliptic curves together with a 3-level structure (i.e. a basis in the subgroup
of 3-torsion points). In fact, in the following lemma we will prove that any
smooth plane cubic is projectively isomorphic to a member of the Hesse

pencil. It follows (see [4]) that its parameter space can be naturally ideutihed
with a smooth compactihcation of the hne moduli space ul i (3 of elliptic
curves with a 3 -level structure (when k C this is the modular curve X(3)
of principal level 3).

LEMMA 2.1. Any nonsingular cubic in P2(k) is projectively equivalent to

a member of the Hesse pencil, i.e. it admits a Hesse3) canonical form :

x3 + y3 + z3 + Axyz 0.

Proof. We will follow the arguments from [55]. Let £ be a nonsingular
plane cubic. Given two inflection tangent lines for E we can choose projective
coordinates such that their equations are x 0 and y 0. Then it is easy to
see that the equation of E can be written in the form

(3) F(x, y, z) xy(ax + by + cz) + dz? 0,

where ax + by + cz 0 is a third inflection tangent line. Suppose c 0,
then ab f 0 since otherwise the curve would be singular. Since a binary form
of degree 3 with no multiple roots can be reduced, by a linear change of
variables, to the fonn jr+y3, the equation takes the fonn y3 + y3 + dz3 0.

Sailed the second canonical form in [47], the first one being the Weierstrass form.
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After scaling the coordinate z, we arrive at a Hesse equation. So we may
assume that c -A 0 and, after scaling the coordinate z, that c 3. Let be a

primitive 3rd root of unity and define new coordinates u, v by tlie formulai

ax + z eu' + e v, by + z e U + eu.

Then

abF(x,y, z) (eu + 2v — Z)(<zu + ev — z)(—u — v + z) + dz3

—m3 — t>3 + (d 4- l)-3 — 3uvz 0.

Since the curve is nonsingular we have d yd — 1. Therefore, after scaling the

coordinate z, we get a Hesse equation for E :

a3 / + ê + Ax-yz o.

Assume additionally that the characteristic of the field k is not equal to 2.

Recall that a plane nonsingular cubic also admits the Weierstrass canonical

form
y2z X3 + axz2 + bz", 4o3 + 21b1 ^ 0.

Projecting from the point po we exhibit each curve of the Hesse pencil as a

double cover of P1 branched at 4 points. By a standard procedure, litis allows

one to compute the Weierstrass fonn of any curve from the Hesse pencil :

(4) y2z a? + A(t0, h)xz2 + B(t0, q)s3,

where

(5) A(t0, q) 12tq(t/o - iff),

jS(fo, q) 2(Uq — 20moM3 — 8uf),

and (fa, t\) (no. (nt\ The discriminant of tlie cubic curve given by (4) is

A 4A3 + 21B1 2233MQ(mq + 8M3)3

its zeros describe the singular members of tlie pencil. The zeros of the

binary fonn ,4(r0, q) define tlie curves from tlie Hesse pencil which admit

an automorphism of order 6 with a fixed point (equianharmonic cubics). For

example, the Fennat curve Eq : v3 v3 z3 0 is one of them. The zeros of
the binary fonn q) define the curves from the Hesse pencil which admit

an automorphism of order 4 with a fixed point (harmonic cubics). The map

j: P1 —> P1, (t0, ft)^ (4A3.4,t3 + 21B1)
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coincides (up to a scalar factor) with the map assigning to the elliptic curve

E\ its / invariant, which distinguishes the projective equivalence classes of
cubic curves.

The Hesse pencil naturally defines a rational map

P2 P1 (*,y, z) '—> (xyz,x3 + y3 + z3)

wlfich is not defined at tire nine base points. Let

TT : 5(3 —> P2

be tlie blowing up of the base points. This is a rational surface such that the

composition of rational maps 5(3) —| P2 • P1 is a regular map

(6) <p: 5(3) > P1

whose fibres are isomorphic to the members of the Hesse pencil. The map ij>

defines a structure of a minimal elliptic surface on 5(3). Here and later we
refer to [5], [18], [39] or [10] for the theory of elliptic fibrations on algebraic
surfaces. The surface 5(3) is a special case of an elliptic modular surface

5(h) of level n (see [4], [49]), isomorphic to the universal family of elliptic
curves with an n-level.

There are four singular members in the Hesse pencil, each is the union of
three lines :

£00 : xyz 0,
E-3 : (.V + y + z)(x + cy + e2z)(x + e2y + ez) 0,
E_3 : (x + ey + z)(.v + e2y + e2z)(x + y + ez) 0,
/••' : (v + e2y + zMv- <y + < zH v + y 4~ e2z) 0.

We will call these singular members the triangles and denote them by

'/) '/j. respectively. The singular points of the triangles will be called
the vertices of the triangles. They are

v0 (1,0,0), K (0,1,0), v2 (0,0,1),
i-3 (1.1,1). v4 (l,e,e2), 'A (l.r.O.
v6 (e,1,1), y7 (l,e, 1), v8 (l, l,e)
Vg (e2,1,1), Uxo (l,e2,1), t'xi (1,1,2).

The 12 lines forming the triangles are the inflection lines of the Hesse

configuration. If we fix a point as the origin in the group law of a

nonsingular member of the pencil, then the side of a triangle passing

through pi contains 3 base points forming a subgroup of order 3, while
the other sides of 7/ contain the cosets with respect to tins subgroup. The

triangles obviously give four singular fibres of Kodaira's type I3 of the elliptic
fibration 6.
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REMARK 2.2. The Hesse pencil makes sense over a field of any
characteristic. It is popular in number-theory and cryptography for finding explicit
algorithms to compute the number of points of an elliptic curve over a finite
field of characteristic 3 (see [22], [51]). We are grateful to Kristian Ranestad

for tins comment.

The proof of the existence of a Hesse equation for an elliptic curve E over
a field of characteristic 3 goes through if we assume that E is an ordinary
elliptic curve with rational 3-torsion points. We find equation (3) and check

that it defines a nonsingular curve only if abc ^ 0. By scaling the variables

we may assume that a b — 1, c 1. Next we use the variable change

Z it + x + y to transform the equation to the Hesse form

xyu d{u + X + y)3 xyu + d{u3 + a3 + y3) 0.

The Hesse pencil (1) in characteristic 3 has two singular members : (x+y+z)
0 and xys 0. It has three base points (1, —1,0), (0,1, —1), (1,0, —1), each

of multiplicity 3, which are the inflection points of all nonsingular members of
the pencil. Blowing up the base points, including infinitely near base points,
we get a rational elliptic surface. It has two singular fibres of Kodaira's types
IV* and /2. The fibre of type IV* has the invariant 5 of wild ramification

equal to 1. This gives an example of a rational elliptic surface in characteristic
3 with finite Mordell-Weil group of sections (these surfaces are classified in

[35]). The Mordell-Weil group of our surface is of order 3.

The Hesse configuration of 12 lines with 9 points of multiplicity 4 can
also be defined over a finite field of 9 elements (see [26], Lemma 20.3.7).

It is formed by four reducible members of a pencil of cuspidal cubics with
9 base points. The blow-up of the base points defines a rational quasi-elliptic
surface in characteristic 3 with 4 singular fibres of Kodaira's type III.

3. The Hessian and the ('am i-van of a plane cmie

The first polar of a plane curve E with equation F 0 with respect to a

point q (o, h. c) G P2 is the curve Pq(E) defined by aly + bF'y -f cF'z 0.

It is easy to see that the Hessian curve 11e(/-') of a plané cubic E coincides

with the locus of points q such that the polar conic Pq(E) 0 is reducible.

If E\ is a member of the Hesse pencil, we find that He(£\) is the member

IduX) °f the Hesse pencil, where

m"T""
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Let pi (a, b, c) be one of the base points of the Hesse pencil. By computing
the polar Pp.(E\) we find that it is equal to the union of the inflection tangent
line TPl{E\) to the curve at the point p, and the line L, : ax + by + cz 0.
The lines Lo,...,Lg are called the harmonic polars. It follows easily from
the known properties of the first polars (winch can be checked directly in
our case) that the line L, intersects the curve E\ at 3 points qt such that
the tangent to the curve at q. contains /;,. Together with /;, they form the

group of 2-torsion points in the group law on the curve in which the origin
is chosen to be the point p,.

