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1. Introduction

The motion under gravity of a rigid body one of whose points is fixed is

described by a Hamiltonian system on the cotangent bundle T* SO(3) of its

configuration space SO(3), coordinatized by Euler angles and their conjugate
momenta. This system was first obtained by Lagrange around 1788 [17], the

particular case of free rigid body motion being already known to Euler. After
a first reduction, with respect to rotations about the vertical in space, this
leads to the following two degrees of freedom Hamiltonian system on T*S2,
also obtained by Lagrange [17, p. 232 and p. 243]:

(1) ^=Mxü + xx r, A=rxß
at at

m ^ (^1,^2,^3), r (r1,r2,r3), x (xuX2,x3)-

Here M, £2 and F denote respectively the angular momentum, the angular

velocity and the coordinates of the unit vector in the direction of gravity, all

expressed in body-coordinates. The constant vector \ is the center of mass

in body-coordinates multiplied by the mass of the body and the acceleration.
We recall that M IQ where I is the matrix of the inertia operator and we

may suppose that I diag(/i,/2,/3). The system (1) may be viewed as a two
degrees of freedom Hamiltonian system on the manifold se*(3) ~ se(3) - the

Lie algebra of the Euclidean group of three space SE(3) S0(3) x R3. Indeed,

se*(3) with its usual Kostant-Kirillov-Poisson structure may be identified, via
(a multiple of) the Killing form, with se(3). This induces the following Lie-
Poisson bracket on se(3) ^ R3 x R3

{mum2} -m3,..., {mut2} -r3,..., {rhTj} 0

with coadjoint orbits

Ma{(M, O R6 : (r,r) 1, (r,M)=a}
and on each symplectic leaf (1) is Hamiltonian with Hamiltonian function the

energy of the body (see [21])

E~±(Cl,M)-(x,r).
Lurther we shall be interested in the case when the body is symmetric

about an axis through the center of gravity and the fixed point - the so-called

Lagrange top [17, p. 253]. This is equivalent to the conditions I\ /2 and

X (0,0, xs)' Without loss of generality we may also suppose that X3//1 1,

and if we put m (/3 - h)/h then (1) takes the form
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Qj —mQ2Q3 _ r2 rI r2o3 — r3o2

(2) q.2m£i3Qi+ri r2 r3Oi -rifi3
ù3o f3 ri£i2 - r2Qi

with first integrals

Hi =r]+r22 + r23

h2 - QiTi + n2r2 + (i + m)ü3r3

e H3=i (q? + ß2 + (i + ot)q3) - r3 •

Figure 1

The Lagrange top

Due to the symmetry of the body there is an additional integral of motion,

#4 n3,

which makes (2) Liouville integrable on the symplectic leaf

A4a {(ß,T) G R6 : r2{+rl + rl l, ^pFI + £^2^2 + (1 + m)Q3r3 a}

The Hamiltonian vector field generated by //4 on Ma is given by

02 rfi 1~2

(3) Ô2 —Oi r2 - —r 1

Ô3 0 r3 0

and it represents uniform rotations about the symmetry axis through the center

of gravity and the fixed point in space.

The Lagrange top is one of the most classical examples of integrable

systems and it appears in almost all papers on this subject. The explicit
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formulae for the position of the body in space in our case)

were found by Jacobi [15, p. 503-505]. In the last twenty years most of
the integrable problems of classical mechanics were revisited by making use

of algebro-geometric techniques. From this point of view the Lagrange top
takes a somewhat singular place - the results available are either incomplete,
or inexact, or even wrong. Consider the complexified group of rotations
C* ~ C/27hZ defined by the flow of the vector field (3). It acts freely
on the generic complex invariant level set

7ft {(ß,nec6 : Hl(a,r)^i,H2(a,ry^hz,H3(çi,r)
and it is classically known that the quotient manifold ThjC* is an elliptic curve.
The starting point of the present article is the observation that, generically,
the algebraic manifold Th is not isomorphic to a direct product of the curve

Th/C* and C* (although as a topological manifold it is). Let us explain first
the algebraic structure of the invariant level set ^. If A C C2 is a rank three

lattice

(4, A z(20")®z(2°.)ez(;;), R«(r,)<0

then C2/A is a non-compact algebraic group and it can be considered as a

(non-trivial) extension of the elliptic curve C/{2tt/Z®tiZ} by C* ~ C/2tt/'Z :

(5) 0 — C/27n'Z —f C2/A A C/ {2wiX© tïZ} —> 0, </>(Z|, z2) z,

We prove that, for generic hif the complex invariant level set 7), of the

Lagrange top is biholomorphic to (an affine part of) C2/A. The algebraic

group C2/A turns out to be the generalized Jacobian of an elliptic curve with
two points identified. This curve, say C, is the spectral curve of a Lax pair for
the Lagrange top, found first by Adler and van Moerbeke [1] and its Jacobian

Jac(C) C/{2niZ ® t\Z} is a curve found first by Lagrange. Further

we prove that the flows (2), (3) define translation invariant vector fields on

C2/A which means that our system is algebraically completely integrable.

