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3. TWO BASIC EXAMPLES

Up to homeomorphism, the circle is the only compact connected 1 -dimensional

manifold: this is probably the reason why we meet so many circles
in mathematics... We can think of the circle S1 in many ways. We can first
consider it as the unit circle in R2 but we can also see it as the abstract
1-dimensional manifold which is the quotient of the real line R by the
subgroup of integers Z. From this point of view, S1 can be thought of as

being an abelian group, isomorphic to SO(2, R) or to the 1 -dimensional torus.
The circle can also be considered as the real projective line RP1 consisting
of lines in R2 going through the origin (identified with R U {oo} by taking
the slope of a line).
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Going from one point of view to another is easy, the identifications being
given by:

t G R/Z I >(cos(27rt),sin(2-7rt)) G S1 c R2

t G R/Z I >tan(7Tt)GR U {00} RP1

S G RP1 H-> T~r~l) G S1
•

I + s1 1 +
In this first section, we would like to give two very basic examples of

groups acting on the circle which will play a central role in these lecture
notes. The properties of these examples will be detailed in this text and we
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could say that a major theme of research would be to show that many groups
acting on the circle can be reduced to them.

3.1 The projective group

The linear group GL(2, R) consists of 2 x 2 real invertible matrices. Its
center is the group of scalar matrices and the quotient of GL(2, R) by this
center is denoted by PGL(2,R) and called the projective group. There is a
natural (projective) action of PGL(2,R) on the circle (seen as RP1). Indeed,
GL(2, R) acts linearly on R2 and induces an action on the set of lines in
R2 going through the origin, which is RP1 by definition. A formula for the
action is given by:

([^],x)ePGL(2,R)xRP1 ^ ^±2 gRPi.
I

c a cx T u
I We use a (square) bracket to denote the equivalence class modulo scalar
I matrices. Note that the group PGL(2, R) has two connected components given
J by the sign of the determinant. The component of the identity is isomorphic
j to PSL(2, R), which is the quotient of the unimodular group SL(2,R) by its

j; center which consists of ±Id. The action of an element of PGL(2,R) on the
i circle preserves or reverses orientation according to the sign of its determinant.
p An important feature of this action is that it extends to the disc. The
I real projective line RP1 sits naturally inside the complex projective line
j! CP1 ~ C U {oo} which is the Riemann sphere. In the same way, the real
j'i projective group PGL(2,R) is a subgroup of the complex projective group
j, PGL(2, C) which acts on the Riemann sphere by Mœbius transformations.
{j

OO

Figure 2

Hence we get an action of PGL(2,R) on the Riemann sphere CP1
preserving the circle RP1. The complement of this circle in this sphere consists
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of two discs which are preserved or permuted by an element of PGL(2,R)
according to the sign of the determinant. In the obvious coordinates, the circle
RP1 is the real axis in CP1 C U {00} plus the point at infinity. Denote by
TL C C C CP1 the upper half space, i.e. the set of complex numbers z with
positive imaginary part : this is one of the two components of the complement
of RP1 in CP1. We get an action of PSL(2, R) on H which extends the

action of PSL(2, R) on the boundary RP1. This extension is holomorphic and

is actually an isometric action when we equip H with its Poincaré metric
(see for instance [67]).

The group PSL(2,R) and the rotation group SO(3,R) are the only simple
Lie groups of real dimension 3 and there is no non trivial simple Lie group of
lower dimension [58]. This may explain why several versions of these groups
occur in mathematics. We give one of them, showing a different aspect of the

action of PSL(2,R) on the circle.
Consider the quadratic form Q x2+x2—x2 on R3. Its group of isometries

is denoted by 0(2,1). This group has four connected components (see for
example [54]) and it turns out that the component of the identity is isomorphic
to PSL(2,R). A simple way to check this fact is to consider the action of
GL(2, R) on the space M(2, R) of 2 x 2 matrices given by conjugation :

(A,M) GL(2, R) x M(2, R) AMA~l.

Note that this action factors through an action of PGL(2, R) since the center

acts of course trivially. We can moreover restrict this action to the invariant
3 -dimensional vector space E consisting of matrices whose trace is 0. Finally,
we observe that the determinant of M provides an invariant quadratic form on
E. It is easy to check that the signature of this quadratic form is (—,—,+) so

that, using suitable coordinates, we get an injection of PGL(2,R) in 0(2,1).
This injection gives the promised identification between PSL(2,R) and the

connected component of the identity in 0(2,1). Figure 3 shows The orbits of
this linear action on E.

Since 0(2,1) acts linearly on R3, it acts projectively on the projective
plane RP2 consisting of lines in R3. The zero locus of Q in R3 is a cone
which projects to a conic C in RP2 invariant under 0(2,1). As any non

degenerate conic in the projective plane can be rationally parametrized by
RP1, we get an action of 0(2,1) on the circle RP1. The reader will easily
check that we get, up to conjugacy and identifications, the same action of
PSL(2, R) on RP1 that we described earlier.

The conic C bounds two domains in RP2. One of them is homeomorphic
to a disc and is the projection of the set of points for which Q < 0 : it
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is called its interior and is denoted by D. The exterior is homeomorphic to
a Mœbius band. Hence we can think of the circle C ~ RP1 ~ S1 as the

boundary of a disc D c RP2 on which PGL(2, R) acts projectively. We have
extended the action of PGL(2, R) on the circle to an action on the disc. This
is the Klein model.

