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that we considered in Sections 2 and 3 above. Similarly, if G is Z/2Z acting
on Q as the antipodal map, then the corresponding extension to Pq is given
by complex conjugation.

3. P2C AND THE 4-SPHERE S4

The previous discussion, restricted to n 2 and compared to the
cohomogeneity 1 isometric action of SO(3,R) on S4 constructed in [HL],
motivates an equivariant version of the Arnold-Kuiper-Massey theorem [Arl,
Ar2, Ku, Mai], saying that P2C modulo conjugation is the 4-sphere. In this
section we give a new proof of this theorem. We construct an explicit algebraic
map O : P2C -> S4, which is equivariant with respect to the cohomogeneity 1

isometric actions of SO(3,R) on Pq and S4 and induces a diffeomorphism
Pq/conjugation S4.

We start by recalling the SO(3, R)-action on S4, as explained by Hsiang
and Lawson in [HL; Example 1.4 ].

Let S be the vector space of real 3x3, traceless and symmetric matrices.
As a real vector space S is R5, and it can be equipped with a metric given by
the inner product (A,B) H* trace(A£). Let <S(4) be the space of matrices in S
with norm 1. One has an obvious diffeomorphism S4 (4), which becomes
isometric if we endow S4 with its usual round metric and <S(4) with the metric
given by the inner product in S. We shall identify these two spaces in the
sequel, denoting both of them by S4 indistinctly. The group SO(3,R) acts on
S by A CPAO, where O1 is the transposed matrix (which is equal, in our
case, to 0~l). This induces an isometric action T of SO(3,R) on S4. This
action on S4 has two disjoint copies of P\ as special fibres (see the remark
at the end of this section). The space of orbits is the interval [0,1], with
the endpoints giving the special orbits. Each principal orbit (i.e. tlie orbits of
highest dimension) is a flag manifold

F\2,1)^ SO(3, R) / (Z/2Z x Z/2Z) L(4,1) / (Z/2Z),

of pairs (P,Z) with P a plane in R3 and I line in P, where L(4,1) is the
lens space 5'3/(Z/4Z) SO(3,R)/(Z/2Z).

Let us give a similar description of Pq. Let

SjQ, C) {HgM{3,C) IH
be the space of complex 3x3 Hermitian matrices, where H* ~ H' is the
adjoint matrix of H, obtained by first conjugating each entry of and then
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transposing the matrix. We equip f)(3, C) with the Hermitian inner product

(3.1) {HuH2)
l- trace(FLiHf) >

As a vector space, with this inner product, fj(3, C) is the ordinary Euclidean

space E9. Consider the subset P(2) of i)(3,C) defined by

(3.2) P(2) {H e i)(3, C) I H2 H and trace(H) 1}

Lemma 3.3. The set P(2) is a manifold, diffeomorphic to Pq. Moreover,

if we endow P(2) with the metric defined by (3.1 then P(2) is isometric to

Pq equipped with the Fubini-Study metric (of constant holomorphic sectional

curvature 4).

We remark that it is possible to describe P£ in a similar way, but we

restrict our attention to n 2 because this is all we need.

Proof We claim that if H is in P(2), then it is an orthogonal projection
over a complex line. In fact, if H is in P(2), then it is diagonalizable by a

unitary matrix and its eigenvalues are 0 or 1, because H2 H. Since the

trace is one, two eigenvalues must be 0 and the other is 1. Hence ET is a

surjection of C3 over a complex line, and this map has to be an orthogonal
projection because H is Hermitian. Conversely, it is clear that each line

Le C3 determines a unique orthogonal projection of C3, and this is given
by a matrix in P(2). The diffeomorphism in Lemma 3.3 is achieved by the

map that carries H into the corresponding line in C3. To prove that this map
gives a metric equivalence, we notice that the unitary group U(3) acts on

$)(3,C) by H i-> *7*7/1/, and P(2) is an orbit of this action, with isotropy
(U(2) x U( 1)). Thus,

P(2) ^ *7(3)/(1/(2) x *7(1)) ^ P2C

and the metric on P(2) is obviously *7(3)-invariant. Hence the induced metric
on P2C is also *7(3)-invariant, and this characterizes the Lubini-Study metric,
up to scaling.