The harmonic polars, considered as points in the dual plane P2, give the

set of base points of a Hesse pencil in P2. Its inflection lines are the lines

dual to the vertices of the inflection triangles given in (7). If we identify the

plane with its dual by means of the quadratic form x2 I y2 | j2, the equation
of the dual Hesse pencil coincides with the equation of the original pencil. For

any nonsingular member of the Hesse pencil its nine tangents at the inflection
points, considered as points in the dual plane, determine uniquely a member

of the dual Hesse pencil.

REMARK 3.1. Ill the theory of line arrangements, the Hesse pencil defines

two different arrangements (see [6] and [27]). The Hesse arrangement consists

of 12 lines (the inflection lines), it has 9 points of multiplicity 4 (the base

points) and no other multiple points. The second arrangement is the dual of
the Hesse arrangement, denoted by A§(3). It consists of 9 lines (the harmonic

polars) and has 12 multiple points of multiplicity 3. Together fliese two

arrangements form an abstract configuration (123,94) which is a special case

of a modular configuration (see [15]). In [27] Hirzebruch constructs certain
finite covers of the plane with abelian Galois groups ramified over the lines

of the Hesse configuration or its dual configuration. One of them, for each

configuration, is a surface of general type with universal cover isomorphic to
a complex ball.

PROPOSITION 3.2. Let E\ be a nonsingular member of the Hesse pencil.
Let L; E\ {<71, <72 > <73} ond let E\p j 1,2,3, be the curve from the

Hesse pencil whose tangent at p,- contains qj. Then I Ic(L;ii) E\ if and only
if ß {Aj,A2, A3}.

Proof. It is a straightforward computation. Because of the symmetry of
the Hesse configuration, it is enough to consider the case when i 0, i.e.

Pi (0,1,-1). We have that Lq : y — z 0 and L(l n E\ is equal to the set
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of points ijj I ,)j. )j) satisfying 1 + 2y] + Xyj 0. The line pôfq] has the

equation —2yjx + y + Z 0. The curve jJL, from the Hesse pencil is tangent
to this line at the point (0,1,-1) if and only if (-/r,3,3) (-2y,,l, l), i.e.

Ü m/6. Thus

1 + 2yj 108 +,/r3
" " yf ~ 3]ß

Comparing with fonnula (8), we see that (*)(//) A. This proves the

assertion.

Let E be a smootli plane cubic curve which is not equianharmonic. Then
I Ie(/:) is smootli and, for any q 6 I Ie(/:), tlie polar conic Pq(E) lias one

isolated singular point sq. In fact, sq lies on He(£) and the map q i > sq is

a fixed point free involution on Hell?) (see, for example, [14]). If we fix a

group law on IIc(/i) with zero at then the map q H* sq is the translation

by a non-trivial 2-torsion point ?/. In the previous proposition this 2-torsion

point is one of the intersection points of the harmonic polar L, with I Ie(/i)
such that E is tangent to the line connecting this point with the inflection

point pi.
The quotient I Icf/f)/(//) is isomorphic to the cubic curve in the dual

plane P2 parametrizing the lines q, sq. This curve is classically known as the

Cayleyan curve of E. One can show that the Cayleyan curve also parametrizes
the line components of reducible polar conics of E. In fact, the line q. \q is

a component of the polar conic Pa(E), where a is the intersection point of
the tangents of He(£) at q and sq.

PROPOSITION 3.3. If E E\ is a member of the Hesse pencil, then its

Cayleyan curve Ca(E\) is the member of the dual Hesse pencil corresponding
to the parameter

Proof. To see this, following [9], p. 245, we write the equation of the

polar conic Pq(E<:l,) with respect to a point q (u,v, w) :

u(.r2 + 2/jyz) + u(y2 + 2pxz) + wiz2 + 2/ixy) 0.

It is a reducible conic if the equation decomposes into linear factors, say

u(x2 + 2pyz) + v(y2 + 2pxz) + + 2pxy) (ax + by + cz)(ax + ßy + yz).
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This happens if and only if
u 2fiw 2(iv\ / ace aß + ba

2fiw V 2(ui j j aß + bot bß

2fi& 2im w J \ll~; • ca cß + by

Considering this as a system of linear equations in the variables u, v, w, a, b. c

we get the condition of solvability as the vanishing of the determinant

n(o? + fP + 73) + (1 - 4// >; h 0

If we take (a, ß, y) as the coordinates in the dual plane, tliis equation

represents tlie equation of the Cayleyan curve because the line <xv + fiy + yz
is an irreducible component of a singular polar conic. Setting p A/6, we

get (9).

-1 0 0 a 0 0

0 -1 0 0 ß 0

0 0 -1 0 0 7
—2/i 0 0 0 7 fi

0 —2(i 0 7 0 a
0 0 —2(1 ß 0: 0

Note that the Cayleyan curve Ca(£A) I \c(lß)/(rf) comes with a

distinguished nontrivial 2-torsion point, which is the image of the nontrivial
coset of 2-torsion points on I Ic(/C\ This shows that Ca(E\) He(£/) for a

uniquely defined member Mt of the dual Hesse pencil. The map cv : P1 —? P1,

A EA jp gives an isomorplfism between the spaces of parameters of the Hesse

pencil and of its dual pencil such that f)(o(A)) c(A). One checks that

f)(—18/A) c(A).

REMARK 3.4. The Hesse pencil in the dual plane should not be confused

with the (non-linear) pencil of the dual curves of members of the Hesse pencil.
The dual curve of a nonsingular member Em of the Hesse pencil
is a plane curve of degree 6 with 9 cusps given by the equation

(io) «4(4 +jf + xf) - «io(2»4 + ssswtXPlaf++ »Pt)

- 24mlm\XoXlXz(Xl + X\ + X|) - (24»4«H + 48mf)XgXfx| 0.

Tins equation defines a surface V in P1 x P2 of bi-degree (4,6), the universal

family of the pencil. The projection to the first factor lias fibres isomorphic
to the dual curves of the members of the Hesse pencil, where the dual of a

triangle becomes a triangle taken with multiplicity 2. The base points p, of
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the Hesse pencil define 9 lines ÜL in the dual plane and each of the 9 cusps
of an irreducible member from (10) lies on one of these lines. The unique
cubic passing through the nine cusps is the Cayleyan curve of the dual cubic.

If (m,x) G V, then the curve has the line ix (dual to x) as its tangent
line. For a general point x, there will be 4 curves in the Hesse pencil tangent
to this line, in fact the degree of the second projection V -X P2 is equal
to 4. Each line £p. lies in the branch locus of this map and its pre image in
V has an irreducible component lpi contained in the ramification locus. The

surface V is singular along the curves JL and at the points corresponding to
the vertices of the double triangles. One can show that a nonsingular minimal
relative model of the elliptic surface V > P1 is a rational elliptic surface

isomorphic to S(3). Thus, the dual of the Hesse pencil is the original Hesse

pencil in disguise.

Remark 3.5. The iterations of the maps li : P1 > P' and c: P1 > P1

given by (8) and (9) were studied in [28]. They give interesting examples
of complex dynamics in one complex variable. The critical points of 1} are

the four equianliannomc cubics and its critical values correspond to the four
triangles. Note that the set of triangles is invariant under this map. The set

of critical points of c is the set of triangles and it coincides with the set

of critical values. The equianliannomc cubics are mapped to critical points.
This shows that both maps are critically finite maps in the Sense of Thurston

(see [37]).

4. The Hessian group

The Hessian group is the subgroup G216 of Aut(P2) PGL(3, C)
preserving the Hesse pencil4). The Hessian group acts on the space P1 of
parameters of the Hesse pencil, hence defines a homomorphism

(11) a: Gjxf, —7- AufiP1).

Its kernel K is generated by the transformations

;/u(.v. v.,-) (.v.r.y).

//i(.v. v,r) (\\z.x).
gi{x,y,z) {x, ey, e2z),

4) Not to be confused with the Hesse group isomorphic to Sp(6, F2) which is related to the
28 bitangents of a plane quartic.
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and contains a normal subgroup of index 2

r (gu9%) (Z/3Z)2.

