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TILE HOMOTOPY GROUPS

by Michael Reid

Abstract. The technique of using checkerboard colorings to show the impossibility

of some tiling problems is well-known. Conway and Lagarias have introduced
a new technique using boundary words. They show that their method is at least as

strong as any generalized coloring argument. They successfully apply their technique,
which involves some understanding of specific finitely presented groups, to two tiling
problems. Partly because of the difficulty in working with finitely presented groups,
their technique has only been applied in a handful of cases.

We present a slightly different approach to the Conway-Lagarias technique, which
we hope provides further insight. We also give a strategy for working with the finitely
presented groups that arise, and we are able to apply it in a number of cases.

1. Introduction

A classical problem is the following (see [3, pp. 142, 394], [7]).

Remove two diagonally opposite corners from a checkerboard. Dominoes
are placed on the board, each covering exactly two (vertically or horizontally)
adjacent squares. Can all 62 squares be covered by 31 dominoes

Figure 1.1

Mutilated checkerboard
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The key to the solution is to note that each domino covers one black square
and one red square, whereas the "mutilated checkerboard" has 32 squares of
one color and 30 of the other color. Therefore we see that it cannot be tiled.

A smaller version of this problem uses a mutilated 4x4 checkerboard.

For this problem, exhaustive analysis is easy; there are two ways to cover
the marked square. In the first case, this forces the location of the next 3

dominoes, and isolates a square that cannot be covered. In the second case, the

next 5 dominoes are forced, again isolating a square that cannot be covered.

B

(a) (b)

(c)

Figure 1.2

Analysis of mutilated 4x4 checkerboard :

(a) First cell to cover, (b) Two ways to cover it. (c) Both cases force a contradiction.

A similar exhaustive analysis can be applied to the mutilated 8x8
checkerboard, but it is dramatically more cumbersome. The elegance of this

approach may be questionable, but its validity is fine.

This is the type of problem we will consider in this paper. We will have a

finite set T of polyomino prototiles, and a finite region we are trying to tile
with T. There is no restriction on the use of tiles in T ; we may use any
tile repeatedly, or we may fail to utilize any given tile. We will be interested

in negative results, where we can show that the region cannot be tiled. In

light of the remarks above concerning exhaustive search, we will be especially
interested in techniques that can prove that infinitely many such regions are

untileable. (Although the example of the mutilated checkerboard is only a

single shape, it is clear that the same technique applies to infinitely many
regions.)
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To fix ideas, we will mainly focus on the following type of tiling problem.

Our protoset will be a small set of polyominoes, and we'll be interested in

tiling rectangles with the set. The same techniques work with little modification

for protosets consisting of "polyiamonds" or "polyhexes".

Another typical example is the following. Can 25 copies of the shape

"1—p-1I cover a 10 x 10 square (The tiles may be rotated and/or reflected.)

Again, the answer is "no". Label the squares in alternate rows by 1 and 5,

as shown.

1 1

5 5; 5; 5; 5; 5; 5; 5; 5 5

1 i i i l i : i i i i i i i 1

5 5; 5; 5; 5; 5; 5; 5; 5 5

1 l l;l;l;l;l l;l 1

5 5; 5; 5; 5; 5; 5; 5; 5 5

1 1 : l ; l ; l ; 1 ; 1 ; l : 1 1

LT) 5; 5; 5; 5; 5; 5; 5; 5 5

1 1 ; l; l; l; l ; 1 | 1 ; 1 1

5 5; 5 ; 5; 5; 5 ; 5; 5; 5 5

Figure 1.3

10 x 10 square

Then every placement of a tile covers either one 1 and three 5's, or one 5

and three 1 's. In either case, the total it covers is a multiple of 8. However,
the 10 x 10 square covers a total of 300, which is not a multiple of 8, so

the square cannot be tiled.

Although the 10 x 10 square is a single shape, and thus can be exhaustively

examined, this same numbering argument shows that ~~j—.—| cannot tile any

rectangle whose area is congruent to 4 modulo 8. See [8], [10], [11, pp. 42-43]
for this example. We will show below (Proposition 2.10) that this type of
argument can always be done by a suitable numbering of the squares.
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2. Tiling and integer programming

Here we translate a polyomino tiling problem into an algebra question.
Consider, for example, the problem of tiling the fairly simple shape

Figure 2.1

Region to tile with dominoes

by dominoes. For each possible tile placement, we introduce a variable, xt
which indicates how many times that placement occurs in the tiling.

Figure 2.2

Possible tile placements and associated variables

MO

In particular, its value will be either 0 or 1. Each cell of the region gives a

linear equation, which indicates that the cell is covered exactly once. Thus,

for the example of Figure 2.1, we get the system of linear equations

X\ + Xß -

x3 + x6

+ Xj

(2.3)

xi+x2

X2

X3 + X4

X4

*5

*5

+ Xj + X%

+ ^8

+ Xg

+ Xg + X\q

+ *10 —
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A tiling then corresponds to a solution to the system above. However, the

converse is not true ; as noted above, the value of each variable must be either

0 or 1. A solution to the system in which every variable takes the value 0

or 1 indeed corresponds to a tiling.

Instead of making this requirement on the variables, it is sufficient (and

perhaps more natural) to insist only that the values be non-negative integers.

A linear system, such as (2.3) above, in which the coefficients are non-

negative integers, where we seek solutions in non-negative integers, is one

form of the integer programming problem. It is known that the general integer

programming problem is NP-complete, see [16]. It has also been shown that

the general problem of tiling a finite region by a set of polyominoes is

NP-complete, see [6], [12].

Linear algebra and signed tilings

If we relax the condition that the variables take non-negative values, we
have a more tractable, although somewhat different problem. Indeed, it is

simply a linear algebra problem, albeit over Z, but its resolution by row-
reduction is straightforward.

A solution to (2.3) in integers, possibly negative, corresponds to a "signed
tiling", i.e. where tiles may be subtracted from the region. Equivalently, we
can think of allowing "anti-tiles". Again however, we do not quite have a

one-to-one correspondence, because a signed tiling may utilize cells outside
the region. Thus it is appropriate to consider all the cells of the square lattice
when considering signed tilings.

Tile homology groups

Following Conway and Lagarias, we define the tile homology group
of a protoset T. Let A be the free abelian group on all the cells
of the square lattice. To a placement of a tile in T, we associate
the element of A which is 1 in those coordinates whose cell is covered

by the tile placement, and is 0 in all other coordinates. Note that
this element depends upon the particular placement of the tile. In the
same way, to a region, we also associate an element of A. Again, this
element depends upon the location and orientation of the region. For
simplicity, we will consider a region to be a fixed subset of the square
lattice.
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Definition 2.4. The tile homology group of T is the quotient H(T)
A/B(T), where B(T) Ç A is the subgroup generated by all elements

corresponding to possible placements of tiles in T.

