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16 P-A. CHERIX AND G. SCHAEFFER

COROLLARY 3.2. For #X =k, #R=n, xp € X and 0 < ¢ < 1/k fixed,
being (€, xq)-balanced is generic for T = (X|R).

Proof of corollary. We choose n relations at random; by Lemma 3.1,
every r € R 1s generically (e, xg)-balanced, but the conjunction of finitely
many generic properties is also generic. [

4. SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF FREE SUBGROUPS
We first begin by a very easy proposition.

PROPOSITION 4.1. Let I' = (X |R) be a finite presentation, which has
a Dehn algorithm and such that for some y € X every subword u of every
r € R* with |u| > |r|/2 contains either y or y~', then X — {y} generates a
free subgroup in T.

The proof of this proposition will follow from Lemma 4.2 below.

LEMMA 4.2. For (X|R) a finite presentation of a group T" and y € X,
the following are equivalent :

o X —{y} freely generates a free subgroup of T ;

o cvery non trivial element w € Fy, which represents the identity in T,

contains either y or y~!.

Proof. 1) =-2): By contraposition, suppose that there exists a non trivial
reduced element w € Fx_;,y such that @ = e (where w is the canonical
projection of w in I'), then X —{y} does not freely generate a free subgroup
in '

2) = 1):  Let wj,wy € Fy_g1 be two reduced elements such that

w; = wyp € I'. Then wlwz_l =e¢ecTI. So wlwz_l 1S an element of Fx_()
which represents the identity in I'. By hypothesis, this implies w; = w, in
Fyx. Hence X — {y} freely generates a free subgroup in T'. [

Proof of Proposition 4.1. By Lemma 4.2, it is sufficient to show that every
non trivial reduced word on Fy which represents the identity in I" contains
either y or y~!. By assumption, I' = (X |R) satisfies a Dehn algorithm, so
such a word contains at least one half of a relator » in R which contains at
least one occurrence of y or y~!. [
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The interest of this proposition appears when we replace “having a Dehn’s
algorithm” by “satisfying the small cancellation condition C’(1/6)”, because
C'(1/6) and the fact that every subword u of any relation r with |u| > |r|/2
contains at least one y or y~! are easy to check on a given presentation.

Unfortunately, as explained before, it is not known if the small cancellation
hypothesis 1s generic, so we need other sufficient conditions to ensure that
X —{y} generates a free subgroup in T.

PROPOSITION 4.3. Let I' = (X | R) be a finite presentation with k
generators and | relations, which is (€,xy)-balanced for some 0 < e < 1/k
and some xo € X, and which satisfies a 0-condition such that 0 < ¢/(2 — ¢€).
Then X — {xo} freely generates a free group in T.

To prove the proposition we need the following lemma and the following
notations. For a cell f; of the diagram, we denote by In#(f;) (resp. by Ext(f;))
the number of edges of f; which are internal to the diagram (resp. which are
on the border of the diagram). We denote also by #(f;) the total number of
edges of the cell f;.

LEMMA 4.4. Let I' = (X|R) be a finite presentation of a group T which
satisfies a 0-condition for some 0 < 0 < 1, then for every reduced diagram,
there exists a 2-cell f of A satisfying

20
Int(f) < m#(ﬂ-

Proof.  First we prove it for simple diagrams. Let e = 20/(1+6). Because
the diagram is simple we have the following equalities:

D Y Ex(f) = EQ) = |0A],

II) Z]nt(f,-) = 2I(A), because every internal edge belongs to two different

cells.

So we get:
#(A) = % Z[nt(ﬁ-) + ) Ext(f) = > #(f) - % > Ine(f) .

To obtain a contradiction, we suppose that every cell f; of one diagram A
is such that (1/e)Int(f;) > #(f;). Then we have
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1 |
- }: Int(fy) > Z #(F) = #(A) + . Z (),

whence % > Int(f)) > #(A) or 2—Z—EI(A) > #(A). Since € = 20/(1 + 0), we
obtain I(A) > 0#(A), which contradicts the 6-condition.

In fact, if the reduced diagram A is not simple, it is a union of simple
diagrams linked by bridges. So each of its parts, which is a simple diagram,
defines another reduced diagram (relative to another word), so the inequality
holds for every part of A which is a simple diagram. We conclude by saying
that increasing the number of external edges does not affect the inequality. []

Proof of 4.3. By Lemma 4.2, it is sufficient to prove that the (e,xg)-
balanced and f-conditions imply that every non trivial reduced word in Fyx
which vanishes in I' contains at least one xoil.

Let us choose such a word w and A a reduced diagram of w. By Lemma

4.4, there exists a cell f with border equal to one r € R*, such that

20 29
S =
i) < 75%*D = 7775

lrl < Ell"[ S nxO(r):

because § < ¢/(2 —€). As there are more occurences of xy or x; ' than the
number of internal edges, it means that some occurrences of xg or x, b will
be external edges, i.e. will be in the border of A which is w. []

We are now able to prove the main theorem.

Proof of theorem 1.1. By Proposition 4.3, for a finite presentation (X|R),
we know that being (€, xg)-balanced and satisfying a #-condition is sufficient
to ensure that X — {xp} freely generates a free subgroup in I'. But by
Corollary 3.2 and [13, Theorem 2], these two conditions are generic and so
is the conjunction of these two conditions.  []

5. SPECTRAL ESTIMATES FOR ADJACENCY OPERATORS ON CAYLEY GRAPHS

The existence of a free subgroup generated by X — {xy} gives an upper
bound for the spectral value of the adjacency operator on the Cayley graph of
[ = (X|R) associated with the symmetric generating system S = XUX !,

We briefly recall some definitions and notations. The Cayley graph G(I', X)
of I' associated with S has its set of vertices in bijection with I' and two
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