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CENTRALISERS IN THE BRAID GROUP

AND SINGULAR BRAID MONOID

by Roger Fenn, Dale Rolfsen and Jun Zhu1)

Abstract. The centre of the braid group Bn is well-known to be infinite cyclic
and generated by a twist braid. In this paper we consider the centraliser of certain

important subgroups, and in particular we characterise the elements of Bn which
commute with one of the usual generators Oj. This characterisation is generalised to
the monoid of singular braids SBn, recently introduced (independently) by J.Baez
and J. Birman. We determine the singular braids which commute with Cj, or with a

singular generator xj* in fact we show these submonoids are the same.
We establish that the centraliser in Bn of Oj is isomorphic to the cartesian product

of two groups: the group of (n - l)-braids whose permutations stabilise j and the

group of integers. More generally, we show that the centraliser of the naturally-
included braid subgroup Br C Bn likewise splits as a direct product, and we give
an explicit presentation for this centraliser. We also describe the centralisers of
SBr C SBn.

As another application we consider a conjecture of J.Birman regarding the
injectivity of a map, related to Vassiliev theory, r\ : SBn ZBn from the singular
braid monoid to the group ring of the braid group. We see that the question is related
to the centraliser problem and prove the injectivity of t| for braids with up to two
singularities.

1. Introduction and Basic Definitions

The braid group Bn, for an integer n ^ 2, may be considered abstractly
as the group with generators o i, o „ _ i and relations

GjGk GkGj if I j - k I > 1,

GjGkGj GkGjGk if \j ~ k\ \

There are equivalent geometric descriptions of braids as strings in space,
as automorphisms of a free group Fn, as the fundamental group of a

configuration space, or as homeomorphisms of an «-punctured plane
(see below), which explains the importance of the braid groups in many

1) The authors gratefully acknowledge support from NATO grant 880769 and Canadian
NSERC grant 88086.
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disciplines. The originator of braid theory, Emil Artin, posed several

(at the time) "unsolved problems" in [Art2], including:

"With what braids is a given braid commutative?"

"Decide for any two given braids whether they can be transformed into
each other by an inner automorphism of the group. "

The present paper is concerned primarily with the first question: finding
the centraliser of a given braid. Although an algorithm exists, as we'll describe

shortly, this problem can still be said to be open in general. However, we
consider the most basic special case and characterise, in a simple geometric

way, the set of all braids which commute with one of the generators Oj.
The latter question — the conjugacy problem — was settled in principle

by Garside [Gar], who gave a finite procedure to decide if two given braids

are conjugate. The present work also contributes to this question, in that
we determine exactly which inner automorphisms will take one of the
standard generators to another.

G. Bürde [Bur] has computed the centralisers of certain special kinds
of braids: those which are "y-pure" as defined by Artin, meaning a pure
braid (see our discussion below) for which all strings except the yth are
horizontal straight lines. Bürde's point of view (like ours, which was

developed independently) is partly algebraic and partly geometric.
For an arbitrarily given element a e Bn, there is an algorithm to find a

finite set of generators for its centraliser, as shown by G. Makanin [Mak].
This result was extended by G. Gurzo [Gurl] to the centraliser of any finite
set of elements of Bn, who showed that the generators can be taken to be

positive braids (no negative exponents). The methods of Makanin and Gurzo

are algebraic and combinatorial. They rely heavily on techniques pioneered by
Garside; transferring the problem to the monoid of positive braids, and thus

making its solution a finite search. Their method sheds little light on the actual

structure of the centraliser. However, in a later paper [Gur2], Gurzo extended

the work to explicitly compute generating sets for centralisers of various special

types of braids, including the a, and their powers. As an application, she

discovered that the centraliser of any nonzero power o is independent
of m.