The relevance of the tile homology group is clear. A region R has a tiling
by T if and only if the element corresponding to R is in the submonoid

of A generated by elements corresponding to tile placements, and it has a

signed tiling if and only if the corresponding element is in B(T). Thus H(T)
measures the obstruction to having a signed tiling by T •

We introduce some conventions that will be useful. The cell with lower
left corner at the point (ij) we be called simply the (ij) cell. We let ay
denote the element of A corresponding to this cell, and let ay denote its

image in H(T).
The tile homology group is defined by infinitely many generators and

infinitely many relations. In this form, it is somewhat difficult to use. In a

number of simple cases, we can show that it is finitely generated.

Example 2.5. T (mi. both orientations allowed. H(T) is defined

by
Generators :

Relations :

Note that we have

ay + ai+\y — 0

äij + äij+1 0

D

i,je Z

i,j e z
hi e Z

Figure 2.6

Translation of a square by 1 diagonal unit

which shows that ay - äi+\y-\ 0 in H(T). Similarly, by rotating this

figure by 90 degrees, we obtain ay — 0. These show that H(T) is

generated by the two elements ä0o and ä01. Now the relations above collapse

into a single relation between these two generators: äoo + ßoi 0. Thus we

see that H(T) Z, and a specific isomorphism is given by [R] i-A (b - r),
where the region R has b black squares and r red squares. This shows that a

region has a signed tiling by dominoes if and only if it has the same number

of black squares as it has red squares.
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Example 2.7. T {

the equation

—;—« }, all rotations and reflections allowed. From

ETE

Figure 2.8

Translation of a square by 2 units

we see that äLj — ä/+2j and similarly, we have aLJ 2. Thus H(T) is

generated by äoo,^ob^io and d\ \. The relations become

2äoo + äoi + äio — 0

äoo + 2äoi + ä\i 0

äoo T 2äio + ci\ \ — 0

Soi + äio + 2ä\ i 0

so we easily find that H(T) Z x Z/4Z. A specific isomorphism is given

by [R] (A — B — C + D, (2A + B - C) mod 4), where the region R contains

A [respectively, B, C,D] (ij) cells with i and j both even [respectively, i
even and j odd, i odd and j even, i and j both odd]. From this analysis, we

can easily find the numbering used in Figure 1.3 above.

In general, the tile homology group will not be finitely generated. A simple

example that illustrates this is the following.

Example 2.9. Let T= { —j- }. It is easy to show that HÇT) is a free

abelian group on the generators which are images of all (ij) cells with i 0

or j 0. In particular, H(T) is not finitely generated.

We now show that the types of proofs given in the examples of the

introduction can always be given using a suitable numbering of the cells of
the square lattice.

PROPOSITION 2.10. Let R be a region that does not have a signed tiling
by the protoset T. Then there is a numbering of all the cells in the square
lattice with rational numbers such that

(1) any placement of a tile covers a total that is an integer, and

(2) the total covered by the region is not an integer.
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Proof. Let r G H(T) be the image of the region R in the tile homology
group, which by hypothesis, is non-trivial. Let (r) Ç H(T) be the cyclic
subgroup generated by r. Note that there is a homomorphism cp: (r) -» Q/Z
with <p(r) f=- 0. For example, if r has infinite order, then ip may be defined

by <p(r) \ mod Z, while if r has finite order, n > 1, then we may take

<p(r) — \ mod Z. Now Q/Z is a divisible abelian group, so the homomorphism
(p extends to a homomorphism H(T) Q/Z, also called (p, which is
defined on all of H(T). Since A is a free abelian group, the composite map
A -» A/B(T) — H(T)-^Q/Z lifts to a homomorphism f>\ A -A Q, such that
the following square commutes

ib

A—

H(T) —Q/Z
where the vertical arrows are the natural projections. Then ^ defines a

numbering of the squares with rational numbers. Moreover, B(T) is in the

kernel of A Q/Z, which means that every tile placement covers an integral
total. Also, R covers a total that is not an integer, because ip(r) ^ 0.

Remark 2.11. In many cases that we have examined, H(T) is finitely
generated, so that ip(H(T)) Ç Q/Z is also finitely generated, whence

ip(H(T)) Ç ^Z/Z for some integer N. In such cases, it seems convenient

to clear denominators by multiplying everything by N. We thus obtain a

numbering of the squares by integers, such that

(F) any placement of a tile covers a total divisible by A, and

(27) the region covers a total that is not divisible by N.

This shows that generalized checkerboard coloring arguments such as in
[10, Thm. 6] can be given in a simpler form. We provide a numbering proof
of Klarner's result, which is based upon his coloring.

Proposition 2.12. Let T — { j }, with all orientations allowed.

If T tiles a rectangle, then its area is divisible by 16.

Proof. We must show that T cannot tile a (2m +1) x (16^ + 8) rectangle

or a (4m + 2) x (8n + 4) rectangle. Number the squares by
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'5 if i 0 mod 4,

(ij) i-4 < -3 if i 2 mod 4, and

1 if i is odd.

Then each tile covers a total of either 0 or 16, depending on its placement. In

particular, it always covers a multiple of 16. However, a (2m + 1) x (16n + 8)

rectangle covers a total that is congruent to 8 modulo 16, and so does a

(4m + 2) x (8n + 4) rectangle.

Remark 2.13. Proposition 2.12 uses a single numbering to show that

both types of rectangles cannot be tiled. In general, one may need several

different numberings to show that several regions cannot be tiled.

Remark 2.14. It is not hard to show that we can translate a square by
4 units, and then it is straightforward to calculate that H(T) Z5 x (Z/4Z).

3. B OUNDARY WORDS

In this section, we describe the boundary word method of Conway and

Lagarias. This is a non-abelian analogue of tile homology, although that may
not be immediately clear from the construction

We must make an important assumption here. Our prototiles must be simply
connected. We also assume that they have connected interior, although this
condition can be relaxed in some cases. Such a tile has a boundary word,
obtained by starting at a lattice point on the boundary, and traversing the

boundary. For definiteness, we will always traverse in the counterclockwise
direction. A unit step in the positive y [respectively, y] direction is transcribed
as an x [respectively, y]. A step in the negative x [respectively, y] direction
is transcribed as x~l [respectively, y-1]-

Example 3.1. Consider the following hexomino with the indicated base

point.

xyxyx 2yx ly 3x

Figure 3.2

Example of boundary word
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Its boundary word is xyxyx 2yx ly 3x. We note that the boundary word
depends upon

(1) the choice of base point, and

(2) the particular orientation of the tile.