If we use the group law with zero po on a nonsingular member of the pencil,
then gi induces the translation by the 3-torsion point p3 and r/2 that by the

point pi.
The image of the homomorphism (11) is clearly contained in a finite

subgroup of AutfP1) isomorphic to the permutation group S4. Note that it
leaves invariant the zeros of the binary forms ,4Co, f 1 4 from (5). It
is known that the group $4 acts on P1 as an octahedral group, with orbits

of cardinalities 24,12,8,6, so it cannot leave invariant the zeros of a binary
form of degree 4. However, its subgroup 44 acts as a tetrahedral group with
orbits of cardinalities 12,6,4,4. This suggests that the image of (11) is indeed

isomorphic to A4. In order to see that it is, it suffices to exhibit transformations
from G216 which are mapped to generators of A4 of orders 2 and 3. They
are

(I 1 1\ /I 0 °\
II05 e2 2 II 0 e °

\l 2 e Vo 0 e

The group generated by go, <73, 7/4 is a central extension of degree two of
A4. It is isomorphic to the binary tetrahedral group and to the group SL(2,F3).
Note that t/f go so

^216= (fflî <72)53, 54} •

It is clear that the order of G216 is equal to the order of K multiplied by
that of A4, making it equal to 216. Hence the notation.

PROPOSITION 4.1. The Hessian group G216 is isomorphic to the semi-direct

product
T M SL(2, F3),

where SL(2,F3) acts on T (Z/3Z)2 via the natural linear representation.

The Hessian group clearly acts on the set of nine points pj, giving a

natural homoinorpliism from G216 to Aff2(3), the affine group of F2. In fact,
the Hessian group is the subgroup of index 2 of Aff20) of transformations
with linear part of determinant equal to 1. In this action the group G216 is

realized as a 2-transitive subgroup of the permutation group S9 on {0,1,..., 8}
generated by permutations

T (031 )(475)(682) and U (147)(285)
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(see [11], 7.7). The stabilizer subgroup of the point po is generated by U
and TUT-1 (354)(678), and coincides with (fppu)<

Remark 4.2. The group Aff2(3) of order 432 that contains Gzm as a

subgroup of order 2 is isomorphic to the Galois group of the equation of
degree 9 de fining the first coordinates of the inflection points of a cubic w ith
general coefficients in the affine plane [13], [55].

The Hessian group G216, considered as a subgroup of PGL(3, C), admits

two different extensions to a subgroup of GL(3,C) generated by complex
reflections. The first group G216 is of order 648 and is generated by reflections

of order 3 (no. 25 in Shephard-Todd's list [48]). The second group G216 is of
order 1296 and is generated by reflections of order 3 and reflections of order
2 (no. 26 in Shephard-Todd's list). The images of the reflection hyperplanes
of G216 in the projective plane are the inflection lines, while the images of
the reflection hyperplanes of G216 are the inflection lines and the harmonic

polars.
The algebra of invariants of G216 is generated by three polynomials of

degrees 6, 9 and 12 (see [36], [52]) :

q>6 j* + / + 4> - iaf*y + aV + yV),
<h9 (x3-.y3)(A3~z3)tv3-z3),

<I>,2 (a3 + y3 f.zV + y3 + z3)3 + 216vVz3|

Note that the curve <t>g 0 is tlie union of the nine harmonic polars L, and

that the curve <t>i2 0 is the union of the four equianharmonic members of
the pencil. The union of the 12 inflection lines is obviously invariant with
respect to Ggifi» however the corresponding polynomial <t>'12 of degree 12 is

not an invariant but a relative invariant (i.e. the elements of G216 transform
the polynomial to a constant multiple).

The algebra of invariants of the second complex reflection group G216 is

generated by <t>6,<t>'12 and a polynomial of degree 18,

d>,8 (v3 + y3 + z3)6 - 540A3y3z3(v3 + y3 + z3)3 - 5832v6y6z6

The curve <tqg 0 is the union of the six harmonic cubics in the pencil.
Later we will give a geometric meaning to the 18 intersection points of the

curve defined by fly, 0 with nonsingular members of the pencil.
A third natural linear extension of the group G216 is the preimage G216

of the group under the projection SL(3,C) -P PGL(3,C). This is a group of
order 648 isomorphic to the central extension 3G2ie of G216, but it is not
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isomorphic to Gzu,- Hie preimage of the subgroup F in 3Gzi6 is a non abcliait

group of order 27 isomorphic to tlie Heisenberg group 7Li(3) of unipotent
3 X 3-matrices with entries in F3. The group G'lm is then isomorphic to the

semi-direct product LU, (3) x SL(2, F3) and is generated by §j%, 02, —1 (n,

e2r'/9g4 considered as linear transformations.

REMARK 4.3. Classical geometers used to define a projective transformation

as a pair consisting of a nondegenerate quadric in the projective space
and a nondegenerate quadric in the dual projective space. If P" P(V),
then the first quadric is given by a quadratic fonn on V winch defines a

linear map C: V —> V*. The second quadric defines a linear map V -X V

and the composition with the first one is a linear map V —> V. In [21]
the Hessian group is given by a set of 36 conics winch are identified
with conics in the dual plane P by means of an isomorphism P2 —> P*

defined by the conic .v2 I ,\j I a2 0. These conics are the polars of
four equianharmonic cubics in tlie pencil with respect to the 12 vertices of
the inflection triangles. The 12 of them which are double lines have to be

omitted.

It is known that tlie simple group G PSp(4, F3) of order 25,920 has two
maximal subgroups of iudex 40. One of them is isomorphic to the complex
reflection group G216 of order 648. It has the following beautiful realization
in tenns of complex reflection groups in dimensions 4 and 5.

It is known that the group Z/3Z x Sp(4, F3) is isomorphic to a complex
reflection group in C4 with 40 reflection hyperplanes of order 3 (no. 32 in
Shephard-Todd's list [48]). This defines a projective representation of G in P3

and tlie stabilizer subgroups of tlie reflection projective planes are isomorphic
to OU ix The reflection planes cut out on each fixed reflection plane tlie
extended Hesse configuration of 12 inflection lines and 9 harmonic polars

([36], p. 334).

It is also known that tlie group Z/2Z x G p Sp(4, F3) is isomorphic to

a complex reflection group in Cs with 45 reflection hyperplanes of order 2

(no.33 in Shephard-Todd's list [48]). This defines a projective representation
of G in P4. The algebra of invariant polynomials with respect to tlie complex
reflection group Z/2Z X G was computed by Burkhardt [8]. The smallest

degree invariant is of degree 4. Its zero locus in P4 is tlie famous Burkhardt

quartic hypersurface with 45 nodes where 12 reflection hyperplanes meet.

There are 40 planes forming one orbit, each containing 9 nodes. Each such
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plane contains 12 lines cut out by the reflection hyperplanes. They form the

Hesse configuration with the 9 points equal to the set of base points of the

Hesse pencil.

One can find an excellent exposition of the results of Maschke and

Burkhardt ill [29]. There is also a beautiful interpretation of the geometry

of the two complex reflection groups in terms of the moduli space

Hi(3) of principally polarized abelian surfaces with some 3-level strucUire

(see [17], [20]). For example, one can identify Hi(3) with an open subset

of the Burkhardt quartic whose complement is equal to the union of the

40 planes.

5. The quotient plane

Consider the blowing up w: 5(3) —> P2 of the base points p, of the

Hesse pencil and the elliptic fibration (6) :

d>: 5(3) —» P1, (x,y,z) I—f vy-. C +f + j3).

The action of the group T on P2 lifts to an action on 5(3). Fixing one section

of <i> (i.e. one point the group T is identified with the Mordell-Weil group
of the elliptic surface and its action with the translation action. Let

o: 5(3)/r—vf: 5(3)/r—>V2/T,

be the morphisms induced by o and w, respectively.

PROPOSITION 5.1. The quotient surfaces P2/F and 5(3)/F have 4 singular
points of type A2 given by the orbits of the vertices (7). The minimal resolution

of singularities are isomorphic to a Del Pezzo surface S of degree 1 and to

5(3), respectively. Up to these resolutions, <f> is isomorphic to <f> and m is

the blowing up of S in one point, the T -orbit of the points pi.

Proof. The group T preserves each singular member of the Hesse pencil
and any of its subgroups of order 3 leaves invariant the vertices of one of
the triangles. Without loss of generality we may assume that the triangle is

xyz 0. Then the subgroup of T stabilizing its vertices is generated by the

transformation r/2, which acts locally at the point y z 0 by the formula
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(v, z) I > (cv. czz) It follows that the orbits of the vertices give 4 singular points
of type ,42 in P2/r and 5(3)/T, locally given by the equation uv+w3 0.