In fact more can be said, in general, of centralisers of finite sets in Bn ;

they are biautomatic. Thurston proved in [ECHLPT] that Bn is biautomatic

(see also [Charl], [Char2]), and Gersten-Short [GS] have shown that
centralisers of finite sets in biautomatic groups are themselves biautomatic.
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Following some preliminaries, our goal in Sections 2 and 3 will be to

characterise the centraliser of Oj using the geometric viewpoint, exploiting

the action of Bn on (classes of) arcs in the complex plane. More generally,

we identify all solutions ß to oyß ßo^ by a natural criterion involving

braids as geometrical objects — having what we call a "(y, &)-band."

Using this criterion, we recover Gurzo's result that the centraliser of o is

independent of m ^ 0. It also gives an alternative proof to the old result

[Chow] that the centre of Bn is infinite cyclic. In Section 4 we use our

results to describe the structure of the centraliser of Br in Bn, where

Br C Bn is the usual inclusion, r ^ n, and we give an explicit presentation

of this centraliser (our generators are different from Gurzo's).
In Section 5 we consider an extension of Bn to the singular braid

monoid SBn recently introduced by Birman [Bir2] and Baez [Bae] to study

Yassiliev theory. We show that the centraliser of a basic singular generator t7

in SBn coincides with the centraliser of o7. Moreover, the solutions ß to

tj ß ßi^ are shown to be exactly those ß which have a (possibly singular)

(7, A:)-band.
Our results are used in Section 6 to study a question raised by Birman

regarding injectivity of the Baez-Birman-Vassiliev map r\ from SBn

into the group ring ZBn. Finally, in Section 7 we generalise the "Band
Theorem" (2.2) to the context of singular braids, and consider the centra-
lisers of o7, tj and SBr in SBn.

We would like to thank Joan Birman, Vaughan Jones, Christine Riedtman
and Hamish Short for helpful conversations regarding this work.

Geometric braids. Let C denote the complex plane, {1,...,«} the

first n integral points on the positive real axis and I [0, 1] the unit
interval. We consider an «-braid ß to be a collection of n disjoint strings
ß C C x I {(z, /)} such that the y-th string runs, monotonically in t,
from the point (y, 0) to some point (k, l),y, k e {1, ...,«}. An isotopy in
this context is a deformation through braids (with fixed ends), and isotopic
braids are considered equivalent. We write y ß * k or, equivalently
y * ß k, so that braids can act either on the right or left as permutations
of {1, ...,«}. A pure braid is one whose permutation is the identity. We
will picture braids horizontally rather than vertically, so that multiplication
of braids is by concatenation from left to right, just as written algebraically.
The (equivalence classes of) braids with this multiplication form the group Bn
described algebraically above.

Basic references for braid theory are [Artl], [Art2] and [Bir 1]; [BZ]
and [Han] also contain good accounts and [Bir2] is an up-to-date discussion
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including singular braid theory. As noted by Artin, one can also regard a

braid as corresponding to a homeomorphism of C onto itself, with compact
support and setwise preserving {1, More precisely, a braid corresponds
to a mapping class in which homeomorphisms of C are considered equivalent
if one can be obtained from the other by a (compactly supported) isotopy
in which the points {1are held fixed. Thus equivalence classes of
braids are in one-to-one correspondance with such mapping classes. As

depicted in Figure 1 (see also Figure 6), the braid Oj corresponds to the class

of a homeomorphism which is a local (right-hand) twist of the plane
interchanging the points j and j + 1, and supported on a neighbourhood of the
interval [jj +1].

Figure 1

The homeomorphism associated with a generator oj

The inverse correspondence is as follows: suppose one has a

homeomorphism of C which is compactly supported and fixes {1, ...,/?} setwise.