With regard to (1), a different base point gives rise to a conjugate boundary
word. Condition (2) forces us to use translation-only tiles; therefore if we
want to allow rotations and/or reflections, we must explicitly include each

valid orientation in our protoset. This is actually advantageous, because we

may use this to restrict the orientations that occur, for example, to forbid
reflections of a tile. We will do this in one example below.

The significance of boundary words is the relationship between the

boundary word of a region and the boundary words of the tiles that occur in
a tiling. This is given by the following (note that our statement is slightly
stronger than that given by Conway and Lagarias).

THEOREM 3.3 (Conway-Lagarias). Suppose that the simply connected

region R is tiled by 7j, 72, • • •, Tn, one copy of each. Then a boundary
word of R can be written as

Wr WiW2 Wn

where Wi is conjugate to a boundary word of 7), this being an identity in
the free group on the generators x and y.

Proof We argue by induction on n. The case n 1 is trivial. So suppose
that n > 1, and that the theorem holds for all simply connected regions tiled
by fewer than n tiles. Fix a tiling of R by ,r2,..., Tn, and Consider one

of the tiles, T, that meets the boundary of R. Suppose it meets the boundary
along k > 1 segments, some of which may be isolated points. Removing T
from the region results in a new region with k components, R\,R2,... ,Rk,
some of which may touch at a corner. We label the boundary word of each Rt

as vflut, where ut is the word along the part of the boundary shared with R,
and Vi is along the part shared with the boundary of the tile T. Let 4, f2, • • • > h
be the words along the segments where T meets the boundary of R. Then

we may take for a boundary word of R the element wr t\U\t2u2 • • • tkuk.

A boundary word for T is then wr t\V\t2v2 • • -tkvk. (In Figure 3.4, t2 is

the empty word.)
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Figure 3.4

Decomposition of tiling

Thus we have

(3.5) Wr wTwRl WRt

where each wRi (ti+\vi+iti+2Vi+2• • • hn>" '(<•,• i*',-i'; :
• • tkvk)

is a conjugate of the boundary word of f?,. The induction hypothesis applies

to each R,, and each tile occurs precisely once in T and the tilings of the

Ri's. Thus (3.5) implies that

Wr — W<j(1)^(7(2) ' ' ' tUa(n)

where a is a permutation of {1,2,..., n}, and Wi is conjugate to a boundary
word of T(. It is easy to show that this implies that wr W\W2 - wn where
each Wi is conjugate to wt. This completes the induction and the proof.

An immediate consequence is the following.

COROLLARY 3.6. Suppose that x and y are elements of a group G, such

that the boundary word of every tile in T is the identity element of G. If
a (simply connected) region can be tiled by T, then its boundary word also
gives the identity element of G.

Remark 3.7. The converse of Corollary 3.6 is false in general, even if
G is taken to be the "largest" group in which the boundary words of all tiles
in T are trivial. This is due to the non-abelian analogue of signed tilings (see

Corollary 6.6 below).
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EXAMPLE 3.8. T Il I, }, allowing all orientations. Torsten

Sillke asked if these two polyominoes could tile any rectangle whose area

is not a multiple of 3. The next result shows that the answer to his query
is "no".

is divisible by 3.

Proof. First note that it suffices to prove that T cannot tile any rectangle
both of whose dimensions are congruent to 1 modulo 3. For if T tiles a

(3m + 2) x (3n + 1) rectangle, then two of these tilings may be juxtaposed
to give a tiling of a (6m + 4) x (3n +1) rectangle. Similarly, if T tiles a

(3m + 2) x (3n + 2) rectangle, then it also tiles a (6m + 4) x (6n + 4) rectangle.
Thus we need only show that T cannot tile any (3m + 1) x (3n + 1) rectangle.
Let x be the 3-cycle (1,2,3) G 65, and let y be the 3-cycle (3,4,5). Then we

easily check that x3yx~3y~~1 xy3x~1y~3 xyxyx~lyx~ly~lx~ly~lxy~l 1,

so the boundary words of all tiles are trivial. However, the boundary word of
a (3m + 1) x (3n+ 1) rectangle is x3m+ly3n+lx~(3m+1^y~(-3n+1^ — (2,3,5), so

it cannot be tiled.

Remark 3.10. A lxl square has a signed tiling by T, so the tile
homology technique cannot prove this result.

Remark 3.12. One might suspect that every rectangular tiling by T uses

only the straight tromino. If this were the case, then the theorem would be

somewhat less interesting, and a proof could be given by a checkerboard type

argument. However, a 10 x 15 rectangle has a tiling by T which actually

uses the X pentomino.

Theorem 3.9. If T {I • • I, } tiles a rectangle, then one side

+

Figure 3.11

Signed tiling of a 1 x 1 square
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:

Figure 3.13

10 x 15 rectangle

QUESTION 3.14. Is there a rectangular tiling by T that uses exactly three

X pentominoes

Theorem 3.9 shows that the number of X's in a rectangular tiling must
be a multiple of 3. The tiling of Figure 3.13 has 6 X's and the following
tiling has 9.

Figure 3.15

10 x 21 rectangle with nine X pentominoes

From the tilings in Figures 3.13 and 3.15, it is easy to construct rectangular
tilings with 3 nX's,for any n >2.
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4. Tile homotopy groups

We establish some notation. Let P be the free group on generators x
and y. We may think of elements of P as paths on the square lattice. For a

protoset T, let Z(T) be the smallest normal subgroup of P that contains all

boundary words of tiles in T. Corollary 3.6 strongly suggests the following
definition.

Definition 4.1. The tile path group of T, denoted P(T), is the quotient

group P/Z(T).

Corollary 3.6 says that if a region R has a tiling by T, then its boundary
word is trivial in the tile path group. However, it may be difficult to work
with the tile path group directly. Theorem 3.9 above uses a representation of
the tile path group to show that the boundary word of a (3m + 1) x (3n +1)
rectangle is non-trivial.

Notation 4.2. From now on, we will use x and y to denote the free

generators of P, and x,y to denote their images in P(T).

The tile path group turns out to be "too big" in a sense. Let C Ç P be

the subgroup of closed words, i.e. those words that correspond to a closed

path. (For the square lattice, this is simply the commutator subgroup of P ;

for other lattices it won't necessarily be so.) It is clear that C is indeed a

subgroup, and is normal in P. Also, since every boundary word is a closed

word, we have Z(7~) Ç C. Now we have the insightful definition of Conway
and Lagarias.

Definition 4.3. The tile homotopy group of T is the quotient 7r(T)

C/Z(T).