j We recall now that the quotient of P2C by the complex conjugation j is a

smooth manifold, which is not an obvious fact since j has fixed points. This
is carefully explained in [Mar], so we only sketch a few ideas here. Away

j from the fixed point set n the involution j is free, so the quotient
is a smooth manifold. The problem is on Ü. A tubular neighbourhood of



190 LÊ D. T., J. SEADE AND A. VERJOVSKY

EL in Pç can be regarded as an open disk normal bundle, and conjugation
carries each normal fibre into itself. Since the quotient of each normal 2-disk
by the involution is again a 2-disk, it follows that the quotient P2c/j is a

topological manifold. Making this argument more carefully one gets that P\jj
is in fact a PL-manifold, as noticed in [Ku], and therefore it is smooth,
since every piecewise linear 4-manifold is smooth. In [Mar] Marin defines the

smooth structure on P\/j directly, without using PL-structures. An important
point is that the smooth structure on P^/j is such that the obvious projection
P2c —> Pç/j is differentiate.

Let us denote by V the aforementioned isometric action of S 0(3, R) on S4,

and by F the standard action of SO(3,R) on Pq, which is by isometries with

respect to the Fubini-Study metric. This action is defined either by considering

S0(3,R) as a subgroup of 0(3, C), acting on the space of lines in C3, or
via the action of S0(3,R) on the space of matrices P(2) c H{3,C) given by

By Lemma 3.3, both metrics on Pq are equivalent; also for every
O G S0(3,R), H G P(2) and v G C3 such that H(v) v, one has

0tH0(0~1(v)) 0~l(v), because 0~l OF Hence both actions on
P2C P(2) are equivalent. Similarly, given the S0(3, R)-actions F on P2C

and F on S4, we say that these actions are equivariant if there exists a map
O : Pq —>• S4 which makes the following diagram commutative :

In this case we say that O conjugates the actions F and F. The map O
carries orbits into orbits, i.e. the decompositions of P2C and S4 into orbits are

(smoothly) equivalent.

Let us now state the equivariant Arnold-Kuiper-Massey theorem:

THEOREM 3.4. There is a real algebraic equivariant map <D: P2C -A S4,

which is invariant by the complex conjugation j and induces a dijfeomorphism

P\jj S4, providing a conjugation between the isometric S0(3,R)-actions

r on Pq and F on S4.

(0,A) f-A OfAO.

S0(3, R) x P2C —^ P2C

SO(3,R)x54 —^ V.
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We notice that Theorem 3.4, together with [HL], imply that the image of

c Pc under the above map is the image of P^ by the classical Veronese

embedding ^ (P^,54).
The proof of Theorem 3.4 follows from several lemmas below.

LEMMA 3.5. Let A be a real (3 x 3)-matrix. Then A is the real part of
a matrix H in P(2) if and only if

i) A is symmetric with trace 1 ;

ii) A has 0 as an eigenvalue and the other two eigenvalues A; and Aj

are roots of an equation of the form :

A2 - A + k 0

for some constant k G R with 0 < k <

If A and H are as above, and if O G SO(3,R) is such that OfAO is a

diagonal matrix, f/ien f/ie imaginary part B of H, taken into its canonical form
OtBO, has only two possible non-zero entries, which are ±\/k. In particular,

if k — 0, then H — A.

Proof Let us consider a matrix H G P(2) and decompose it into its real
and imaginary parts : H A + i B. Then one has A* — i Bf. Also H H*

because // is Hermitian. Hence A Ar and P —Pr, i.e. A is symmetric
and B is anti-symmetric. Thus the trace of A is 1, proving statement (i). One
also has

H2 =A2-B2 + i(AB + BA),

and H2 H because H is in P(2). Therefore A— A2 —B2 and P AP+PA.
Now, A is symmetric, and so is A2 ; these two matrices obviously commute,

so they can be diagonalized simultaneously by a matrix O G SO(3,R). Since
p2 — A2 — A, one knows that 0tB20 is also diagonal:

