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the form l(wi,... ,wn) of length 6n ; therefore, there exists a factor of u of
length ln — 2 + n which does not contain the factor w\ • • • wn. This shows

that ip(ri) > n — 1 + ln. The lemma is thus proved.

Remark. Note that in the case of the Fibonacci sequence (a v^2~1

the recurrence function satisfies, for F^-i < n < Fk,

<p(n) n- 1 + Fk+1

where (Fn)nen denotes the Fibonacci sequence Fn+i Fn+Fn-i, with Fq 1

and F\—2.

This result is extended in [13] to the fixed point of the substitution a
introduced by Rauzy which generalizes the Fibonacci substitution and is

defined by cr(0) 01, <r( 1) 02, a(2) 0.

THEOREM 12. Let Tn denote the so-called Tribonacci sequence defined

as follows: Tk+3 Tk+2 + Tk+\ + Tk, with To 0, T\ 0, T\ 1.

The recurrence function (p of the fixed point beginning with 0 of the Rauzy
substitution satisfies for any positive integer n :

k-\-1 k~V2

(f(n) n — 1 + Tk+6, where
0 0

6. Higher-dimensional generalizations

6.1 Two-dimensional generalizations and Beatty sequences

Let us consider now some two-dimensional versions of the three distance

and three gap theorems. Such generalizations were introduced by Fraenkel and

Holzman in [26] in order to give an upper bound for the number of gaps in the

intersection of two Beatty sequences. They first reduce this problem to a two-
dimensional version of the three distance theorem, conjectured by Simpson
and Holzman and proved by Geelen and Simpson (see [29]). Then they deduce

from this theorem a bound for the number of gaps in the intersection of two

Beatty sequences, when at least one of the moduli is rational.

Let us first give the two-dimensional version of the three gap theorem

introduced by Fraenkel and Holzman. We will use the same notation as in

[26] : for any pair of real numbers (x,y), {(x,y)} means the equivalence class

of (x,y) mod Z2, i.e., {(x,y)} belongs to the torus T2.
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THEOREM 13. Let oq, a2, ßi> Ä* Mi and M2 de real numbers in

[0,1[. The gaps between the successive values of the integers n such that the

following points of the torus T2

{(naq, na2)}

belong to the rectangle

dl {{CdO} ; Mi — A < x < mi j T2-ßi<y< M2}

take a finite number of values which depend only on a\, a2, ß\ and ß2.

Furthermore, if at least one of the two angles aq and a2 is rational, then

the number of gaps is bounded by q T- 3, where q is the minimum of the

denominators of a 1 and ct2 in lowest terms (the denominator of an irrational
number is considered as +00

Let us state now the two-dimensional version of the three distance theorem

proved in [29] by Geelen and Simpson.

THEOREM 14. Assume we are given two real numbers aq, a2 and two

positive integers n\, n2. The set of points

{ia 1 + ja2 + p, 0 < i < n\ - 1, 0 <j < m — 1}

partitions the unit circle into intervals having at most min{ni,n2} + 3 lengths.

Note that the bound min{ni,n2} + 3 is not the best possible when n\
or n2 — 1. Indeed, in this case, the statement reduces to the three distance

theorem. For a discussion on the achievability of the bound, the reader is

referred to [29].
Fraenkel and Holzman have proved in [26] that Theorems 13 and 14

together answer the question of the intersection of two Beatty sequences,
when at least one modulus is rational. We define a gap in the intersection
of two Beatty sequences to be a difference between two successive elements
of the intersection, and an index-gap to be the difference between the two
corresponding indices in the same Beatty sequence.

THEOREM 15. Let (|_na\ + PiJ),7çn and ([na2 + p2\)neN be two Beatty
sequences, with at least one of the two moduli oq and a2 rational. Let q
denote the minimum of the denominators of a 1 and a2 in lowest terms (the
denominator of an irrational number is considered as +00 The number of
gaps and index-gaps in the intersection is bounded by q F 3, if q > 2, and
bounded by 3 otherwise.
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Fraenkel and Holzman show furthermore that this bound is achievable and

that the number of gaps can be made arbitrarily large, when at least one of
the moduli is rational.

6.2 Combinatorial applications

Now let us review some applications of Theorems 13 and 14. For instance

we can deduce the following result for the intersection of two Sturmian

sequences.

THEOREM 16. Let s (sn)neN and t (tn)neN be two Sturmian sequences.
The number of gaps between the successive integers n such that sn tn is

finite.

Proof Let s tyfl)neN and t (tn)nen be two Sturmian sequences of
angles a and /?, with corresponding partitions {/o,/i} and The

gaps between the integers n such that the points {(na,nß)} in T2 belong
to the rectangle Iq x Jq (respectively, I\ x J\ take a finite number of values,

hence so do the gaps between the successive integers n such that the points

{(na, nß)} in T2 belong to the set Iq x Jq U I\ x J\.

