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ON THE CLASSIFICATION OF RATIONAL KNOTS

by Louis H. Kauffman and Sofia Lambropoulou

Abstract. In this paper we give combinatorial proofs of the classification of
unoriented and oriented rational knots based on the now known classification of
alternating knots and the calculus of continued fractions. We also characterize the

class of strongly invertible rational links. Rational links are of fundamental importance
in the study of DNA recombination.

1. Introduction

Rational knots and links comprise the simplest class of links. The first

twenty five knots, except for 85, are rational. Furthermore all knots and links

up to ten crossings are either rational or are obtained by inserting rational

tangles into a small number of planar graphs, see [6]. Rational links are

alternating with one or two unknotted components, and they are also known
in the literature as Viergeflechte, four-plats or 2-bridge knots depending on
their geometric representation. More precisely, rational knots can be represented
as :

• plat closures of four-strand braids (Viergeflechte [1], four-plats). These

are knot diagrams with two local maxima and two local minima.

• 2-bridge knots. A 2-bridge knot is a knot that has a diagram in
which there are two distinct arcs, each overpassing a consecutive sequence
of crossings, and every crossing in the diagram is in one of these sequences.
The two arcs are called the bridges of the diagram (compare with [5], p. 23).

• numerator or denominator closures of rational tangles (see Figures 1, 5).
A rational tangle is the result of consecutive twists on neighboring endpoints
of two trivial arcs. For examples see Figure 1 and Figure 3.
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Figure 1

A rational tangle and a rational knot

All three representations are equivalent. The equivalence between the first
and the third is easy to see by planar isotopies. For the equivalence between
the first and the second representation see for example [5], pp.23, 24. In
this paper we consider rational knots as obtained by taking numerator or
denominator closures of rational tangles (see Figure 5).

The notion of a tangle was introduced in 1967 by Conway [6] in his work

on enumerating and classifying knots and links, and he defined the rational
knots as numerator or denominator closures of the rational tangles. (It is worth

noting here that Figure 2 in [1] illustrates a rational tangle, but no special

importance is given to this object. It is obtained from a four-strand braid by

plat-closing only the top four ends.) Conway [6] also defined the fraction of
a rational tangle to be a rational number or oo. He observed that this number

for a rational tangle equals a continued fraction expression with all numerators

equal to one and all denominators of the same sign, that can be read from a

tangle diagram in alternating standard form. Rational tangles are classified by
their fractions by means of the following theorem.

THEOREM 1 (Conway, 1975). Two rational tangles are isotopic if and

only if they have the same fraction.

Proofs of Theorem 1 are given in [21], [5] p. 196, [13] and [15]. The

first two proofs invoked the classification of rational knots and the theory of
branched covering spaces. The 2-fold branched covering spaces of S3 along
the rational links give rise to the lens spaces L(p, q). See [33] for a pioneering
treatment of branched coverings. The proof in [13] is the first combinatorial

proof of this theorem. The proofs in [21], [5] and [13] use definitions different
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from the above for the fraction of a rational tangle. In [15] a new combinatorial

proof of Theorem 1 is given using the solution of the Tait Conjecture for

alternating knots [42], [20] adapted for tangles. A second combinatorial proof
is given in [15] using coloring for defining the tangle fraction.

Throughout the paper by the term 'knots' we will refer to both knots

and links, and whenever we really mean 'knot' we shall emphasize it. More

than one rational tangle can yield the same or isotopic rational knots and the

equivalence relation between the rational tangles is mapped into an arithmetic

equivalence of their corresponding fractions. Indeed we have the following

THEOREM 2 (Schubert, 1956). Suppose that rational tangles with fractions
- and Pj are given (p and q are relatively prime; similarly for p' and q').
q q

If K(£) and K(^7) denote the corresponding rational knots obtained by taking

numerator closures of these tangles, then K(ff) and K(ff) are isotopic if and
q q

only if
1. p —p' and
2. either q q' mod p or qq' 1 mod p.

Schubert [31] originally stated the classification of rational knots and links

by representing them as 2-bridge links. Theorem 2 has hitherto been proved
by taking the 2-fold branched covering spaces of S3 along 2-bridge links,
showing that these correspond bijectively to oriented diffeomorphism classes of
lens spaces, and invoking the classification of lens spaces [28]. Another proof
using covering spaces has been given by Bürde in [4]. See also the excellent
notes on the subject by Siebenmann [35]. The above statement of Schubert's
theorem is a formulation of the Theorem in the language of Conway's tangles.

Using his methods for the unoriented case, Schubert also extended the
classification of rational knots and links to the case of oriented rational knots
and links described as 2-bridge links. Here is our formulation of the Oriented
Schubert Theorem written in the language of Conway's tangles.

THEOREM 3 (Schubert, 1956). Suppose that orientation-compatible rational

tangles with fractions | and ^ are given with q and q' odd (p and q

are relatively prime; similarly for p' and q' If K(^) and K(^'7) denote the

corresponding rational knots obtained by taking numerator closures of these

tangles, then K(!p and 7) are isotopic if and only if
1. p p' and
2. either q q' mod 2p or qq' 1 mod 2p.
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Theorems 2 and 3 could have been stated equivalently using the denominator

closures of rational tangles. Then the arithmetic equivalences of the

tangle fractions related to isotopic knots would be the same as in Theorems
2 and 3, but with the roles of numerators and denominators exchanged.

This paper gives the first combinatorial proofs of Theorems 2 and 3 using
tangle theory. Our proof of Theorem 2 uses the results and the techniques

developed in [15], while the proof of Theorem 3 is based on that of Theorem 2.