The relevance of this group is two-fold. Firstly, we are interested in the

boundary word of a region, modulo Z(T). Since every boundary word is

closed, only elements of tt(T) need to be considered. Secondly, there is a

strong connection between the tile homotopy group and the tile homology

group, which we now examine.
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Relation between tile homotopy and tile homology

To understand the tile homotopy group, we first seek an understanding

of the group C of closed words. This is a subgroup of the free group P,

so the following classical result of Nielsen and Schreier is relevant. See [9,

Chapter 7, Section 2] for more about this. We sketch its proof, because we

are interested in producing an explicit set of free generators of C.

THEOREM 4.4. Any subgroup of a free group is also free.

Proof (sketch). Let G be a free group and let H Ç G be a subgroup.

Then G is the fundamental group of a bouquet of circles, X, one circle

for each generator. Subgroups of G are in one-to-one correspondence with

(connected) covering spaces of X. Thus H corresponds to a covering space

Y -A X, where elements of H are exactly those closed paths on X that lift to

closed paths on F, and the fundamental group of Y is precisely H. Since Y

is a graph (i.e. a 1-dimensional CW complex), the proof is finished by the

following proposition.

PROPOSITION 4.5. The fundamental group of a graph is free.

Proof (sketch). Let T be a graph, T Ç T a spanning tree, and {ea} the

set of edges in the complement of T. Suppose also that the edges ea are

equipped with a favored orientation. Then one shows that flr(r) is free on

generators {ga} which are in bijective correspondence to the edges {ea}.
The generator ga is the class of the path defined as follows. First, traverse a

path inside the tree T from the basepoint to the initial endpoint of the edge

ea, then cross the edge ea, and finally, return to the basepoint through the

tree T. It is easy to show that the ga 's generate irfT) ; that they form a set

of free generators is a consequence of Van Kampen's theorem.

By examining the details of this proof, we can identify a free generating
set for the group of closed words, C. Firstly, P is the fundamental group of a

bouquet of 2 circles, X. It is easy to identify the covering space corresponding
to C, this is simply the skeleton of the square lattice in the plane, call it Y.
Of course, there is no canonical choice of spanning tree of F, nor does there
seem to be a "best" choice. We will use the spanning tree consisting of all
horizontal edges along the v-axis, and all vertical edges. For the edges in the
complement, we choose their favored orientation to be right to left, as shown
in Figure 4.6.
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Figure 4.6

Spanning tree

Thus we see that C is a free group on the generators

by - .\J- 'v-'.v :vfor Z, Z \ {0}

However, it seems better to use a different set of free generators. We will use
the following set.

PROPOSITION 4.7. C is a free group on the generators

Cij x'yJxyx~ly~~1y~,
over all ij G Z.

Proof We just saw that C is freely generated by the elements by

xl+lyix~ly~ix~l for i G Z and j G Z \ {0}. Therefore we can express each

Cy uniquely as a word in the by 's ; the explicit expression is

r^i if 7=0,
(4.8) Cy-i if 7 — — 1

>

v bf1 bij+ i otherwise.

We can also express the fry's in terms of the Cy's; we get

f QöCiiCö-'-Qj-i if j > 0,
1 cp 1 cp2cyi3•••«)>•'ify< o•

Therefore the Cy 's generate C. Now we must show freeness. Let G be any

group, and for ij G Z, let gy be any element of G. We must show that

there is a unique homomorphism p: C -» G with p(Cy) #y for all ij.
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Expression (4.9) shows that any such p must satisfy

1 rn eu \ f 9i09iiQi2 • • • 9ij-1 if y > 0,
(4-10) ipity) — s _i _i _i -i r • MI 9ii_\9i^-29i.i-3 ' ' ' 9ij if J < 0 •

Since the 's are free generators, there is a unique homomorphism <p : C G

satisfying (4.10). Then equation (4.8) shows that indeed p(pij) gij for all

ij. This shows that the Cy9s are free generators, which completes the proof.

The significance of the Cy9 s is that Cy has winding number 1 around the

(ij) cell and has winding number 0 around all other cells. Now we are in

a good position to understand the relation between tile homotopy and tile

homology.

THEOREM 4.11 (Conway-Lagarias). The abelianization of the tile homo-

topy group of T is its tile homology group.

Proof We have 7r(T)ab (C/Z(T))ab Cab/(image of Z(T)). As C is

free on the generators Cy Cab is a free abelian group on the images of these

generators. The generators are in bijective correspondence with the cells of
the square lattice, so we may think of Cab as the free abelian group on these

cells. It remains to determine the image of Z(T) under this identification.

Z(T) is generated by all P-conjugates of boundary words of tiles in T. A
typical such generator has the form uwu~l, where u G P is arbitrary, and

w is a boundary word of a tile. This corresponds to a closed path (thus an

element of C), so it may be written uniquely as a word in the Cy9s. To

understand its image in Cab, we need to know the total weight with which
each c-y occurs. However, this weight is simply the winding number around
cell (ij), and the winding number is either 1 or 0, depending upon whether
the cell occurs in the tile placement or not. Thus the image of uwu~l is the

element in the free abelian group on cells that corresponds to this particular
tile placement. Now we see that 7r(T)ab Cab/(image of Z(T)) — A/B(T),
which is the tile homology group.

Hidden behind the scenes is a topological space, which we now bring to
the forefront. Let Y be the skeleton of the square lattice, which we have seen
in Figure 4.6. Note that Y —^ X is a normal covering map, where X is a

bouquet of two circles, and the group of deck transformations is Z2, acting
via translations of the square lattice.

From Y, we build a new space, called T(T), by sewing in a 2-cell into
every possible tile placement. This is a covering space for X(7~), which is
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constructed in a similar way. Namely, we sew in the boundary of a 2-cell along
the path corresponding to each boundary word of a tile in T. (Technically, we
must sew in a cell for every possible boundary word, where all possible base

points are considered.) Then Y(T) -A X(T) is also a normal covering map,
again whose group of deck transformations is Z2 acting via translations of
the square lattice. Moreover, the restriction to Y is the covering map Y —» X.

The fundamental group of X(T) is the tile path group P(T), and the

covering space Y(T) corresponds to the subgroup 7r(T) Q P(T). The first
homology group of Y(T) is the tile homology group, H{T). Thus Theorem
4.11 can be considered as a special case of the Hurewicz Isomorphism
Theorem.

5. Strategy for working with tile path groups

We have shown above how to translate tiling problems into problems
in finitely presented groups, so we might hope to be able to resolve such

questions. Unfortunately, the situation is grim. The so-called word problem,
as well as many related problems, is known to be unsolvable, which means
that no algorithm can answer the question for all possible values of the input.