This homeomorphism is isotopic to the identity, but the points {1

may move during the isotopy. The track of these points, in C x I, through
the isotopy, gives the geometric braid corresponding to (the class of) the

given homeomorphism.
The product of braids corresponds to composition of homeomorphisms of

C. One can have the braid group act on C either on the left or right — both
conventions appear in the literature. It is convenient for us, in fact, to adopt



CENTRALISERS IN THE BRAID GROUP 79

both conventions, extending the above notation for permutations so that

* ß : C - C corresponds to a mapping CxO^Cx 1

and defines an action on the right, whereas

ß * : C C corresponds to a mapping C x 1 C x 0

and operates on the left. Thus, for any subset X of C, and braids a, ß:

X* (aß) (X*a) * ß,

(aß) * X a * (ß *X),
X*ß ß-Uj

This action extends the permutation action of Bn as discussed earlier.

(We note that our depiction of generators oy disagrees with that of some

earlier authors, but is in keeping with recent practice, so that o7 corresponds

to a "positive" oriented crossing; a right-handed twist instead of left.)

Proper arcs and ribbons. An important rôle will be played by the set

of arcs in C which are proper rel {1, n), by which we mean that their

endpoints are in the set {1, n) and their interiors are disjoint from that
set. Such an arc from (say) y to k is called a (y, k)-arc. We consider

two (y, £)-arcs equivalent if they are connected by a continuous family of
proper arcs; in other words, isotopic. Unless otherwise stated, we do not
distinguish a (y, £)-arc A from its reverse3 the oppositely oriented Â, which
is a (k,j)-arc. Use the notation:

An the set of proper arcs in C, modulo isotopy fixing {1, n)

It is clear from the above discussion that the braid group also acts

naturally on A„, and we adopt the same symbols ß* and * ß for the left
and right actions.

By a ribbon we will mean an embedding

i?:I x HC x I
such that R(s,t)eCx t. Suppose one has a braid ß and a (y, k)-arc A
in C x 0. Then the isotopy corresponding to ß moves A through a ribbon
which is proper for ß, meaning R(0, t) and R(l,t) trace out two strands
of the braid, while the rest of the ribbon is disjoint from ß. The left end
of the ribbon is A and the right end is A * ß.

1.1 Proposition. Let ß be an n-braid and A and B be proper
arcs for {1, ...,«}. Then A * ß B if and only if there is a proper ribbon
for ß connecting ACCxO to B C C x 1.
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Proof. We have already argued that A * ß B implies the existence of
the ribbon. On the other hand, suppose there is a ribbon R from A
to B proper for ß. Then by reflection of the ribbon from A to A * ß and

concatenation with R, one has a ribbon from A * ß to B along ß_1ß.
But ß ~1 ß can be moved by level-preserving isotopy to the trivial braid
(1 «} x I, and then the image of the ribbon provides an isotopy
from A * ß to B fixing

The theme of this paper is to reflect algebraic properties of a braid in the

geometry of ribbons and the action of on A„.
Consider an n-braid ß which is constructed from an (n - 1)-braid by

running a narrow ribbon along the yth string, with the ends of the ribbon
being straight line segments on the real line, as pictured in Figure 2. The
ribbon may be twisted arbitrarily. Let ß consist of the two edges of the

ribbon, together with the other strands of the (n - 1)-braid (those of
index greater than j need to be renumbered and have their ends shifted,
of course.) Premultiplying ß by oy corresponds to putting a twist in
the left end of the ribbon, and the ribbon can be used to convey that
twist through ß until it emerges on the right, and we have the equation:
oyß ßo^.

In the special case of j k we have constructed a class of braids which
commutes with the generator oy. In fact, if ß is any braid for which

[j, j + 1] * ß [j,j + 1], it can be isotoped, with fixed endpoints, into one
with such parallel strands. Just slide the strands near each other along the

ribbon, but taper to the identity to keep the ends fixed.

Definition. We say that ß has a j, k)-band if there exists a ribbon
(the band) proper for ß and connecting [j,j + 1] x 0 to [k, k + 1] x 1.

2. Commutation and stabilisers

Figure 2

A braid with a (2.1)-band
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According to Proposition 1.1, ß has a (y, £)-band if and only if
[jyj + 1] * ß [k, k + 1]. However, it may not be obvious, from an

expression as a word in the generators, whether a braid has a (y, £)-band,
and subwords of braids with bands may fail to have bands, as illustrated
by the following example.