We have located the essential points in the proof of the classification of rational
knots in the question : Which rational tangles will close to form a specific
knot or link diagram By looking at the Theorems in this way, we obtain

a path to the results that can be understood without extensive background in
three-dimensional topology. In the course of these proofs we see connections

between the elementary number theory of fractions and continued fractions,
and the topology of knots and links. In order to compose these proofs we
use the fact that rational knots are alternating (which follows from the fact
that rational tangles are alternating, and for which we believe we found the

simplest possible proof, see [15], Proposition 2). We then rely on the Tait

Conjecture [42] concerning the classification of alternating knots, which states

the following:

Two alternating knots are isotopic if and only if any two corresponding
reduced diagrams on S2 are related by a finite sequence offlypes (see Figure 6).

A diagram is said to be reduced if at every crossing the four local regions
indicated at the crossing are actually parts of four distinct global regions in
the diagram (see [19], p. 42). It is not hard to see that any knot or link has

reduced diagrams that represent its isotopy class. The conjecture was posed by
P. G. Tait [42] in 1877 and was proved by W. Menasco and M. Thistlethwaite,

[20] in 1993. Tait did not actually phrase this statement as a conjecture. It
was a working hypothesis for his efforts in classifying knots.

Our proof of the Schubert Theorem is elementary upon assuming the Tait

Conjecture, but this is easily stated and understood. This paper will be of
interest to mathematicians and biologists.

The paper is organized as follows. In Section 2 we give the general set up
for rational tangles, their isotopies and operations, as well as their association

to a continued fraction isotopy invariant. In this section we also recall the

basic theory and a canonical form of continued fractions. In Section 3 we

prove Theorem 2 about the classification of unoriented rational knots by means

of a direct combinatorial and arithmetical analysis of rational knot diagrams,
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using the classification of rational tangles and the Tait Conjecture. In Section 4

we discuss chirality of knots and give a classification of the achiral rational

knots and links as numerator closures of even palindromic rational tangles in

continued fraction form (Theorem 5). In Section 5 we discuss the connectivity

patterns of the four end arcs of rational tangles and we relate connectivity

to the parity of the fraction of a rational tangle (Theorem 6). In Section 6

we give our interpretation of the statement of Theorem 3 and we prove the

classification of oriented rational knots, using the methods we developed in the

unoriented case and examining the connectivity patterns of oriented rational

knots. In Section 6 it is pointed out that all oriented rational knots and links are

invertible (reverse the orientation of both components). In Section 7 we give

a classification of the strongly invertible rational links (reverse the orientation

of one component) as closures of odd palindromic oriented rational tangles in
continued fraction form (Theorem 7).

Here is a short history of the theory of rational knots. As explained in

[14], rational knots and links were first considered by O. Simony in 1882,

[36, 37, 38, 39], taking twistings and knottings of a band. Simony [37] was

the first one to relate knots to continued fractions. After about sixty years
Tietze wrote a series of papers [43, 44, 45, 46] with reference to Simony's
work. Reidemeister [27] in 1929 calculated the knot group of a special class

of four-plats (Viergeflechte), but four-plats were really studied by Goeritz [12]
and by Bankwitz and Schumann [1] in 1934. In [12] and [1] proofs are given

independently and with different techniques that rational knots have 3 -strand-

braid representations, in the sense that the first strand of the four-strand braids

can be free of crossings, and that they are alternating. (See Figure 20 for
an example and Figure 26 for an abstract 3-strand-braid representation.) The

proof of the latter in [1] can be easily applied on the corresponding rational
tangles in standard form. (See/ Figure 1 for an example and Figure 8 for
abstract representations.)

In 1954 Schubert [30] introduced the bridge representation of knots. He
then showed that the four-plats are exactly the knots that can be represented
by diagrams with two bridges and consequently he classified rational knots by
finding canonical forms via representing them as 2-bridge knots, see [31]. His
proof was based on Seifert's observation that the 2-fold branched coverings
of 2-bridge knots [33] give rise to lens spaces and on the classification of
lens spaces by Reidemeister [28] using Reidemeister torsion and following the
lead of [32] (and later by Brody [3] using the knot theory of the lens space).
See also [25]. Rational knots and rational tangles figure prominently in the

applications of knot theory to the topology of DNA, see [40]. Treatments of
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various aspects of rational knots and rational tangles can be found in many
places in the literature, see for example [6], [35], [29], [5], [2], [22], [16], [19].

2. Rational tangles and their invariant fractions

In this section we recall from [15] the facts that we need about rational

tangles, continued fractions and the classification of rational tangles. We intend
the paper to be as self-contained as possible.

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B3, so that the four endpoints lie in the

boundary of B3. A rational tangle is a proper embedding of two unoriented

arcs ol\,ol2 in a 3-ball B3, so that the four endpoints lie in the boundary of
B3, and such that there exists a homeomorphism of pairs :

h: (.B3, an, a^) —> (D2 x /, {x,y} x /) (a trivial tangle).

This is equivalent to saying that rational tangles have specific representatives
obtained by applying a finite number of consecutive twists of neighboring
endpoints starting from two unknotted and unlinked arcs. Such a pair of arcs

comprise the [0] or [oo] tangles, depending on their position in the plane,

see illustrations in Figure 2.

[-2] [-1] [0] [1] [2]

Figure 2

The elementary rational tangles and the types of crossings

We shall use this characterizing property of a rational tangle as our

definition, and we shall then say that the rational tangle is in twist form.
See Figure 3 for an example.
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