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Now consider the orbits of the points h G 51(2, R) under the adjoint
representation of SL{2, R). Notice that since this action leaves K invariant,
the action preserves the spheres K constant, in Minkowski space R1'2.

(Of course, these Minkowski "spheres" are hyperboloids of revolution in R3.

See figure.) So the orbits of the adjoint representation lie in these Minkowski
spheres. In fact, it is easy to see that the orbits are precisely the connected

components of these Minkowski spheres. (This is essentially the Jordan

canonical form theorem in dimension 2.) In the case of non-zero parabolic
elements, this means that the orbits are precisely the connected components of
the light-cone minus the origin. Typical stabilizers of the adjoint representation
are :

hyperbolic case: StabSL(2)R) ^ ^ ^ j± : G r|
parabolic case : StabSL(2jR) ^ ^ |± ^ Q : r g Rj

elliptic case : StabSL(2>R)
° M / (cosf ~sinG

f e R)
V -1 0 Jsint cost J J

For every non-zero element h G sl(2,R), the stabilizer Stabsi(2iR)(/z) is (±1
times) the one-parameter subgroup {exp (thG R} generated by h. Notice
that if h G sl(2,R)is elliptic (resp. hyperbolic or parabolic), then StabS£(2jR)(/r)
is a circle (resp. two lines).

6. SL(2,R)-ACTIONSON R2

By Theorem 3.5, the only homogeneous space of SL(2. R) of dimension 1

on which SL(2,R) acts faithfully is the circle 5' equipped with the projective
action. We now examine the homogeneous spaces of SL(2, R) of dimension 2.

Lemma 6.1. Every faithful transitive action of 2, R) on a noncompact
surface is conjugate to one of the following two actions :

(a) the canonical action on SL(2,R)/ j^ : oj R2\{0},

(b) the canonical action on SL(2,R)/|^q Q:tGR| R2\{0}.

Proof Of course, the homogeneous spaces of SL(2, R) of dimension 2
are determined by the closed subgroups of SL(2,R) of dimension 1. The
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connected component of a closed subgroup of SL(2,R) of dimension 1 is a

one-parameter subgroup : so it is either hyperbolic parabolic, or elliptic. This

gives the following three homogeneous spaces :

(a) SL(2, R)/ I ^
q j/f) : r > 0j - R2\{0},

(b) SL(2,R)/{(J Q : r G r| R2\{0},

(0 SL(2,R)/{fCOs6. ~Smf:*GrW{ \ sm 0 cos 0 J J

Up to a twofold covering, these actions are just the restrictions of the adjoint
representation to the orbits seen in the previous section. Notice however that

in the elliptic case the element —Id acts trivially, and so the action is not
faithful. So this leaves the two required actions.

It remains to show that the homogeneous spaces of the form SL(2, R)/i/,
where H is not connected, do not give us any new faithful actions. But it
is easy to see that in the hyperbolic case, there are only two possibilities,
corresponding to H having 2 or 4 connected components, and —Id acts

trivially in each case. In the parabolic case, the situation is similar to that of
Part (c) of Theorem 3.5: either —Id acts trivially, or the homogeneous space
is compact.

We now classify the continuous SL(2, R)-actions on R2. As in the higher
dimensional case, we do this by giving a recipe for constructing examples,
and then prove that this gives a complete list.

First, consider the oriented annulus A {(r, 6) : 1/2 < r < 2}, expressed

in polar coordinates. Note that the above lemma furnishes us with three

faithful transitive actions of 5L(2,R) on A. By conjugation by the map
î/j: R2\{0} — A defined by ip(r,0) (^+7,#), the action (b) on R2\{0}
gives us an action on A which we denote By conjugating this by the

inversion (r, 6) »—>• (1 /r, 0), we obtain another action, which we denote V~
In the hyperbolic case (a), the above lemma gives us another action, which

we denote H, but it is easy to see that in this case, inversion gives us an

isomorphic action.

Now choose a closed set S C R^ and choose a continuous function

T: Rt\S —> {-1,0,1}. Then one obtains an SL(2, R)-action Os,t on (R2,0)

as follows : taking Rj to be the radial coordinate, for each s e S one takes the

circle of radius s to be a one-dimensional orbit, equipped with the canonical
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projective action, and for each connected component C of R+ \S, one takes an

action V+ ,V~ or H according to whether T(C) is 1,-1 or 0 respectively.

It is easy to see that the actions on the two-dimensional orbits agree on their

boundaries with the action on the one-dimensional orbit, so one does indeed

obtain a continuous action.

Theorem 6.2. Every? faithful C°-action of SL{2, R) on (R2,0) is conjugate

to one of the above actions

Proof First we linearize the 50(2)-action, using Proposition 3.8. This

shows that the origin is the only zero-dimensional orbit, and that the one-

dimensional orbits are circles centred at the origin. Moreover, from above,

the restricted 5L(2, R)-action on the one-dimensional orbits is the canonical

projective action, and the actions on the two-dimensional orbits are each

individually conjugate to either V^:V~ or H. It remains to see that the open
orbits can be glued to their boundaries in a unique manner.