Of course, the two extensions of the action of PSL(2, R) on a disc are
conjugate, even though they don't quite look the same. The first one is
conformai in one complex variable and the second one is projective in two
real variables. There are several ways of describing a conjugacy between
these two actions [67]. The following one is nice and not so well known.
Consider the linear action of PSL(2,R) on the 3-dimensional vector space
of polynomials of the second degree 2 + bXY + 2by linear change of
coordinates. The discriminant b2 - 4ac defines an invariant quadratic form of
signature (+,+,-). Hence, we can identify this linear action with the linear
action of the identity component of 0(2,1) that we considered above. Now
any polynomial in the negative cone of the discriminant defines a polynomial
aX2 + bX + c with two complex conjugate roots. Hence, we can define a

map from the disc D to the upper half plane H sending the line through
the polynomial to the unique root in H. This map is obviously a conjugation

I
between the two actions of PSL(2,R) on V and H. Note however that
the two actions of PSL(2, R) on RP2 and CP1 that we constructed are not
conjugate since RP2 and CP1 are not homeomorphic

\\ The action of PSL(2,R) on the circle that we described is well known
and there is not much to say about its dynamics since it has only one orbit
In order to get examples which are interesting from the dynamical point of
view, we should restrict it to suitable subgroups of PSL(2, R). We mention the
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fuchsian groups which are by definition the discrete subgroups of PSL(2,R).
These groups come from many parts of mathematics, in particular from number
theory. For instance, the modular group PSL(2, Z) is fundamental in the study
of quadratic forms in two variables over the integers and its action on RP1
or on 7~i is one of the main tools to understand it. Gauss began, its analysis
m his famous Disquisitiones and the modular group might be the first non-
commutative group to have been been studied in the history of mathematics.
As another example, consider a quadratic form in three variables with integral
coefficients and signature (+, +, —) ; the group of its isometries with integer
coefficients is of course a fuchsian group. This was another motivation for
Poincaré when he studied these groups [60]. We also want to emphasize that
not only the discrete groups of PSL(2, R) might be interesting, even from
the number theoretical point of view. Examples can be given by taking a
number field k embedded in R and looking at the ring of integers Ö in this
field (for instance Z[v/2] in Q(\/2)). The group PSL(2, O) of elements of
PSL(2, R) with entries in Ö is a very important one (even though it is dense
in PSL(2, R) if k is not the field of rational numbers).

3.2 PlECEWISE LINEAR GROUPS

Our second example is a much bigger group : the group of piecewise linear
homeomorphisms of the circle S*, considered here as R/Z. A homeomorphism
/ of the real line R is called piecewise linear if there is an increasing sequence
of real numbers xt parametrized by i e Z such that lim±00x; d=oo and
such that the restriction off to each interval [xhxi+i] coincides with an affine
map. If such a homeomorphism satisfies f(x + 1) f(x) + 1 for all x, then it
induces a homeomorphism of the circle S1 - R/Z. Such a homeomorphism of
S1 is called a piecewise linear homeomorphism of the circle. Note that, by our
definition, we are only considering orientation preserving homeomorphisms of
the circle. The collection of these homeomorphisms is a group denoted by
PL+(S1).

Again, this group is acting transitively on the circle so there is not much
to say about its orbits... However PL+(S!) contains some very interesting
subgroups which will provide good examples of some dynamical phenomena
on the circle. We shall mention only one of them.

The Thompson group, denoted by G, is a countable subgroup of PL+(S1)
which has been studied quite a lot recently and deserves more attention. Some
of its properties will be mentioned in these notes, in particular as a source
of (counter)-examples. To define it, we consider first the group G consisting
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of piecewise linear homeomorphisms / of R which have the following four

properties.

• The sequence jq can be chosen in such a way that and f(xi) consist

of dyadic rational numbers (i.e. of the form p2q, p,q G Z).

• The set of dyadic rational numbers is preserved by /.
• The derivatives of the restrictions of / to ]x;,xî+i[ are powers of 2 (i.e.

of the form 2q, q G Z).

• One has f(x + 1) =f(x) + 1 for all x.

The elements of G induce homeomorphisms of the circle S1 ~ R/Z.
The collection of these homeomorphisms is the Thompson group G. Figure
4 shows the graphs of two typical elements of G.

Among the nice properties of G, we mention first the fact that G is
an infinite finitely presented simple group. This was the main motivation for
Thompson: indeed G was the first example of such a group (recall that a

group is called simple if it contains no proper normal subgroup).
We also mention a connection with the modular group PSL(2, Z) acting on

RP1. Consider the group of homeomorphisms of RP1 which are piecewise-
PSL(2, Z), i.e. for which one can partition RP1 as a finite union of intervals
with rational endpoints in such a way that on each of these intervals, the
homeomorphism coincides with an element of PSL(2, Z). It turns out that
there is a homeomorphism h from R/Z to RP1 mapping the dyadic points
in R/Z to the rational points of QP1 and conjugating the Thompson group
G with this group of piecewise-PSL(2, Z)

Somehow, we could say that G sits inside PL+CS1) like a fuchsian group
sits inside PSL(2, R). For more information concerning this group, see [13, 28].
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