This is not the end of our story, for we are not trying to solve every word

problem. We might hope, however optimistically, that the word problems that

arise for us can be solved, whether by hook or by crook. The algorithmic
unsolvability of these problems should serve to temper any optimism that we

can muster.

The tile homotopy method has been successfully applied in several cases,

see [2, Exercise for Experts], [4], [13], [14]. Despite these efforts* results have

been found in only a handful of cases. In this section, we give a simple strategy
for understanding tile homotopy groups, which allows many new cases to be

handled. In view of the difficulty in working with finitely presented groups,
we understand that our approach cannot be algorithmic, nor can we expect to
be able to apply it in all cases. Nonetheless, we are able to use our strategy
to handle numerous new cases.

The tile path group for a finite set T of prototiles is given by a finitely
presented group. We are more interested in the tile homotopy group, which
is a subgroup of infinite index. The infiniteness of this index is unfortunate,
in light of the following well-known result.
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PROPOSITION 5.1. If G is a finitely generated [respectively, finitely
presented] group, and H G G is a subgroup of finite index, then H is

also finitely generated [respectively, finitely presented].

The usual proof uses covering space theory, similar to the determination of
the group, C, of closed paths above. Moreover, in the finitely presented case,

a presentation of H can be computed explicitly. We will do this later, with the

help of the computer software package GAP [5]. There is plenty of interesting
combinatorial group theory involved in this, but it is well understood, so it is

not our place to discuss it here.

If the index (G : H) is not finite, then H can fail to be finitely generated.

A typical example exhibiting this behavior is the case C Ç P that we saw

earlier.

In general, the tile homotopy group will not be finitely generated. However,
in some special cases, it will be. The method of demonstrating this is a non-
abelian analogue of the technique for showing finite generation of the tile
homology group, as in Examples 2.5 and 2.7. In order to achieve this, we
need to find some relations in the tile path group.

THEOREM 5.2. Suppose that xm and yn are central in P(T), for some
positive m and n. Then the natural map P(T) -» P(T) P(T)/(x,n,yn)
induces an isomorphism of tt(T) onto its image, tt(T). Moreover, tt(T) has
index mn inside P(T) and it is generated by the images of the elements

Cij xlyjxyx~ly~ly~jx~l for 0 < i < m and 0 < j < n.

Proof Note that ir(T) is normal in P(T), with quotient P(T)/tt(T)
PjC Z2. This quotient is the group of translations of the grid, so
x and y map to rightward and upward translation by 1 unit each. Let
N (x'7\yn) Ç P(T), which, by hypothesis, is central in P(T). Now N maps
injectively to P(T)/ir(T), whence N and ir(T) intersect trivially. Thus 7r(T)
mapsjnjectively to P(T)/N P(T). This proves the first statement. Next, note
that P(T)ß(T) P(T)/Ntt(T) Z2/(image of x"\yn) ^ (Z/mZ)x(Z/nZ).
This shows that the index (P(T) : tt(T)) mn, as claimed. Finally, we recall
that 7r(7~) is generated by the elements q7 over all ij g Z. Since T77 is
central in P(T), we see that q7 ci+mJ, and cê ciJ+n, because yn is also
central. The last statement is then clear.

Theorem 5.2 is an important tool for calculating tile homotopy groups. We
revisit an example (3.8) we had seen earlier.
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THEOREM 5.3. The tile homotopy group of T {| ï 1, | ]} has

order 120, and it is a central extension of A$ by Z/2Z.

Proof The tile path group has the presentation

P(T) (x,y I ^yx^y'^xy^^y^^xyxyx^yx^y^x^y^xy'1) •

The relators show that x3 and y3 are central in P(T). Let P(T)
P(T)/(x3,y3) (x,y I x3,y3,xyxyx~lyx~1y~1x~1y~lxy~l). Then the projection

P(T) -» P(T) induces an isomorphism of 7r(T) onto its image n(T),
which has index 9 in the finitely presented group P(T). Thus we can compute
a presentation of tt(T). In this particular instance, we have an even better
situation, because the group P(T) turns out to be finite, and therefore iF(T)
is also finite. In fact, GAP quickly tells us that \P(T)\ 1080, so that ir(T)
has order 120, and its structure can be completely determined.

The utility of Theorem 5.2 depends on the ability to find relations in the
tile path group. It is known that this cannot be done algorithmically, but in
some cases, it is easy to find the necessary relations. In Theorem 5.3, it was
trivial to find them. In the next theorem, the relations are not quite as obvious.

ULt
}, with all orientations allowed.Theorem 5.4. Let T {

(a) The tile homotopy group tt(T) is solvable. Its derived series is

T) — Gq I) Gi G2 5 G3 {1}, with quotients Go/G\ — 7r(7~)ab

H(T) — Zx (Z/3Z), G1/G2 (Z/2Z)2 and G2/G3 G2 Z/2Z. Moreover,
these isomorphisms can be given explicitly.

(b) If T tiles an m x n rectangle, then (at least) one of m or n is a
multiple of 4.

(c) A 2x3 rectangle has a signed tiling by T.

Proof. We first claim that x12 and y12 are central in P(T). Consider the
two tilings shown in Figure 5.5.

Figure 5.5

Two small tilings
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The first shows that x3 commutes with y2xy2, and the second shows that

x4 commutes with y2xy. Therefore, x12 commutes with both y2xy2 and y2xy,

and thus also with y. Hence x12 is central in P(T), and similarly, y12 is

also central. Let P(T) P(T)/(x^2,y12). Theorem 5.2 shows that tt(T) maps

isomorphically onto its image in P(T), with finite index. Now we can compute

a presentation of ir(T), using GAP. We obtain

Go 7r(T) (zi,^2 I Z22lZ2^1-Z2Zr2^l^rlz2 2)
>

where the generators are z\ =x_1yxy_1 and Z2 =y2xy_2x_1. From this, we

find that

H(T) 7r(T)ab Z x (Z/3Z).

There are two different ways we can make this isomorphism explicit. Firstly,

we can express the image of each Cy in terms of z\ and Z2, and then use the

explicit presentation of 7r(7~) above. However, it is much easier to compute

H(T) directly. We have

Figure 5.6

Translating a square 3 units to the right and 1 unit up

which shows how we can translate a square 3 units to the right and 1 unit up.