We also deduce from Theorem 14 and Lemma 3 the following

THEOREM 17. Let u be a coding of the irrational rotation by angle
0 < a < 1 with respect to a partition into d intervals of length 1 /d. The

frequencies of factors of u of length n > sup {n(l\d} take at most d + 3

values, where n(l) denotes the connectedness index.

Proof. This result is a direct application of Lemma 3 and Theorem 14.

Indeed, the intervals I(w\,..., wn) (corresponding to the factors w\ • • • wn of
length n) are bounded by the points

{i(l — a) -\-j/d, 0 < i < n — 1, 0<j<d—l}.

Vuillon has introduced in [57] two-dimensional generalizations of Sturmian

sequences obtained by considering the approximation of a plane of irrational
normal by square faces oriented along the three coordinates planes. Theorem

14 can also be applied to give an upper bound for the number of frequencies

of blocks of a given size for such double sequences (see [4]).
We will give in Section 7 a direct combinatorial proof of Theorem 14 in

the particular case min {n^ 2, and give an interpretation in terms of
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frequencies of binary codings : the frequencies of the factors of given length

of a coding of an irrational rotation with respect to a partition in two intervals

take ultimately at most 5 values.

6.3 The 3d distance theorem

Let us consider another generalization of the three distance theorem, known

as the 3d distance theorem. This result, conjectured by Graham (see [17] and

[34]), was first proved by Chung and Graham in [18] and secondly by Liang

who gave a very nice proof in [37]. Geelen and Simpson remark in [29] that

their proof uses ideas from Liang's proof.

THE 3d DISTANCE THEOREM. Assume we are given 0 < a < 1

irrational, 71,.. „ f % real numbers and n\,..., nd positive integers. The points

{na + 7;}, for 0 < n < n{ and 1 < i < d, partition the unit circle into at

most n j + • • • T- n(\ intervals, having at most 3d different lengths.

We will give a combinatorial proof of this result in Section 8 and express
the corresponding result for frequencies of codings of rotations, i.e., that the

frequencies of the factors of given length of a coding of a rotation by the

unit circle under a partition in d intervals take ultimately at most 3d values.

6.4 Other generalizations

Slater has studied in [50] the following generalization of the three gap
theorem, which should be compared with Theorem 13 : there is a bounded
number of gaps between the successive values of the integers n such that

{77(71,..., rjd)} £ C, where C is a closed convex region on the d-dimensional
torus and where 1, % rjd are rationally independent. However, Fraenkel
and Holzman prove Theorem 13 even in the case where a\, 07 and 1 are

rationally independent.

Chevallier studies in [16] a d-generalization of the three distance theorem
to Td, where intervals are replaced by Voronoï cells : the number of Voronoï
cells (up to isometries) is shown to be connected to the number of sides of
a Voronoï cell. The notion of continued fraction expansion is generalized by
properties of best approximation.

Finally, note the unsolved problems quoted in [29] concerning further
generalizations of the three distance theorem. For instance, an upper bound
for the number of distinct lengths in the partition of the unit circle by the points
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k\a\ + H VkdOid, for kt < n; — 1 and 1 < i < d m conjectured to be

of the form q + nf=/ ni-> whore cci is a constant independent of n\,. rid •

7. Frequencies of factors for binary codings of rotations

We will prove in this section the following result, which corresponds to
the case min {«1,^2} 2 in Theorem 14. The idea of using a reflection of
the unit circle can also be found in the original proof in [29].

THEOREM 18. Let a be an irrational number in ]0. 3 [, ß fi 0 a

real number and n a non-zero integer The set of points {0}.{/3},{a},
{ß + M {na} {ß + na] divides the circle into a finite number of
intervals, whose lengths take at most five values.

7.1 A COMBINATORIAL PROOF

We will prove Theorem 18 by introducing a coding of the rotation by
angle a with respect to the intervals of the unit circle bounded by the points

{0} : {ß} : {/3 + a} {na} {ß + na].
Let a be an irrational number, ß a non-zero real number and n an

integer. Let /],.... Ip denote the intervals of the unit circle bounded by the

points {0} {ß} {a} {ß + a} {na} : {ß + na] Let u (un)ne^ be

the sequence defined on the alphabet Z {a\,..., ap} as the coding of the

orbit of 0 under the rotation R of angle a under the partition {/],.... Ip} :

un ak 4=^ {na} G 4 •

The frequency of the letter ak in the sequence u is equal to the length of the

interval 4, by uniform distribution of the sequence ({uo})weN.'We must now

prove that the frequencies of the letters of u take at most five values. Let us

consider the graph F1 of words of u of length 1. There is one edge from ak

to ak> if h' is the image of 4 by the rotation R or if 4; contains {—a} or

{—a + ß}. Therefore the graph T1 contains p vertices (one for each letter)
and p + 2 edges : indeed, every vertex has only one leaving edge, except the

ones associated with the intervals containing {—a} or {n — a + ß}, which
have two leaving edges (if both of these points belong to the same interval

4, then ak has three leaving edges and all the other intervals have only one

edge). In other words, we have p(\) p and p(2) p+ 2. As in the proof of
Theorem 6, this implies that there are at most 6 branches in Ti : indeed, each
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