Let £ be an elliptic curve with a group law and let [«] : £ —» £ be the

map x H> nx. It is known that this map is a surjective map of algebraic groups
with kernel equal to the group of «-torsion points. Its degree is n2 if « is

coprime to the characteristic. In our case the quotient map by F acts on each

member of the Hesse pencil as the map [3]. This implies that the quotient of
the surface 5(3) by the group F is isomorphic to 5(3) over the open subset

The map F>: 5(3)/T —> P1 induced by the map Ç has four singular
libres. Each hbre is an irreducible rational curve with a double point which
is a singular point of the surface of type 42. Let &: 5(3)' > 5(3)/F be a

minimal resolution of the four singular points of 5(3)/r. The composition
<j>oa: 5(3)' —>- P1 is an elliptic surface isomorphic to M 5(3) -A P1 over the

open subset U of the base P1. Moreover, <f> o a and <f> have singular libres

of the same types, thus 5(3)' is a minimal elliptic surface. Since it is known
that a birational isomorphism of minimal elliptic surfaces is an isomorphism,
this implies that o o a is isomorphic to o.

The minimal resolution 5 of P2/T contains a pencil of cubic curves

intersecting in one point qo, the orbit of the points p-,. Hence it easily follows
(see for example [10]) that 5 is isomorphic to a Del Pezzo surface of degree

one and tt is the blowing up of the point q<t.

Let 7r': 5(3/ > P2 be the contraction of the 9 sections Eo,... ,Eg of the

elliptic hbration o o a to the points q0,...,qs in P2, the base points of the

Hesse pencil in the second copy of P2.

By Proposition 5.1 the following diagram is commutative :

U= P1\{A(foHi) 0}.

5(3) —-—5(3)/T 4-^— 5(3/

(12) TT 7T Oi

p2 —p—p p2/t 4-^— 5 ———> p2.

Here p is tlie quotient map by F, 3 is a minimal resolution of singularities
of the orbit space P2/T, a is the blow-up of the point qo on 5, and 7 is the

blow-up of q\ qo (see the notation in the proof of Proposition 5.1).
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PROPOSITION 5.2. The curves Bi p l(ß(a(Ei))), i 1,.... 8, are plane
cubic curves with equations

Bi
B2

b3

b4

x3 + c/ + e2z} 0, Bs

x2y + y2z + z2x 0. B6

x2y + e2y2t-bez2x 0, By

x2y + ey2z + e2z2x 0, Bs

A3 -+ e^y3 + es3 0,
x2z + y2x + z2y 0,
x2z:+ ey2x -f e2z2y 0,
x2z + êy2x + ezfy 0.

The union of the eight cubics Bi cuts out on each nonsingular member of the

Hesse pencil the set of points of order 9 in the group law with the point po
as the origin.

Each of them has one of the triangles of the Hesse pencil as inflection
triangle and is inscribed and circumscribed to the other three triangles (i.e.
is tangent to one side of the triangle at each vertex).

Proof. Recall that the sections If..... Eg on 5(3)' are non-trivial
3-torsion sections (the zero section is equal to If The preimage Bi of
Ej under the map r~1 o a cuts out on each nonsingular fibre the F-orbit of a

point of order 9. Thus the image If of If in P2 is a plane cubic cutting out
the T -orbit of a point of order 9 on each nonsingular member of the Hesse

pencil.
Let E be a nonsingular member of the Hesse pencil. Take a point p C E

and let qflp be the intersection of E with the tangent line at p. Let r q
be the intersection of E with the tangent line at q. Finally, let s r be the

intersection of E with the tangent line at r. It follows from the definition of
the group law that we have 2p © q 2q © r 2r 0 v 0. This immediately
implies that 9p 0 if and only if p S (this explains why the classical
authors called a point of order 9 a coincidence point). The triangle formed

by the lines p, q, q. r. r,p is inscribed and circumscribed to E. Following
Halphen [23], we will use this observation to find the locus of points of
order 9.

The tangent line of P at p (.vo. vo. Zo) has the equation

(a'o + ty0Zo)x + (yo + tx0z0)y + (Zo + tx0y0)z 0,

where we assume that E If,. The point q (.vq. cyo, <-2Zo) lies on E because

(vo. vo. Gi) Ç £ ; it also lies on the tangent line at p if p (xo,yo, zo) satisfies

the equation

(13) Bi : A3 + ey3 + e2z3 0.

If p satisfies this equation, then q also satisfies it, hence r (x(), e2yo, ezo)

lies on the tangent at q and again satisfies (13). If we repeat this procedure
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we return to the original point p. Hence we see that any point in B\ fi E is

a point of order 9. Now we apply the elements of the Hessian group to tire

curve B\ in order to get the remaining cubic curves /i2...., Üg • Notice that
the stabilizer of Bl in the Hessian group is generated by F and g4. It is a

Sylow 3-subgroup of the Hessian group isomorphic to a semi-direct product
F xi Z/3Z.

To check the last assertion it is enough, using the G2i6 -action, to consider

one of the curves /J,. For example, we see that the triangle 7j of equation

atz 0 is an inflection triangle of the curve B\ and that the triangles 72, 'A,. /4
are inscribed and circumscribed to If. More precisely we have the following
configuration :

i) Bi and B; 14 have 7", as a common inflection triangle and they intersect

in the 9 vertices of the other tiiangles;

ii) Bj and Bj, i 7^/, i, j < 4, intersect in the 3 vertices of a triangle
and are tangent in the 3 vertices of 77 with k,f f (/, /} ;

iii) Bi and />',. 1, i f j, i, j < 4, intersect similarly with k and I
interchanged.

For example, Bi and B2 intersect in the vertices of I3 and are tangent
in the vertices of 74, wlfile If and B6 intersect transversally on 74 and are

tangent on 7 3.

We will call the cubics Bj the Halphen cubics. Observe that the element go

from the Hessian group sends Bj to Bj 4. We will call the pairs (/{., /?' Bj 4)

the pairs of Halphen cubics and we will denote by tp. q[ qf \ 4 the

corresponding pairs of points in P2.

It can easily be checked that the projective transformations fp. g4 act on
the Halphen cubics as follows (with an obvious notation) :

g3 : (121'2')(434'.V), g4 : (243)(2'4'3').

REMARK 5.3. The linear representation of F on the space of homogeneous

cubic polynomials decomposes into the sum of one-dimensional eigen-
subspaces. The cubic polynomials defining Bj together with the polynomials

xyz, .r' H I z3 fonn a basis of eigenvectors. Moreover, note that the cubics

Bj are equianharmonic cubics. In fact, they are all projectively equivalent to

Bx, which is obviously isomorphic to the Fennat cubic. We refer to [2], [3]
where the Halphen cubics play a role in the construction of bielliptic surfaces

in P4.
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REMARK 5.4. According to G. Halphen [23], the rational map

- 0 i
1 P2 ï P2

can be given explicitly by

(x-.y-Z) i-A (P'J^P^, P2P3P4, xyzPiP'i) -

where PnP\ are tlie polynomials defining Bj. B'} as in Proposition 5.2. His

paper [23], besides many other interesting results, describes the locus of
mi -torsion points of nonsingular members of the Hesse pencil (see [19] for a

modem treatment of this problem).

REMARK 5.5. In characteristic 3 the cyclic group of projective transformations

generated by gi acts 011 nonsingular members of the Hesse pencil as

translation by 3 -torsion points with the zero point taken to be (1,-1,0). The

polynomials

(X, Y, Z, W) (a2y + y2z + z2x, xy2 + yz2 + zx2, x3 + y3 + r®, xyz)

are invariant with respect to fj\ and map P2 onto a cubic surface in P3 given
by the equation (see [22], (3.1))

(14) X3+ Y3+ Z2W XYZ.

Among the singular points of the cubic surface, (0,0,0,1) is a rational double

point of type E ' in Artin's notation [1]. The image of the member E\ of the

HeSse pencil is the plane section Z + XW 0. Substituting in equation (14),
we find that the image of tins pencil of plane sections under the projection
from the singular point is the Hesse pencil. The parameter À of the original
pencil and the new parameter A' are related by À A'3.