By considering all 8 orientations of this relation, we find that we can translate

a square by 1 diagonal unit. Now it is easy to see that H(T) Z x (Z/3Z)
is given by [R] H- (b — r,(b + r) mod 3), where the region R contains b black

squares and r red squares in the usual checkerboard coloring.
Next we compute the commutator subgroup G\ — [Go, Go]. We cannot

do this directly, because it has infinite index in Go. However, we can utilize
the same technique as in Theorem 5.2 above. The first relator implies that
z\ fe^i)3- Therefore, z\ commutes with ziZi, and hence is central in G0.
Now let N (z]) G Go. We see that N maps injectively to GQb Go/Gi,
so that Gi maps injectively to G0/N (zuz2 \ z3v Z2Z\Z2Z\Z2Z\2.zxz^z^z^1).
Moreover, its image has index 9 in Go/N. Now GAP can compute a

presentation of Gi ; it tells us that

Gi (a\,a2 I aia2a\a2 l),
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where a\ — Z2Z\Z2 1z1
1 and a2 Z2Zt lz2 lZ\. Also, G\ is easily seen to be a

finite group (quaternion of order 8). Thus the rest of (a) can be readily verified.

(b) It suffices to show that T cannot tile any (4m+ 2) x (4n + 2) rectangle.

Having already completely determined the structure of the tile homotopy group,
we content ourselves with a representation proof. Define (p: P(T) S32 by

p(x) =(1,2,3,4)(5,6,7, 8)(9,10,11,12)(13,14,15,16)(17,18,19,20)

(21,22,23,24)(25,26,27,28)(29,30,31,32),

ip{y) =(1,4,32,20)(2,12,7,17)(3,24,23,11)(5,16,15,21)(6,13,27,18)

(8,22,10,28)(9,19,29,25)(14,31,30,26).

It is straightforward to check that this indeed gives a homomorphism ; one

only needs to verify that the boundary words of all eight orientations are in the

kernel of (p. We also note that (p(x4m+2y4n+2x-(4m+2)y~(4w+2)) is non-trivial,
so a (4m + 2) x (4n + 2) rectangle cannot be tiled by T.

(c) This follows from the explicit isomorphism H(T) Zx (Z/3Z) given
above. Also, an explicit signed tiling is easy to give, based upon Figure 5.6

above.

We remark that these computations depend upon the correctness of the

computer program. If a proof of non-tileability relies on this computation, it
may be advantageous to give a certificate of proof, namely a homomorphism
P(T) —> G to a group in which we can compute easily. Having done that,

the representation proof can be easily verified, and is less susceptible to error.

-©if,.Theorem 5.7. {m Li }, with all orientations allowed.

(a) The tile homotopy group of T has order 32 and is a central extension

of (Z/2Z)4 by Z/2Z.
(b) The tile homology group, H(T) (Z/2Z)4, and a specific isomorphism

is given as follows. Suppose that the region R covers Xq [respectively,

X\^X2] cells with x-coordinate congruent to 0 mod 3 [respectively, 1 mod 3,

2 mod 3]. Also, suppose that R covers Yq [respectively, Y\,Y2] cells with

y-coordinate 0 mod 3 [respectively, 1 mod 3, 2 mod 3 7. Then a specific

isomorphism H(T) ifLjTLf is given by

[/?] ^ ((Xo + Xi) mod 2, (Xi + X2) mod 2, (F0 + Y\) mod 2, (Yi + Y2) mod 2).

(c) If T tiles an m x n rectangle, then mn is even.

(d) A 3x3 square has a signed tiling by T.
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Proof.(a) We first claim that x6 is central in P(T). Consider the two

tilings below.

Figure 5.8

Two small tilings

They show that

y~2x4y2xyx~6y~xx 1 and y~2x4y2x~4 1,

so that xyx'6y~lx —- x~4. This shows that x6 commutes with y and therefore

is central. Similarly, y6 is central in P(T). Now let P(T) — P(T)/(x\y6).
Theorem 5.2 shows that tt(T) maps isomorphically onto its image in P(T),
and it has index 36. We can now compute

7 T(T) {ZI,Z2,Z3,Z4I Z2U Z2, zl, zt, (ZlZ2)2Z4, (ZlZ3)2zj

(Z2Z4)2, )2)

where z 1 yxy~lx~l, zi — yx~ly~lx, Z3 =xyxy_1x-2 and Z4 y2xy~2x~l.
We can easily check that this group is finite, and its structure can be completely
determined. In fact, the relators make it clear that z2 is central, has order

2, generates the commutator subgroup, and the quotient tt(T)/{z%) is an

elementary abelian 2-group of rank 4.

(b) We show how we can translate a square by 3 units.

Figure 5.9

Translating a square by 3 units

Now a straightforward computation, similar to Examples 2.5 and 2.7, shows
that H(T) (Z/2Z)4, and the isomorphism is as claimed.

(c) We must show that T cannot tile a (2m + 1) x (2n+ 1) rectangle, so
it suffices to show that f cannot tile a (6m + 3) x (6n + 3) rectangle. We
use a representation proof. Define a homomorphism tp : P(T) S48 by
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ifix) =(1,13,11,12,10,16)(2,41,34,25,38,31)(3,42,35,26,39,32)(4,40,36,27,37,33)

(5,20,46,6,23,43)(7,19,17,48,22,14)(8,28,9,29,45,30)(15,44,21,18,47,24),

ip(y) =(1,27,30,12,10,23,29,18,11, 8,28,31)(2,13,14,46,4,44,43,45,3,25,15,40)

(5,20,24,35,9,21,41,34,33,19,16,36)(6,26,39,22,47,42,38,17,48, 32,37,7).

It is straightforward to verify that this indeed defines a homomorphism.
Furthermore, we easily check that (p(x6m+3y6n+3x-(6m+3)y_(6n+3)) is non-trivial,
so a (6m + 3) x (6n + 3) rectangle cannot be tiled by T.

(d) This follows from the isomorphism H(T) (jL/TLf given in part (b).

Also, it is easy to give an explicit one, based upon Figure 5.9.

Remark 5.10. The tilings in Figure 5.8 and the argument involved

essentially amount to "untiling" two square tetrominoes from the left figure.
This is the non-abelian analogue of a signed tiling. Since the boundary word
of the 1x6 rectangle is trivial in P(T), Theorem 5.7 remains true even if this

rectangle is included in the protoset T. We can also show that the hexomino

has such a "generalized tiling" by T, so this shape may also be

included in T, and Theorem 5.7 remains valid.

We give one more example.

THEOREM 5.11. Let T "tys where rotations are allowed, but

reflections are prohibited.
(a) The tile homotopy group, ir(T), is a central extension of Z4 by Z/2Z.

In particular, it is solvable.