Example. Consider the braids a o2~1Oi02 and ß OiO^2. Then aß
has a (1, l)-band. But neither a nor ß have a (1, l)-band, although they
both stabilise {1,2}. The arc A [1, 2] * a ß * [1, 2] is as pictured in
Figure 3. It is an interesting exercise for the reader to check that aß
commutes with o 1, whereas neither a nor ß commutes with o 1.

The braid aß o2
1 a2o2oi o2

2 and the arc A [1, 2] * a ß * [1, 2]

We can now formulate the central result of this paper.

2.1. Theorem. A braid ß e Bn commutes with a generator oy if
and only if it has a (jj)-band. Equivalently, the action of *ß on An
stabilises [j,j + 1].

This is an immediate corollary of a more general result.

2.2. Theorem. For a braid ß g Bn the following are equivalent:
(a) Gj ß ß o ^,

(b) Oyß ßo^, for some nonzero integer r,
(c) oyrß ßo^, for every integer r,

(d) ß has a (y, k)-band,

(e) [j,j+ 1] *ß [k,k+ 1].

2.3. Corollary. The centraliser of o] is independent of r ± 0
and coincides with the stabiliser of the interval [jj + 1] in the action
of Bn upon An.

ter.-.
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2.4 Corollary. The inner automorphism in Bn exchanging
generators, ok ß ~1 öy ß, is achieved exactly by those braids ß that have

a(j,k)-band.

2.5 Corollary [Chow]. The centre of Bn, n ^ 3 is infinite cyclic,
generated by the braid A2, where

A ô/î_i(ôn_20^_i) *'* (O1O2 * * *

Proof. A braid commutes with all braid generators if and only if its
action stabilises all the intervals [1, 2], ...,[/?- 1, n], so it has a great ribbon
containing the entire braid, connecting [1, n] x 0 with [1, n] X 1, necessarily
in an order-preserving sense. Such a braid is clearly a multiple of the full-
twist A2.

3. Proof of Theorem 2.2

It is useful here to introduce an invariant of proper arcs. Throughout
this section A will denote an oriented (k, /)-arc in C which is proper with
respect to {1, ...,/?}.

Associated with A is a word in the symbols 70, I\, In, 70~1,

/j~1, ...,7~1 which can be described as follows. Assume that A is transverse

to the real line. Starting from its initial point k, continue along A to I and
whenever A crosses the interval [m, m + 1] write Im if it crosses with
increasing imaginary part and write 7 ~ 1 otherwise. In the above notation,
use the interval (- 00, 1] in case m 0 and [n, 00) if m n, in place of
[m, m + 1]. An isotopy of A will change the word by a sequence of moves

of the following sort:

a) the introduction or deletion of cancelling pairs of the form /m/~] or
I'111 m 1 m 5

b) left multiplication by a word in Ik _ 1, Ik and

c) right multiplication by a word in 7/ _ j, //.

Let w(A) be the word in the free group on the symbols 70,7l5
obtained by deleting all cancelling pairs, all initial segments in Ik^x,Ik and

all final segments in 7/ _ 7/. Then w(A) is an isotopy invariant, and it is

routine to check that A can be isotoped to read off exactly the word w(A).
Note that the exponents ± 1 of symbols in w(A) necessarily alternate.
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The action of oy on the word w(A) is as follows, in the case that the

ends of A are not in the set {jj + 1} :

U'-U1 if m*J'
h Jj

T~l -> T~l T T~x1 j 1j+i1J1j-i'

If an end of A happens to be j — 1 or j + 2, one may also have to delete

an initial or final If_\or If\, after applying the above transformation.

Although not needed in our proof of Theorem 2.2, the next lemma will
be useful later.

3.1 Lemma. If A is a (k, l)-arc, with {k, 1} n {jj + 1} 0, such

that A*Gj A, then up to isotopy A is disjoint from [jj + 1].