6. The 8-cospidal sextic

Let C(, be the sextic curve with equation <t>6 0, where <t>6 is the

degree six invariant of the Hessian group. Tins is a smooth curve and one

immediately verifies that it does not contain the vertices of the inflection
triangles 7)..... 7j given in (7) or the base points of the Hesse pencil

This shows that the preimage C() 7t_1(C6) of Cf) in the surface S(3) is

isomorphic to C() and that the group T acts on Ce freely. The orbit space

Cc/'T is a smooth curve of genus 2 in .S"(3)/T which does not pass through
the singular points and does not contain the orbit of the section ir~,(pa). Its
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preimage under a Isa smooth curve c'6 of genus 2 in 5(3)' that intersects

a general fibre of the Hesse pencil at 2 points. Observe that the curve Cg is

tangent to each Halphen cubic B^B\ at a F -orbit of 9 points. In fact, it is

enough to check that Cf> is tangent to one of them, say B y, at some point.
We have

X6 + y" + y - 10(x3y3 + .rV + yV)
h3+y+y )2 - i2hv+yy + yy)
—3(x3 + y3 + if + 4(x3 + ey3 + e2i)(x3 + e2y3 + ei).

Tlfis shows that the curves By and B\ are tangent to Cr, at tlie points where

C(: intersects the curve Eo : x3 + y3 + z3 0. The map 5(3)' —f P2 blows
down tlie curves Jfj, i 1 8, to the base points </j qg. of the Hesse

pencil. Hence the image C'6 of C6 in P2 is a curve of degree 6 with cusps
at the points qy.... .c/g.

PROPOSITION 6.1. The S-cuspidal sextic C'6 is projectively equivalent to
the sextic curve defined by the polynomial

<bg(u y, z) (x3 +y3+y )2 —36y3y+24{iy2+z2y4 — 12(zsy+£_ys)- 12x3(z2y+uy2).

Proof. In an appropriate coordinate system tlie points <•/,- have the same

coordinates as tlie 's. By using tlie action of the group T, we may assume tliat
tlie sextic has cusps at pi,... ,ps. Let V be tlie vector space of homogeneous

polynomials of degree 6 vanishing at /),...../;8 with multiplicity > 2. If 5

is the blowing-up of qi,...,qg and Ks is its canonical bundle, then P(V)
can be identified with the linear system | —2Kg |. It is known that the linear

system | —2ATI is of dimension 3 (see [12]) and defines a regular map of
degree 2 from 5 to P3 with tlie image a singular quadric.

A basis of V can be found by considering tlie product of six lines among
tlie 12 inflection lines. In this way one finds the following sextic polynomials

15) Ai yz(x + ey + z)(x + y + ez)(x + e2y + z)(x + y + e2z),

Az yz(x + ey + < \-)(.v + ç2y + «)(x + J + ez)(x + ey + z),
A3 yz(x + e2y y z)(x + y + e2z)(x + ey + e2z)(x + e2y + ez),

A4 (x + ey + e2z)(x 4* e2y + ez)(x + y + ez)

x (x + ey + z)(x + e2y + z)(x # y + e2z) •

A polynomial P(x. y, z) defining the curve C'6 is invariant with respect to
the linear representation of the binary tetraliedral group T SL(2,F3) in V.
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This representation decomposes into the direct sum of the 3-dimensional

representation isomorphic to the second symmetric power of the standard

representation of 2.A4 in C2 and a one-dimensional representation spanned

by I'(x. y, z) Applying g4 we find that

(Ai, A2, A3, A4) 1 ^ (e2A2,e2A3, e?Ai, A4).

Thus I\x,y,z) A(Ai + e1Ax + fA?,) + g,A4 for some constants À, /<.. Now we

apply ffy and find À, // such that P(x, y, z) is invariant. A simple computation
gives die equation of C'6.

REMARK 6.2. The geometry of the surface S, the blow-up of P2 at

qi,...,qs, is well-known. We now present several birational models of this

surface and relations between them.

The surface S is a Del Pezzo surface of degree 1 and admits a birational

morphism iz: S S onto a surface in the weighted projective space

P(l, 1,2,3) given by an equation

(16) —it2 A £'2 A A(mo, it 1 )ii2 I u 1 0,

where (1/0, 1/3) have weights 1,1,2,3 (see [12]). The morphism £ is an

isomorphism outside of the union of the 8 lines /),.... £g wliich correspond
to factors of the polynomials ,41...., ,44 from (15). In fact, the map v is a

resolution of indeterminacy points of tlie rational map sjfcp s> P( 1,1,2,3).
It is given by the fonnulae

(A.v,z) ha (mo,mi,m2,«3) (-sp^#A/ Ts3» /y.v.y.ri).
where I'r/x. y, z.) 0 is the union of the line A : y — z 0 and the 8 lines
f'.\ fg. Explicitly,

P9(x, y, z) yz(y - z)(x6 A ri® (2y3 - 3_y2z - 3yz2 A 2z3) A Cv3 - .vz A z2)3

I p to some constant factors, the polynomials 4. B are the same as in (5).
The 8 lines are blown down to singular points of the surface.

The composition of vz with the projection (%, «j, «2, «3) H' (t/2, %%, u\, 112)

gives the rational map P2 > P3 dehned by

(x, y, z) ha (m0, mi, m2, m3) {x2y2z2,xyz(x3 + y3 A z3), (x3 A y3 A z3)2, Og).

This is a 2.A4-equivariant map of degree 2 onto the quadric cone iiQit2—u\ 0.
The ramification curve is the line y — Z 0 and the branch curve is the

intersection of the quadric cone and a cubic surface. This is a curve W of
degree 6 with 4 ordinary cuspidal singularities lying on the hyperplane 113 0.
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Consider the rational map f ~ : !~1 : p \ P2 j P2 from diagram (12).

It follows from the description of the maps in the diagram that the preimage of
the Hesse pencil is a Hesse pencil, the preimage of the curve C'6 is the curve
Cg, and the preimage of the union of the lines (#, ifu. ^ | % is the union of
harmonic polars. This shows that the composition -li'ötp: P2 « P(l, 1,2,3)
can be given by the formulae

<!>„(.v..v.z). <l>y(.v. v.z)).

where <f>9(x, y,j:) is tlie invariant of degree 9 for the group G216 given in §4.
This agrees with a remark of van Geemen in [53] that the polynomials

xyz, a3 + y3 + Z3, <t>6(^y.z), and <!>.,(.v.y. z) satisfy the same relation (16)
as the polynomials xyz, Jr + y3 + Z3, <t>g(x,y,z), and Pg(x, y, z). Using tlie
standard techniques of invariant theory of finite groups one can show that the

polynomials xyz, .i3+.y3 + z3, OgU,_y,z), and <f>9(x,y,z) generate the algebra
of invariants of the Heisenberg group TLT-l), the preimage of T in SL(3,F3).
The equations of S witli respect to different sets of generators were given
in [7] and [54],

Finally, we explain the geometric meaning of the intersection points of tlie
sextic curve C() with a nonsingular member E\ of the Hesse pencil. This set

of intersection points is invariant with respect to the translation group T and

tlie involution go, thus its image in C'6 Cf)/T consists of two points on tlie

curve E\. These points lie on tlie line through tlie point po because they differ
by the negation involution go on E\ in the group law with tlie zero point po

PROPOSITION 6.3. The curves C'6 and E\ intersect at two points p,q
outside the base points pi,,..,p$. These points lie on a line through po
which is the tangent line to the Hessian cubic I Ic(/0 at pt). The 18 points
in Cf, C\E\ are the union of the two T-orbits of p and q.

Proof. This is checked by a straightforward computation. By using
Maple® we find that tlie curves C'6, E\ and the tangent line to E\)(\)
at po have two intersection points.

7. A K3 SURFACE WITH AN ACTION OF G21§

In the previous sections we introduced two plane sextics, Co and C'6,

which are naturally related to tlie Hesse configuration. The double cover of
P2 branched along any of these curves is known to be birationally isomorphic
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to a K3 surface, i.e. a simply coimected compact complex surface with trivial
canonical bundle. This follows from the formula for the canonical sheaf of a

double cover f: Y —f P2 of the projective plane branched along a plane curve
of degree 2d

u>y =f*(urp2 lip Opi(d))

and tlie fact tliat the singular points of Y are rational double points, i.e. they

can be characterized by the condition tv*(uJy) u>x, where tt: X —> Y is a

minimal resolution of singularities.

In the following sections we will study the geometry of the K3 surfaces

associated to Ce and C'6 ; in particular we will show how the symmetries
of the Hesse configuration can be lifted to the two surfaces. We start by
presenting some basic properties of K3 surfaces and their automorphisms
(see for example [5] and [40]).