(b) The tile homology group is H(T) Z4, and an explicit isomorphism
is given as follows. Suppose that the region R covers no [respectively,

^1,^2,^3,^4 7 cells (ij) with 2i + j 0 mod 5 [respectively, lmod5,
— A

2 mod 5, 3 mod 5, 4 mod 5 ]. Then an explicit isomorphism H(T)—is
given by [R] (nx - n0, n2 - no, n3 - n0l n4 - no).

(c) If T tiles an m x n rectangle, then mn is even.

(d) A 1x5 rectangle has a signed tiling by T.

Proof, (a) Note that T tiles a 2 x 5 rectangle, which implies that x2

commutes with y5. Similarly, x5 commutes with y2. Therefore, x10 commutes

with y and thus is central in P(T). In the same way, y10 is also central in P(T),
so we can compute a presentation of 7r(T), using Theorem 5.2. We obtain
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a presentation for 7r(T) with 5 generators: z 1 xyx *y 1, Z2 yx ly 1*>

Z3 x~ly~lxy, z4 and u> z^-zf1-^1 • The relati°ns are

ic2 1, wzi ZiW for 1 < i < 4, and z/Z/Zf1*/"1 w for 1 < i <.j < 4.

The relations show that w is central in tt(7~) and that the quotient tt(70/(w)
is isomorphic to Z4. Furthermore, w has order 2, and it generates the

commutator subgroup of 7t(7~)- This proves (a).

(b) Note that we have

Figure 5.12

Translating a square 2 units to the right and 1 unit up

so that äij d,+2j+i in H(T). Similarly, we have ày — â,-_ 1^+2, so H(T)
is generated by â0o, ßio, ä2o, ^30 and ä40. Furthermore, the relations collapse

into a single relation : ß0o + #10 + d2o + ^30 + d4o 0. Thus H(T) Z4, and

the isomorphism is as claimed.

(c) It suffices to show that T cannot tile a (10m+ 5) x (10w + 5) rectangle.

We use a representation proof. Define a homomorphism ip : P(T) -2 5*64 hy

(p(x) <1,2,4,47,16,27,41,54,56,9)(3,6,12,11,34,50,62,61,49,58)

(5,10,19,32,24,36,31,37,42,55)(7,14,23,28,43,57,52,40, 38,46)(8,59)

(13,21,35,51,20,15,25,17,18,30)(22,33,48,60,64,26,39,53,63,44)(29,45),

ip(y) =(2, 3,5,9,17,28,42,12,14,22)(4,7,13,6,20)(8,25,37,11,33)

(10,18,29,44,58)(15,24,30,46,57,63,62,48,54,47)(16,26,38,50,61)

(19,31,39,45,21,34,49,51,59,64)(27,40)(32,36,52,35,41)(43,56,60,55,53).

j As usual, it is straightforward to verify that cp indeed defines a homomorphism,
j and that ^(x10m+5y10n+5x_d0m+5)^-(i0n+5)^ xion-trivial.
' ^(d) This follows from the explicit isomorphism 7/(7")-—>Z4 given above.

Alternatively, it is easy to give a signed tiling, based upon Figure 5.12.
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6. Criteria for 7t(T) to be abelian

In many cases that we have examined, the tile homotopy group turns out to
be abelian. In such cases, the tile homotopy group gives no further information
than the tile homology group, which is generally more accessible. We give
here two general criteria which imply that 7r(7~) is abelian.

THEOREM 6.1. Suppose that the set of prototiles T is rotationally
invariant.

(a) If x commutes with xyx_1y_1 in P(T), then ir(T) is cyclic, and
its order is the greatest common divisor of the sizes of tiles in T • If d is

this greatest common divisor, then a specific isomorphism 7r(T)-^>Z/<iZ is

given by [7] \-y N mod d, where the loop 7 encloses N squares, counting
multiplicity.

(b) If xy commutes with xyx~ly~l in P(T), then tt(T) is abelian. Let
H Ç 7? be the subgroup generated by all elements of the form (&, r) and

(r, b), where there is a tile in T with b black squares and r red squares. Then

7r(7~) 7?/H, and a specific isomorphism is given by [7] (B,R) mod H,
where the loop 7 encloses B black squares and R red squares, counting
multiplicity.

Proof, (a) A 90° clockwise rotation corresponds to mapping x and y
to y-1 and x respectively. Since T is invariant under this rotation, this map
induces an automorphism of P(T). Thus y-1 commutes with y-1xyx-1, and

therefore also with xyx-1y-1. Now xyx~1y~1 is central in P(T). We have

seen that 7r(T) is generated by the elements <7- xlyjxyx~ly~ly~jx~l, and

our commutativity relations show that these are all equal to c xyx-1y-1.
Thus 7r(T) is generated by a single element, c, and therefore is cyclic.

Let w e C be the boundary word of a tile in T, which imposes a relation

upon P(T). Then w can be written uniquely as a word in the elements Cy.
The total weight in an individual ctj is the winding number around square

(i, j), which is either 1 or 0, according to whether or not that square is in
the tile. Thus the total weight in all the ctj 's is the size of the tile. Therefore,

w imposes the relation cn — 1 on 7r(T), where n is the size of the tile. The
remainder of the statement is now clear.

(b) Since xy commutes with xyx_1y_1, so does x~ly~l. A 90° clockwise
rotation shows that y-1x commutes with y_1xyx_1, and conjugating by

y shows that xy-1 commutes with xyx~ly~l. Now we see that both
x2 (xy~l)(x~ly~l)~l and y2 (x-1})"1)-1^-1)-1 also commute with
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xyx~ly~l. Next, ir(T) is generated by the elements Cy. Our commutativity
relations show that Cy coo if 1 + j is even, while Cy cio if i + j
is odd. Moreover, these two elements commute with each other, because

Coo xyx_1y_1, and cm (x2)^-1)-1^)"1.
Let w G C be the boundary word of a tile in T, which may be written

uniquely as a word in the elements Cy. The total weight in those Cy's with
i +j even [respectively, odd] is the number of black [respectively, red] squares
in this placement of the tile. Thus w imposes the relation Cq0c(0 1 on

tt(T), and the relation Cq0c^0 1 comes from the boundary word xwx~l.
The statement now follows.

It may be useful to reformulate Theorem 6.1 in a different way. We will
consider the following self-intersecting closed paths to depict "generalized
tiles" that have boundary words xyx~ly~lx~lyxy~l and xyx~xy~2x~lyx
respectively.

Now Theorem 6.1 may be rephrased as follows.

THEOREM 6.3. Suppose that rotations are allowed in our protosets.
(a) The tile homotopy group of T {[HQ} is isomorphic to Z, and

a specific isomorphism is given by [7] \-y N, where the loop 7 encloses N
squares, counting multiplicity.