Notice that if x lies in a one-dimensional orbit Q, then Stab^(2,R)W
contains a unique one-parameter parabolic subgroup Gx of 5L(2,R), and

conversely, each one-parameter parabolic subgroup Gx fixes a unique pair of
points ±igD. Inside the orbits of and V~, the fixed point sets of the

subgroups Gx are radial lines passing from one boundary component of the

annulus to the other component. It follows that each end can be glued to a

circle in precisely two ways which respect the action of the one-parameter
parabolic subgroups. In fact, since -Id commutes with the 5L(2, R)-action,
the resulting actions are isomorphic.

Similarly, one treats the hyperbolic two-dimensional orbit of TL by
considering the fixed points sets of the one-parameter hyperbolic subgroups of
5L(2,R). If Q is a one-dimensional orbit, then each one-parameter hyperbolic
subgroup fixes four points in Q. Conversely, each point x e Q is fixed by
a family Fx of one-parameter hyperbolic subgroups. For the action H, the

one-parameter hyperbolic subgroups are the stabilizers of the points, and each

one-parameter hyperbolic subgroup has precisely four fixed points. For each

x G Q, the fixed points of the elements of Fx define four curves which pass
from one boundary component of the annulus to the other. It is not difficult
to see that a unique 5L(2, R)-action results by gluing each end of the annulus
to a circle in such a way as to have continuity of these fixed point sets.

We now complete the proof of Theorem 1.1.
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THEOREM 6.3. For all k 1,..., oo, every Ck-action of 5L(2, R) on
(R2,0) is Ck-linearizable.

Proof The proof is essentially the same as that of Theorem 4.2, except
that we require a replacement for Lemma 3.9. Of course, it is not true that

two points of R2 lie in the same radial line if and only if they have the

same stabilizer under the SO(2)-action. The idea is to instead use the stable

manifolds of the hyperbolic elements of 5L(2,R).
Let O: 52X2, R) —» Diff(R2,0) be our given C1 -action. First note that as

in the proof of Theorem 4.2, we may assume that locally the 50(2) -action
is the canonical linear one and that the differential of <D at the origin is the

identity. Now let

and consider the hyperbolic flow ft <£(/?') on (R2,0). By the stable manifold
theorem (see [17, Theorem 6.2.8 and Theorem 17.4.3]), the stable manifold
So of ft is locally the graph of a C1-function from (R, 0) to (R, 0). It
follows that there is a local C1-diffeomorphism of (R2,0) which commutes

with the SO(2)-action and which takes So to the x-axis. Conjugating O by
this diffeomorphism, we may assume that locally So is the x-axis. Then by
using Theorem 2.5 we may linearize the action of ft on So, with some

local Ck-diffeomorphism / of the x-axis and then extend the conjugation to

(R2,0), using Equation (2) of Section 4. The upshot of this is that we may
assume that, at least locally, the 50(2)-action is the canonical one, and the

action of the subgroup H {h1 : t G R} C 5L(2, R) is linear on the x-axis.
We will show that the 5L(2, R)-action now preserves the radial lines. Let

Re G 50(2) denote the rotation through angle 0 and let /g. Rq H Rf1. Then

clearly the stable manifold Sq of ^(ff) is the radial line at angle 6. Now let

g G SL{2,R) and consider X ==s 0(#)(Se). We want to show that X is a radial

line. Clearly X is the stable manifold of the hyperbolic flow <&(gfteg~l).
Let a denote the angle of the stable line of the hyperbolic one-parameter

group of matrices gfteg~l. Then Rf1^ is the stable manifold X^ of the

hyperbolic flow 0(A?), where Pf Rflgfteg~lR(J. Now the stable line of
the hyperbolic flow Pf is the x-axis; that is Pf is a one-parameter subgroup

of the form

At / ~^ e~l sinh t\

for some b G R. We are required to show that Xa is the x-axis. First notice

that restricted to the x-axis, one has
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*(A') * o 1

1 b{e~2t - l)/2
0

1 b(e~2t- l)/2\\ (e~r 0

0 1 { 0 ef

since H acts linearly on the x-axis. Hence, since the family of maps

iii m r
Ft O

1 b(e-*- l)/2^
is equicontinuous in some neighbourhood of the identity, we conclude that

is the x-axis, as required.

By the above argument, we may assume that locally the SO(2)-action is

the canonical one and the SL(2, R) -action preserves the radial lines. The proof
is then completed as in the proof of Theorem 4.2.

7. Examples of C°-actions of SL(2,R) on Rm

When m is greater than n there is a plethora of examples of continuous

actions of SL{n, R) on (Rm,0). In this section we give some examples in the

case n 2.

7.1. The symmetric product. Choose one of the continuous SL(2, R)-
actions on (R2,0) from the previous section. Now consider the associated

SL(2, R) -action on the symmetric product

Tl?=lR2ßm - Cm,

where Em is the symmetric group on m letters. Recall that the last identification
associates to an m-tuple of points (xi,.. «, }xm) in R2 C the coefficients of
the monic polynomial of degree m in one complex variable whose roots are
the x/. As the original action fixed the origin in R2, so the corresponding
action fixes the origin in R2m.

7.2. The adjoint action at infinity. Consider the adjoint action
of SL(2,R) on R3, as discussed in Section 5. Removing the origin and

compactifying the other end, we obtain a C°-action of SL(2, R) on R3,
which we will call the adjoint action at infinity. This action is certainly not
topologically linearizable, since all the orbits now accumulate to the fixed point.
In fact, this action is not topologically conjugate to any C1-action. To see

this, consider the hyperbolic element h f 1 °
J Using the exponential
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