Since the canonical bundle is trivial, the vector space Q2(X) of holomorpliic
2-forms on a K3 surface X is one-dimensional. Moreover, the cohomology

group L H2(X, Z) is known to be a free abelian group of rank 22. The

cup-product equips L with a structure of a quadratic lattice, i.e. a free

abelian group together with an integral quadratic fonu. The quadratic form is

unimodular and its signature is (3,19). The sublattice Sx C L generated by
the fundamental cocycles of algebraic curves on X is called the Picard lattice
and has signature equal to 1. k). Its orthogonal complement Tx in L is the

transcendental lattice of X.
Any automorphism g of X clearly acts on Q2(X) and also induces an

isometry g* on L which preserves Sx and Tx- An automorphism g that acts

identically on Q2(X) is called symplectic. We recall here a result proved in [43].

THEOREM 7.1. Let g be an automorphism of finite order on a K3

surface X.

i) If g is symplectic then g* acts trivially on Tx and its fixed locus is

a finite union of points. The quotient surface X/(g) is birational to a K3

surface.

ii) If g is not symplectic then g* acts on Q2(A) as the multiplication by

a primitive r-th root of unity and its eigenvalues on T% (7 C are the primitive
r-th roots of unity. Moreover, if the fixed locus is not empty, then the quotient
X/(g) is a rational surface.

Let q : X —+ P2 be the double cover branched along C(). We now prove
that the action of the Hessian group on the projective plane lifts to an action
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on X. We denote by ßs the 2-Sylow subgroup of SL(2, F3), isomorphic to
tlie quaternion group.

PROPOSITION 7.2. The Hessian group G216 is isomorphic to a group
of automorphisms of the K3 surface X. Under this isomorphism, any
automorphism in the normal subgroup Hjz T XI Qg is symplectic.

Proof The double cover cp. X > P2 branched along tlie curve C() can
be defined by the equation

considered as a weighted homogeneous polynomial with weights (1,1,1,3).
Thus we can consider X as a hypersurface of degree 6 in the weighted
projective space P(l, 1,1,3).

Let G216 be the preimage of G216 in SL(3, C) considered in Section 4 and

let r/' (i I..... 4) be the lifts of the generators gt in G'216. It is checked

immediately tliat the generators g\. g|. leave the polynomial <t>6 invariant
and g'4 multiplies <t>6 by e2. Thus the group G'2l6 acts on X by the formula

.'//(v. y, z, w) (n'(x. y, z), w) for if 4 g4{x, y, z, w) (//,( v. y, z), ew).

The kernel of G'216 -c G216 is generated by the scalar matrix (e, e, «), wlfich
acts as the identity transformation on X. Then it is clear that the induced
action of G216 on X is faithful.

The subgroup //72 of G216 is generated by the transformations (j g2, g3,

II4ilsII4
'

• T° check that it acts symplectically on X we recall that the space
of holomorphic 2-fonns on a hypersurface F(xq, ...,x„) of degree d in P"
is generated by tlie residues of tlie meromorpliic n-forms on P" of tlie type

where P is a homogeneous polynomial of degree d — n — 1. This is easily
generalized to tlie case of hypersurface s in a weighted projective space

P(^o, •••,<?«)• hi this case the generating forms are

W2 -r <f>6(T,y,t) 0

where deg P d — qo — • • — q„.
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In our case d qo + q\ + qi A 6, hence there is only one form, up
to proportionality. It is given by

Xdy Adz A dw — y dx Adz A dw + z dx A dy A dw — 3w dx A dy A dz

iu2 + v. c)

It is straightforward to check that the generators of Ihi leave this form
invariant (cf. [41], p. 193).

Remark 7.3. The action of F x Qs appears as Example 0.4 in the paper
of S. Mukai [41] containing the classihcation of maximal Unite groups of
symplectic automorphisms of complex K3 surfaces.

Let Pi, P'i (i 1.....4) be the polynomials defining the cubics If. j.4

as given in Section 5 and ft be the equations of the equianliannonic cubics

in the Hesse pencil :

Ffx, y, z) x3 -f y3 + r5 + apyz (i 1,..., 4),

where a,\ 0 and <s, 6e2_i for i 2,3,4 (see Section 2).

PROPOSITION 7.4. The K3 surface X is isomorphic to the hypersurface

of bidegree (2, 3) in P1 x P2 with equation

17) uzPi(x, y, z) + v2P'i(x,y, z) + V3iivFfx, y, z) 0

for any i 1,... ,4.

Proof. As noticed in the previous section we can write

iï)
The K3 surface Y given by tlie bihomogeneous equation of bidegree (2,3)
in P' x P2

(18) u2 Pi (x,j,z) + vzP\ (x, y, z) + s/3urf'i (x, y, z) 0

is a double cover of P2 with respect to the projection to the second factor
and its branch curve is defined by <t>6 0. Thus Y is isomorphic to the K3
surface X. By acting on equation (18) with the Hessian group G216 we find
analogous equations for X in P1 X P2 in tenus of the polynomials P,. P'j and

Fi for i 2,3,4.
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An important tool for understanding the geometry of K3 surfaces is the

study of their elliptic librations. We recall that tire fibration is called jacobian
if it has a section.

PROPOSITION 7.5. The K3 surface X has 4 pairs of elliptic fibrations

with the following properties :

a) t)i and I)' are exchanged by the covering involution of q and G216 acts

transitively on hi, • • •, 1)4 :

b) the j-invariant of any smooth fibre of hor h; is equal to zero ;

c) each fibration has 6 reducible fibres of Kodaira's type IV, i.e. the union

of three smooth rational curves intersecting at one point. The singular points
in the reducible fibres of hi and h' are mapped by q to the vertices of the

triangle 1) ;

d) each fibration is jacobian.

Proof. Consider the equations (17) for X in P1 xP2. The projections on
the first factor |il -f F®, i 1,...,4 are elliptic fibrations on X since

the fibre over a generic point (it. c) is a smooth plane cubic. A second set

of elliptic fibrations on X is given by h/ h/ ° <r, where a is the covering
involution of q. Since all these fibrations are equivalent modulo the group
generated by <j and G216, it will be enough to prove properties b), c) and d)
for hi-

The fibre of hi over a point (it, r) is isomorphic to the plane cubic defined

by equation (18). This equation can be also written in the form

(112 + v2 + s/3uv)x3 + (en2 + e2v? 4- s/3uv)y3 •+ (< 2/r + erf + V3uv)^ 0.

Hence it is clear that all smooth fibres of hi are isomorphic to a Fermât cubic
i.e. they are equianharmonic cubics. This system of plane cubics contains

exactly 6 singular members corresponding to the vanishing of the coefficients

at v3, y3 and z3. Each of them is equal to the union of three lines meeting
at one point and defines six singular fibres of type IV of the elliptic fibration

hi. The singular points of these reducible fibres are the inverse images of the

vertices r0, tq, v2 of the triangle 7j under the map q (see (7) in Section 2).

This proves assertions b) and c).

It remains to show that the elliptic fibration hi has a section. We thank

N. Elkies for explicitly finding such a section. It is given by

(x, y, z) ((1 - e)u + d0v, (1 - )u + d2v, (1 - e)u + dxv)

where (do,di,d2) igfi-sßiC+ l,e\/2).
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REMARK 7.6. Consider the map

l>2 - I>2 (v.v.r) >- -UCr'.-').

The image of the curve Ce is a conic T and the preiinages of the tangent
lines to T are plane cubics that are everywhere tangent to C(). The map
induces a degree 9 morphism from X to P' x P1 isomorphic to the double

cover of P2 branched along T. The projections to the two factors give the

fibrations hi and hj.
Note that each family of everywhere tangent cubics to C() corresponds to

an even theta characteristic 9 on C(, with h°(9) 2.

Let 7r: Y —> P1 be a jacobian elliptic ûbration on a K3 surface Y. The

hbre of 7r over the generic point r/ is an elliptic curve Y„ over the held of
rational functions K of P1. The choice of a section E of 7r ûxes a K-rational
point on Y:j and hence allows one to ûnd a birational model of Yv given by
a Weierstrass equation yz—x?—ax — b 0, where a. h G K. The construction

of the Weierstrass model can be "globalized" to obtain tire following birational
model of Y (see [10]).