(hi 0 0\
0'P2C>= 0 /i2 0

\0 0 pj
with ^ A2 — A/, for each i 1,2,3, where the Az are the eigenvalues
of A. But P is antisymmetric and commutes with P2, which is symmetric.
Hence the same matrix O takes P to its canonical form:

/ 0 a c\
OlBO \ -a 0 b\

\ c -b 0/
for some a,£>, c G C. This implies that
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—a2 - c2 —bc ab \
-bc —a2 — b2 -ac
ab —ac —b2 — c2 J

which we know is a diagonal matrix. Therefore two of the numbers a,b,c
must be zero. Assume for instance that a and b are 0, then both eigenvalues
Ai and À3 are roots of the polynomial

A2 - A + c2 0.

This implies that

Ai + A3 1 and Ai • A3 c2 > 0.

Hence A2 0 (because the trace of A is 1), so 0 is an eigenvalue of A.
The other eigenvalues Ai and A3 must both be > 0 and < 1, because their
product is non-negative and their sum is 1. Moreover the roots must be real,
therefore k c2 < |, proving statement (ii).

Also, in this case the eigenvalues of A determine the imaginary part B of
H up to sign:

0 0 c\
0 0 0 I 0*,
-c 0 0/

with c2 Ai — A2 A3 — A2, proving in this case the last statement of
Lemma 3.5. The other cases, when either a c 0 or b — c — 0, are
similar to the previous one. This proves that if A 3?(//) for some matrix
H G P(2), then A is as stated in Lemma 3.5. Conversely, given A satisfying
these conditions, the above arguments tell us how to construct B so that these

matrices are the real and imaginary parts of some H in P(2).

Now, given H G P{2), its real part is $l(H) \ {H + H). Define

^:P(2)^M(3,R),
the space M(3,R) being the space of real (3 x 3)-matrices, by the formula

(3.6) =\h- m3, R),

where /3 is the (3 x 3)-identity matrix. In other words, tp(H) is the real part
of the matrix (|/g — H). Since H G P(2), it follows that is actually
contained in S.

It is clear that the above action of SO(3, R) on P(2) given by conjugation is

equivalent, via the above diffeomorphism P(2) Pq with the standard action



QUADRICS, ORTHOGONAL ACTIONS AND INVOLUTIONS 193

studied in §2 and §3 above. It is also clear that, for every O G SO(3,R), one

has

ipiO'HO) =\l~\ °'(H+ H)0) 0'(^I - + 0'^(H)0.

Hence we have

LEMMA 3.7. The map f is equivariant. That is, for every O G SO(3, R)

and H G P(2), one has ^(O^O) Otrf(H)0. j

LEMMA 3.8. Given S G S — {0}, there exists a unique positive t G R, j

such that the matrix (~I - tS) is the real part of some matrix H G P{2). j

Proof By Lemma 3.7, we may assume that S is diagonal. Hence the j

matrix St i\l — tS) is also diagonal, say ;

(M(0 0 0 \
st o A2(0 0

V 0 o Mit))
with Àft) — I - tpi, where the are the eigenvalues of S. We notice that

for all te R, one has

trace St — \ — t (trace S) 1,

because S has trace 0. Hence all these matrices satisfy condition (i) of
Lemma 3.5.

Let us look for the possible values of t that give solutions of Lemma 3.5.

That is, we want t > 0 for which one eigenvalue Xft) is 0 and the others ;

are such that their sum is 1 and their product is > 0 and < |.
Let us number the eigenvalues of S so that pi < p2 < M3- Since their J

sum is 0 and S is not the zero matrix, one must have < 0 and py> 0. j

If we want t as above, one Àft) must vanish. Let us look for solutions with 1

Xft) 0. This means that t <0, and we want t > 0. Hence, there

are no solutions with À i (0 0.
Now let us look for solutions with \2(t) 0. This implies that t ; j

for this to be possible we must have p2 0. If p2 < 0, then t < 0 and we
want t to be positive. Thus, we only care about p2 > 0. We have j

Ai(0 hi - —) and A3(0 1(1 - —).
5 H2 3 j

We have ^ < 0 < /i2, so Ai(f) > 0. If /j2 < /i3, then A3(t) < 0, thus the

product Ai(0A3(0 is < 0, so there are no such solutions to Lemma 3.8. The
t
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other possibility is fi2 — fi3\ this also implies X3(t) — 0. In this case one has

X\(t) 1 and X2(t) X3(t) 0, and t — 3^ is positive. Hence we have a

solution, and this is unique because fi2 /i3. If fi2 0, then X2(t) cannot
be 0 and we cannot find solutions like this.