(b) The tile homotopy group of T { } is isomorphic to Z2, and a

specific isomorphism is given by [7] (B, R), where the loop 7 encloses B
black squares and R red squares, counting multiplicity.

orientations allowed. They remark that Walkup [17] has shown that if an
mxn rectangle can be tiled by T, then both m and n are multiples of 4.
They also note that a rectangle has a signed tiling by T if and only if its
area is a multiple of 8. They implicitly ask what the relationship between
Walkup's proof and the tile homotopy method is. Theorem 6.1 above allows
us to compute the tile homotopy group of T.

Figure 6.2

Generalized tiles

Conway and Lagarias mention the protoset

i
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Proposition 6.4. The tile homotopy group of T {^~j j^} ^ Z/8Z.
A specific isomorphism is given by [7] (5 + 5/?) mod 8, where the loop 7
encloses B black squares and R red squares, counting multiplicity.

Proof. The boundary words of the orientations

Figure 6.5

Two orientations of the T tetromino

give the relations y_1xyxyx_3y-1x 1 y~~lxyxyx~lyx~ly~2 in P(T).
Therefore, x~2y~lx — yx~ly~2, which is equivalent to xy commuting

with xyx~ly~l. Now part (b) of Theorem 6.1 shows that 7r(T)

Z2/((l, 3), (3,1)) Z/8Z, and the specific isomorphism is as claimed.

COROLLARY 6.6. The boundary word of a rectangle is trivial in

7r({ if and only if its area is divisible by 8.

This shows that Walkup's proof is unrelated to tile homotopy; his proof
relies on subtle geometric restrictions that are not detected by the tile homotopy

group.
Another example that exhibits a similar phenomenon in a more obvious

manner is the following.

Example 6.7. Let T {| ; -j-j }, with all orientations allowed.

Comparing the two orientations

Figure 6.8

Two orientations of a tile
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shows that x commutes with xyx~ly~x in the tile path group. Then Theorem

6.1(a) shows that tt(T) Z/9Z. This means that the tile homotopy group

only detects area, modulo 9.

On the other hand, we can easily show that if T tiles a rectangle, then

both sides must be even. Consider the ways that a tile can touch the edge of
a rectangle.

We see that the first two possibilities cannot occur, so each tile that touches

the edge does so along an even length. Therefore, each edge of the rectangle
has even length. In fact, it is not much harder to show that if T tiles an

m x n rectangle, then both m and n are multiples of 6. A straightforward
argument shows that every tiling of a quadrant by T is a union of 6 x 6

squares, which implies the result.

Here we give some more tiling restrictions we have found using the tile
homotopy technique. In each case, there are signed tilings that show that the
result cannot be obtained by tile homology methods, and there are tilings
that show that the result is non-vacuous. Further details will be published
elsewhere.

THEOREM 7.1. Let T { }, where all orientations are allowed.

(a) If T tiles an mx n rectangle, then either m or n is a multiple of 4.
(b) A 1x6 rectangle has a signed tiling by T.

x X

Figure 6.9

Tiles along an edge of a rectangle

7. Appendix: further examples

Theorem where all orientations are

allowed.

(a) If T tiles an mx n rectangle, then mn is a multiple of 4.
(b) A 1x6 rectangle has a signed tiling by T.
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Theorem 7.3. Let T - {q }, where rotations are permitted, but

reflections are not.

(a) If T tiles an m x n rectangle, then mn is even.

(b) A 1x5 rectangle has a signed tiling by T.

Remark 7.4. It is easy to show that if T tiles a rectangle, then both
sides are multiples of 5. Also, Yuri Aksyonov [1] has given a clever geometric

proof that one side must be a multiple of 10.

Bp. }, where allTheorem 7.5. Let T {[
orientations are allowed.

(a) If T tiles an m x n rectangle, then one of m or n is a multiple of 4.

(b) A 1 x 2 rectangle has a signed tiling by T.

Theorem 7.6. Let

r { }>

where all orientations are allowed.

(a) If T tiles an m x n rectangle, then one of m or n is a multiple of 4.

(b) A 1 x 2 rectangle has a signed tiling by T.

Theorem 7.7. Let T {

il
EE' I ^LT1' +p' EHE'EjZLI

—""I}, where all orientations are allowed.

(a) If T tiles an m x n rectangle, then mn is a multiple of 4.

(b) A 1x2 rectangle has a signed tiling by T.

E}, where all orientationsTheorem 7.8. Let T {pj p, 1 ; : :

are allowed.

(a) If T tiles an mx n rectangle, then one of m or n is a multiple of 6.

(b) A 2x2 square has a signed tiling by T.
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THEOREM 7.9. Let T — {p - I—! " r ~!—I}^ where all orientations are

allowed.

(a) If T tiles an m x n rectangle, then either m is a multiple of 3 or n

is a multiple of 6.

(b) A lxl square has a signed tiling by T.

Theorem 7.10. Let T { pj~~p
'I •: j i j j j }, where

all orientations are allowed.

(a) If T tiles an mx n rectangle, then one of m or n is a multiple of 8.

(b) A lxl square has a signed tiling by T.

Theorem 7.11. Let T Il ; ; ; H, pj }, where all

orientations are allowed.

(a) If T tiles an mx n rectangle, then one of m or n is a multiple of 5.

(b) A 1 x 1 square has a signed tiling by T.

THEOREM 7.12. Let T 11 ; ,~1i —1—pj—where all orientations

are allowed.

(a) If T tiles an m x n rectangle, then one of m or n is a multiple of 4.

(b) A 1x2 rectangle has a signed tiling by T.

Theorem 7.13. Let T { I i I, | j |, }, where all
orientations are allowed.

(a) If T tiles an m x n rectangle, then mn is a multiple of 4.

(b) A 1x2 rectangle has a signed tiling by T.

Theorem 7.14. Let T {|-j | I ; I, pj p1 }, where all
orientations are allowed.

(a) If T tiles an mxn rectangle, then one of m or n is a multiple of 6.

(b) A lxl square has a signed tiling by T.
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Theorem 7.15. Let{I ; ; ; : ; I, j}, where

all orientations are allowed.

(a) If T tiles an mx n rectangle, then one of m or n is a multiple of 6.

(b)A 2x3 rectangle has a signed tiling by T.

THEOREM 7.16. Let T — { / \ / \ / \ /\}> where all orientations are

allowed.

(a) If T tiles a triangle of side n, then n is a multiple of 8.

(b) A triangle of side 4 has a signed tiling by T.

Remark 7.17. That T tiles any triangle is quite interesting. Karl Scherer

[15, 2.6 D] has found a tiling of a side 32 triangle by T.

Acknowledgment. I thank Torsten Sillke for some interesting discussions.
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