PROPOSITION 7.7. There exists a birational morphism f: Y —> W, where

W is a hypersurface in the weighted projective space P(l, 1,4,6) given by

an equation of degree 12

y2 — „v3 — A(u, v)x — B(u, v) 0,

with A(u,v). binary forms of degrees 8 and 12 respectively. Moreover :

1. The image of the section E is the point p (0,0,1,1) G W. The

projection (u. v. v. y) (u, v) from p gives an elliptic fibration ir': W' —)> P1

on the blow-up W' of W with center at p. It has a section defined by the

exceptional curve E' of the blow-up.
2. The map f extends to a birational morphism f'\Y—rW' over P1

which maps E onto E' and blows down irreducible components of fibres of
7T which are disjoint from E to singular points of W".

3. Each singular point of W' is a rational double point of type

Af,,D„,E^,Ej or Es- A singular point of type A„ corresponds to a fibre
of 7T of Kodaira type In+i, III (if n 1), or IV (if n 2). A singular
point of type D„ corresponds to a fibre of type /*+4. A singular point of type

Ee^Ej^Es corresponds to a fibre of type IV". Ill'. IT respectively.
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The elliptic surface W is determined uniquely, up to isomorphism, by
the elliptic libration on Y. It is called the Weierstrass model of the elliptic
hbration ff.

It is easy to find the Weierstrass model of the elliptic libration fq : X —> P1

on our surface X.

LEMMA 7.8. The Weierstrass model of the elliptic fibration lq is given
by the equation

Proof. We know from Proposition 7.5 that the /-invariant of a general
fibre of I is equal to zero. This implies that the coefficient A(u,v) ill the

Weierstrass equation is equal to zero. We also know that the fibration has

6 singular fibres of type TV over the zeros of the polynomial

(m2 + v2 + \/3uv)(eii2 + e2v2 + \ 3ur)U2n' + ev2 + \ 3uc) it6 + v6

Since each of the fibres is of Kodaira type TV, the singularity of W over a root
of u6 + u6 must be a rational double point of type ,43, locally isomorphic to
the singularity y2 + a3 — j2. This easily implies that the binary form B(u. r) is

equal to (u6+v6)2 up to a scalar factor which does not affect the isomorphism
class of the surface.

LEMMA 7.9. Let Y be a K3 surface with Picard number 20 having a

non-symplectic automorphism of order 3. Then the intersection matrix of Ty
with respect a suitable basis is given by

for some m £ Z, m > 0.

Proof. Let / be a non-symplectic automorphism of order 3 on Y.

By Theorem 7.Iii), /* acts on 7>(S>C with eigenvalues e, e2. Let .v g l'y,
.r f 0, then

Nöte that x2 2m for some positive integer m because the lattice Ty is even
and positive definite. Then the intersection matrix of Ty with respect to the

basis x,—f*(x) is .WJ—m). See also Lemma 2.8 in [45].

y2 - x3 - (u6 + v6)2 0.

(19)

o (v +f(x)+r )2<*),rw) 2(x,r(x))fx2.
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The proof of tlie following theorem follows a suggestion of M. Schuett.

THEOREM 7.10. The intersection matrix of the transcendental lattice of
the K3 surface X with respect to a suitable basis is

Proof. Consider the automorphism a of order 6 of X that acts on
the Weierstrass model by the formula (u,n,x,y) H- (pupvp)f'x,rfy), where

i] e"'/3. It is easy to see that a acts freely outside the union of the two

nonsingular libres là). /'Ç. over the points (it. c) (1,0) and (0,1). The action
of the cyclic group G (a) on each of the fibres is an automorphism of
order 6 such that G has one fixed point, (a3) has 4 fixed points and (a2)
has 3 fixed points.

Let X/G be the orbit space. The images F0 and /'A, of /*0 and

in X/G are smooth rational curves and X/G has 3 singular points on each

of these curves, of types ,4s, ,43 and ,42. A minimal resolution of X/G is

a K3 surface Y. The elliptic fibration hi on A defines an elliptic libration

p: Y > P1 with two fibres of type II*, equal to preimages of Fo and /'A,
on Y, and one fibre of type IV, the orbit of the six singular fibres of hi •

It is easy to compute the Picard lattice S y of Y. Its sublattice generated

by irreducible components of fibres and a section of p is isomorphic to

U 0 EgfB Eg {/> Â2, where U is generated by a general fibre and a section.

It follows from the Sliioda-Tate formula in [49] that this sublattice coincides

with Sy and that the discriminant of its quadratic form is equal to —3. Since

the transcendental lattice Ty is equal to the orthogonal complement of Sy in
the unimodular lattice L ll2(X, Z), this easily implies that Ty is a rank 2

positive definite even lattice with discriminant equal to 3. There is only one

isomorphism class of such a lattice and it is given by 42(— 1

The transcendental lattices of the surfaces X and Y are related in the

following way. By Proposition 5 of [50], there is an isomorphism of abelian

groups (Ty) ÖQ — (/y)'' 7 Q- defined by taking the inverse transform
of transcendental cycles under the rational map X —7 Y. Since G acts

symplectically on X, we have (7'V)G If Lfiider tins map the intersection
form is multiplied by the degree of the map, equal to 6. This implies that

Tx has rank two and contains 7)46) A2(—6) as a sublattice of finite index.

Note that the automorphism g4(x,y,z, w) (v, ey, ez, ew) of X clearly fixes
the curve j.v 0} pointwist. Hence <54 is 11011-symplectic by Theorem 7.1. It
follows from Lemma 7.9 and the previous remarks that Tg A2(—m). Hence
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we only need to determine the integer m. As we saw above, If contains a

sublattice isomorphic to ,42(—6). hence m {1,2,3,6}. We now exclude all

possibilities except the last one

The K3 surface with Tv ,42(— 1 was studied in [44], in particular all

jacobian elliptic librations on Y are classified in Theorem 3.1. Since none
of these librations has the same configuration of singular fibres as \ji (see

Proposition 7.5), tins excludes the case m 1.

The K3 surface with 7> A2(—2) is isomorphic to the Kummer surface

from Theorem 8.6 below. All its jacobian fibrations are described in [44],
Theorem 3.1 (Table 1.1) and, as in the previous case, none of them has

6 fibres of type IV. Tins excludes the case m 2.

Finally, a direct computation shows that A2(—3) does not contain a

sublattice isomorphic to 42(—6). In fact, since the equation it + y2 — .yv 2

has no integral solutions, then A2(—3) does not contain any element with
self intersection 12. Tins completes the proof of our theorem.

We conclude tins section by giving another model for the surface X.

PROPOSITION 7.11. The K3 surface X is birational to the double cover

of P2 branched along a sextic with 8 nodes which admits a group of linear
automorphisms isomorphic to A4.

Proof. The lift g0 of the involution g0 to the cover X {u'2 +
<h6(v, y, z) 0} given by g0(x,y. z- «') (v. c-y. </•) is a non-symplectic
involution. The fixed locus of go is the genus two curve L() winch is the

double cover of the harmonic polar L() {y — z 0} branched along L0 fi Cf.
The quotient surface R X/(g0) is a Del Pezzo surface of degree 1, the

double cover of P2/(po) — Q, where 0 is the quadratic cone with vertex

equal to the orbit of the fixed point po (0,1, —1) of go. We denote by B

the image of Z,(l in R.

Let b : R -A P2 be the blowing-down of 8 disjoint (—1)-curves on R to

points ,v I,.... % in P2. The pencil of cubic curves through the eight points
is the image of the elliptic pencil | — K/,: \ on R. Note that the stabilizer of the

point po in the Hessian group is isomorphic to 2 44 with center equal to (go),
thus the group 44 acts naturally on R and on the elliptic pencil | — Kk \. The

curve B £ \—2KR\ is an 44-invariant member of the linear system \—2KR\

and b(B) is a plane sextic with 8 nodes at the points .v | sy. Thus we see

that X admits 9 isomorphic models as a double cover of the plane branched

along a 8-nodal sextic with a linear action of 44.
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REMARK 7.12. In [34] the authors study a K3 surface hi rationall}
isomorphic to the double cover of P2 branched along the union of two triangles
from the Hesse pencil. This surface has transcendental lattice of rank 2 with
intersection matrix 11 J) and it admits a group of automorphisms isomorphic
to A6 xi Z/4Z.

8. A K3 SURFACE WITH AN ACTION OF SL(2,F3)

We now study the K3 surface which is birational to the double cover of
P2 branched along the sextic C'6 defined by <hg 0.