Summarizing, so far we have seen that: i) there are no solutions as in
Lemma 3.8 for which X\(t} 0 ; ii) if /j2 < 0, there are no solutions as in
Lemma 3.8 for which X2(t) 0 ; and iii) if ii2 — ii3, then there is a unique
solution as in Lemma 3.8, for which X2(t) — X3(t) 0 and X\(t) 1.

Finally, let us look for solutions with X3(t) 0, i.e. with t =« We

know, by hypothesis, that fi2 < ß3 and (jl3 > 0. If ji2 — fi3, then we are

in the previous case and there is a unique positive t giving a solution as in
Lemma 3.8. Let us assume now that fi2 < fi3. Then we have

which are both > 0. Since their sum is 1, it follows that each Ài(t) is also

< 1.

The product of X\(t) and X2(t) satisfies

since /ii + ii2 + /i3 — 0 and (m^22)2 < \ because \{a + b)2 > ab for any

real numbers a and b (with equality if and only if a — b). Hence t ~
is the unique solution satisfying the conditions of Lemma 3.8.

We now "normalize" the map iß so that its image is contained in S4 C S.
For this we define a function

Ai(r) -Q - — Ï and A -d - —)

0 < A x(t)•A2(0 |(1 - Mi +M2 M1M2,
' 2 1 n ^ 2

t*>3 ^3 9 /13

<
I

(Mi + M2)2 ~~ 4 '

a(H) [trace('i/;(//j2)]~5

trac emH)2] trace[(^ h~\(H+ ]

- trace/3 - | (// + H)+ ^(//2 + if + HH +

1 + ltrac e(HH + HH),
6 4
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which is always positive since the matrix (HH+HH) is positive semi-definite,

so its trace is >0. Hence the maps a and O are well defined. It is clear

that the image of O is contained in S4 C S, because the linearity of the trace

implies that
[trace(0(#))]2 a2(H) [trace f(H)]2 1.

It is also clear that O is SO(3, R)-equivariant, since the trace is invariant

under conjugation and i/j is equivariant by Lemma 3.7. These considerations

imply both Lemma 3.8 and the following

LEMMA 3.9. The map O is an equivariant surjection from P(2) over
S4 C S, and it is two-to-one, except over the image of the real matrices in

P{2) where it is one-to-one.

This gives the map in Theorem 3.4 that determines an equivariant diffeo-

morphism between S4 and Pq modulo the involution given by conjugation.
To complete the proof of Theorem 3.4 we need to show that O is invariant
under the involution of P(2) that corresponds to complex conjugation in P\
For this we notice that if LH is the complex line in C3 which is the image
of H G P{2), and if 0 (21,22,23) G LH, we can associate to H the point in
P2C with projective coordinates [21,22,23]. To the matrix H there corresponds
the line with projective coordinates [21,22,23]. Therefore we have

LEMMA 3.10. The involution j* of P(2) defined by j*(H) H coincides

with the involution j of Pq given by complex conjugation, [21,22,23] HK

[21,22,23] •

Then <D is invariant under this involution, since $i(H) proving
Theorem 3.4.

4. Some applications and remarks

It is interesting to describe explicitly the orbits of the T action of
SO(3,R) on S4, regarded2) as the set of matrices with norm 1 in S. In
fact, the orbits of this action are conjugacy classes (or congruency classes) of
traceless symmetric matrices whose square has trace 1. This is the connection
between our construction and the spherical Tits buildings. Every S G S can

2) This orbit description of S4 is also given in [Ma2].


	3. $P_C^2$ AND THE 4-SPHERE $S^4$