Let us compare the above to the classical Lagrange linearization on an

elliptic curve [17] (see also [1, 21, 24, 3, 2]). It is well known that, due to

the symmetry of the body, the system (2) is invariant under rotations about

the axis of symmetry. These rotations are given by the flow of (3) which

commutes with the flow of the Lagrange top. Thus we have a well defined

C* action on the complex invariant level set Th ~ C2/A and a well defined

(factored) flow on Th/C*. Lagrange noted around 1788 that this factorization

amounts to eliminating the variables £2], £22, Tj, T2, so he obtained a single
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autonomous differential equation for the nutation 6, where r3 cos# [17,

p. 254] (nutation is the inclination of the symmetry axis of the body to the

vertical). Finally it is seen from this equation that r3(/) is, up to an addition

and a multiplication by a constant, the Weierstrass elliptic function pit). Thus

Lagrange linearized the complex flow of the Lagrange top on an elliptic curve.

This curve happens to be the Jacobian J(C) of the spectral curve C of Adler

and van Moerbeke and is identified with C/{27tzZ ® r\Z} in (5). The kernel

of the map ç is just the circle action C* ^ C/2tt/Z defined by (3), so

the linear vector field (3) is projected under 0 onto the zero vector field on

Jac(C) C/{2?r/Z © T] Z}.
To summarize in modern language, Lagrange's computation shows that the

generic invariant level set Tj7 of the Lagrange top is an extension of an elliptic

curve C ~ Jac(C) by C* and the flow is projected on this curve into a well

defined linear flow. This is, however, a very vague description of Th ~ C2/A.
Indeed, although the fibration

(6) C2/A Jac(C) C/{2tt/Z 0 tjZ}
is topologically trivial, it is not algebraically trivial, and to know its type

we need the parameter 7? defined in (4) (cf. [23]). As the general solution

of (2) lives on C2/A then, contrary to what is often asserted, it cannot be

expressed in terms of elliptic functions and exponentials. It is even less true

that "the flow of the Lagrange top lives on a complex 2-dimensional cylinder
with generator the line z 0" as claimed in [21, p. 232].

The algebraic description of the Lagrange top is carried out in Section 2

(Theorem 2.2). The Lax pair is used first in Section 3 where we construct
the corresponding Baker-Akhiezer function. This implies explicit formulae for
the general solution of the Lagrange top which complete and simplify the

classical formulae due to Jacobi [15, p. 503-505] for ri.r2,r3 and Klein and

Sommerfeld [16, p. 436] for the angular velocities (Theorem 3.6).

In Section 4 we study reality conditions on the (complex) solutions. Besides
the usual real structure of the Lagrange top given by complex conjugation
there is a second natural real structure induced by the eigenvalue map of the

corresponding Lax pair representation. It turns out that these two structures
coincide on Jac(C) but are different on C2/A (and hence on Th). The

corresponding real level sets are described in Theorem 4.2. This makes clear
the relation between the real structure of the curve C, its Jacobian Jac(C)
and the real level set Tf (a question raised in [2] and [3, p. 37]).

The results obtained in the present paper lead to the following unexpected
observation : the real solutions of the Lagrange top corresponding to its two
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real structures provide one-gap solutions of the nonlinear Schrödinger equation
(Proposition 5.1)

(NLS^ uxx iut d= 2\u^u

Finally, for the convenience of the reader, we give in the Appendix a brief
account of some more or less well known results concerning the linearization
of the Lagrange top on an elliptic curve.
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2. Algebraic structure

Let C be the affine curve {/i2 =/(À)} where / is a degree 4 polynomial
without double roots. We denote by C the completed and normalized curve C.
Thus C is a compact Riemann surface, such that C CU oo+ U oo~, where
oo± are two distinct "infinite" points on C. Consider the effective divisor
m oo+ + oo~ on C and let Jm{C) be the generalized Jacobian of the elliptic
curve C relative to m. Following [23] we shall call m a modulus. We shall
denote also J(C; oo±) 7m(C). Recall that the usual Jacobian

J(C) Div°(C) / ~

is the additive group Div°(C) of degree zero divisors on C modulo the

equivalence relation ~ We have D\ ~ £>2 if and only if there exists

a meromorphic function f on C such that if) D\ — D2.. Similarly the

generalized Jacobian

J(C-,oo±)Div°(C) /~
is the additive group Div°(C) of degree zero divisors on modulo the

ffl Til
equivalence relation ^. We have D\ ~ D2 if and only if there exists

a meromorphic function f on C such that /(oo+) /(00~) 1 and

(f) D\ — D2. The generalized Jacobian J{C\ oo±) is thus obtained as a

C*-extension of the usual Jacobian 7(C) (isomorphic to C). This means that

there is an exact sequence of groups

(7) 0 C* A J(C; oo±) A /(C) -* 0.
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