We recall that C'6 has 8 cusps in the base points ,qg of the Hesse

pencil. The double cover of P2 branched along C'6 is locally isomorphic to
z2 I .V2 I \3 0 over each cusp of C'6, hence it has 8 singular points of
type ,42 (see [5]). It is known that the minimal resolution of singularities of
this surface is a K3 surface and that the exceptional curve over each singular
point of type 42 is the union of two rational curves intersecting in one point
(see for example [40], §2).

In this section we will study the properties of this K3 surface, which will
be denoted by X'.

PROPOSITION 8.1. The K3 surface X' is birationally isomorphic to the

quotient of the K3 surface X by the subgroup T of G%\&. In particular, the

group SL(2, F3) is isomorphic to a group of automorphisms of X'.

Proof. The minimal resolution of the double cover of P2 branched along

Cf can be obtained by first resolving the singularities of C'6 through the

morphism 7 : S -4 P2 from diagram (12) and then taking the double cover
q': X' —)• S branched over the proper transform C6 of C'6 ([5]). Since

3~1 (p(Cf,)) Cg we have the commutative diagram

X X/T i——— X'

(20)

P2 —p—p p2/r yjl— 5 —2—^ p2
;

where q is the double cover branched along C(), q' is the minimal resolution
of the double cover branched along C'6, f and p are the natural quotient

maps, ri is a minimal resolution of singularities and the bottom maps are as

in diagram (12). This gives the first statement. The second one follows from
the isomorphism G2ië/r SL(2, F3).
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REMARK 8.2. The points in X with nontrivial stabilizer for the action
of T are exactly the 24 preimages by q of the vertices of the triangles in
the Hesse pencil. In fact these points belong to 8 orbits for the action of
F and give 8 singular points of type A2 in the quotient surface X/T (see

Proposition 5.1).

We now describe some natural elliptic librations on the surface X'.

PROPOSITION 8.3. The pencil of lines through each of the cusps of C'6

induces a jacobian fibration on X' with 3 singular fibres of Kodaira 's type
I(] and one of type L, (i.e. cycles of 6 and 3 rational curves respectively).

Proof. Let p be a cusp of C'6 and hp be the pencil of lines through p.
The generic line in the pencil intersects C6 in p and 4 other distinct points,
hence its preimage in X' is an elliptic curve. Thus lip induces an elliptic
fibration lip on X'.

The pencil hp contains 3 lines through 3 cusps and one line through
2 cusps of Cg, since the cusps of Cr6 are the base points of the Hesse pencil.
The proper transform of a line containing 3 cusps is a disjoint union of
two smooth rational curves. Together with the preimages of the cusps, the

full preimage of such a line in X' gives a fibre of It,, of Kodaira's type /g,
described by the affine Dynkin diagram ri5. Similarly, the preimage of a line

containing 2 cusps gives a fibre of Jip of type I3 (in tins case the proper
transform of the line does not split). Thus hp has three fibres of type I6 and

one of type I3.

The exceptional divisor over the cusp p splits into two rational curves

c'i, ('2 on X' and each of them intersects each fibre of lip in one point, i.e. it
is a section of hp.

PROPOSITION 8.4. The elliptic fibrations hi,If, i 1,... ,4, on X induce

8 elliptic fibrations f);, f); on X' such that

a) b; and Ip are exchanged by the covering involution of q' and SL(2,F3)
acts transitively on t)ly,.., b4

b) the j-invariant of a smooth fibre of the elliptic fibration f); or I),- is

equal to zero ;

c) each fibration has two fibres of Kodaira's type IV* (i.e. 7 rational

curves in the configuration described by the affine Dynkin diagram £g and

two of type IV.
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Proof. It will be enough to study the (ibration fq, since all otlier fibradons

are projectively equivalent to this one by the action of G2i(, and <x

Let q, fj2 be the generators of F as in Section 4. The polynomials P|. P\
and Fi are eigenvectors for the action of F (Remark 5.3), hence it is clear

from equation (18) that T preserves the elliptic libration fq • In fact, <]\ acts on
the basis of the libration as an order three automorphism and fixes exactly the

two fibres F\, li\ such that q(F\ If and q(P\ B[. The automorphism

g2 preserves each fibre of 1), and acts on it as an order 3 automorphism
without fixed points. Hence it follows that the image of the elliptic fibration
fq by the map <x_1r in diagram (20) is an elliptic fibration on X'. We will
denote it by fq.

Now statements a), b), c) are easy consequences of the analogous statements

in Proposition 7.5.

According to Proposition 5.2 the cubics If and B[ contain the 9 vertices

of the triangles T2,7-,, I4 in the Hesse pencil. Hence the fibres If P\ each

contain 9 points in the preimage of the 9 vertices by q. It follows from
Remark 8.2 that the images of If and E[ in X/T each contain 3 singular
points of type A2. The preimage of one of these fibres in the minimal resolution
X' is a fibre of type IV* in the elliptic fibration h

1 on X' (the union of 3

exceptional divisors of type A2 and the proper transform of If or E\

It can easily be seen that the 6 singular fibres of fq of type IV belong
to two orbits for the action of F. In fact, the singular points in each of these

fibres aie the preimages by q of the vertices of 7) (see Proposition 7.5). The

image of a singular fibre of type IV in X/T is a rational curve containing a

singular point of type A2 and its preimage in X' is again a fibre of type IV.
Hence fq has two fibres of type IV.

REMARK 8.5. It can be proved that the image of any of these fibrations

by the cover q' is a one-dimensional family of curves of degree 9 in P2

with 8 triple points in qi,...,q% and 3 cusps on C'6. In fact, q' sends the

fibre &~[ r(lf of fq to the union of the 6 inflection lines through qi and

q[ not containing qo, where the 3 lines through 171 are double. Clearly, the

analogous statement is tine for E[ (the lines through p\ are now double).
Hence the image of a fibre of fq is a plane curve D of degree 9 with 8

triple points at qi,..t,qg. Moreover, the curve D intersects the sextic C'6

in 6 more points and since its inverse image in X' has genus one, then D
must also have three cusps at smooth points of C'6 which are resolved in the

double cover q'.
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THEOREM 8.6. The K3 surface X' is birationally isomorphic to the

Kummer surface Kuin(/-., xlf where E, is the elliptic curve with fundamental
periods 1, e. Its transcendental lattice has rank 2 and its intersection matrix
with respect to a suitable basis is

Proof. We will consider one of the jacobian fibrations on X' described

in Proposition 8.3. Let M be the lathee generated by the two séchons

ei, <?2, the components of hie 3 singular fibres of type If, not intersecting
<?2 and hie components of hie fibre of type I3. The intersection matrix
of M has determinant —22 • 3s, hence rank M rank Sxr 20 and

rank Tx> 2.

The non-symplectic automorphism 1/4 of order 3 on X induces an

automorphism g4 on X'. Recall that g4 fixes the curve R {x 0}
on X, hence g4 fixes hie proper transform of f(R) on X'. Thus by
Theorem 7.1, g4 is a non-symplectic automorphism of order three on X'.
Tins implies, as in hie proof of Theorem 7.10, that the intersection matrix
of Tfr is of hie form (19) with respect to an appropriate choice of

generators; in particular its discriminant group Ajx, ijï/ïjC is isomorphic
to Z /3Z • • ° Z/3wZ.

A direct computation of M* shows that the discriminant group Am is

isomorphic to Z/3Z ©Z/6Z2. Since M is a sublatrice of finite index of Sx>,

the discriminant group Ayx, Agx, is isomorphic to a quotient of a subgroup
of Am• This implies that m <2.

By Theorem 3.1 (Table 1.1) in [44], the unique K3 surface with
transcendental lathee as in (19) with m 1 has no jacobian elliptic hbration
as in Proposition 8.3. Hence m 2 and by [30], X' is isomorphic to the

Rummer surface of the abelian surface If X If

REMARK 8.7. i) In [32] it is proved that all elliptic hbrahons on the

Rummer surface Rum(/L x If are jacobian. All these hbrahons and their
Mordell-Weil groups are described in [44]. In particular it is proved that the

Mordell-Weil group of hie elliptic hbration in Proposition 8.3 is isomorphic
to Z0Z/3Z and that those of the 8 elliptic hbrahons in Proposition 8.4 are

isomorphic to Z2® Z/3Z (see Theorem 3.1, Table 1.3, No. 19, 30).

ii) The full automorphism group of X' has been computed in [33], but hie

full automorphism group of X is not known at present.
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