Proof It suffices to show that w(A), if reduced, does not contain If 1.

It follows from the above rules that each occurrence of f in w(A) is

replaced by exactly one occurrence with opposite sign in w(A * oy), and if
we are to have w(A) w(A* gj) there will be no cancellations among

the Ij in w(A * oy). So if I) occurs, we conclude w(A) w(A * o7),

contradicting A * gj A.

3.2 Lemma. If A is a (jj + \)-arc such that A*Gj A for
some integer r ± 0, then up to isotopy A «= [j,j+ 1].

Proof. Noting that A * Gj A if and only if A*Gfr A, we

assume, without loss of generality, that r > 0. By iteration we have

A * gf A. The lemma will follow if we can show that w{A) must reduce

to the empty word. So we suppose (for contradiction) that w(A) is nonempty.
First, note that then w(A) must involve some symbol Ip with \p — j \ ^ 2.

(For otherwise A C C - {(- oo, j - 1] u [j + 2, + oo)}, which is homeo-

morphic with C itself; but it is well-known that any two arcs in C are

isotopic with fixed ends, and we would have A isotopic to [j,j + 1] and

w(A) empty.)
We assume the first and last symbols of w(A) have exponent + 1 (the

other three cases can be argued similarly, or follow by symmetry). Then,
referring to Figure 4, we have:

W{A * Of) (/;+l//_\)'>*(//+11/;_1)-'-

where w* is the transformation of w(A) according to the rules (*) above,
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iterated 2r times. Noting that Ip persists in w* it is easy to argue that
w(A * ojr) w(A) is impossible; the contradiction.

The action of *Ojr on a (j, £)-arc in case r 2

We now turn to the proof of Theorem 2.2. It has already been observed
that (e) => (d) => (a), and it is obvious that (a) => (c) =» (b). So it remains to
establish that (b) => (e). Thus we assume that, for some r ^ 0, o^ß ßo£.
Since the algebraic crossing number of any two strings of a braid is a

well-defined braid invariant, this equation is possible only if {y, j + 1} * ß

{k,k + 1}. Now, noting that ß ~1 o^ß ork and that ark has a (k, k)-band,
we conclude that there is a proper ribbon for ß-1öyß from [k, k + 1] X 0

to [k, k + 1] x 1. Define A ß *[k,k + 1] [k,k + 1] * ß ~1. Then we

may assume (possibly after an isotopy) that the planes C x 1/3 and
C x 2/3 cut the ribbon in the arcs A x 1/3 and A x 2/3. Moreover, the
middle third of the ribbon, and Proposition 1.1, imply that A * Gj A.
By Lemma 3.2, A *= [j,j + 1] and the theorem is proved.

4. Centralisers of braid subgroups

We have established the following.

4.1 Theorem. The centraliser in Bn of the generator Gj is the

subgroup of all braids which have (jj)-bands. This subgroup is isomorphic
to Bjn_lx Z where BJn_l is the subgroup of Bn^x consisting of all
(n - 1 )-braids whose permutations stabilise j.

The goal of this section is to describe the centraliser of Br in Bn, r ^ n,
which we will call C(r, n). Here Br is the ^-string braid group with its usual

inclusion in Bn, namely as the subgroup generated by Oi or_i.
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4.2 Theorem. The centraliser C(r, n) of Br in Bn consists of
all n-braids in which the first r strings lie on a ribbon, disjoint from the

other strings, and which intersects C x 0 and Cxi in exactly the

straight line intervals from [1, r] x 0 and [1, r] x 1 (up to isotopy).

Proof. A braid ß is in C(r, n) if and only if it commutes with each

Gy, 1. Thus [jj + 1] * ß [jj + 1], l^j^r-l and so

[1, r] * ß [1, r], up to isotopy fixing {1, «}.

It follows that C(r, n) consists of all «-braids constructible as follows.
Let k n - r + 1 and consider the subgroup Blk of k-braids whose

associated permutation fixes 1. Then replace the first string of a braid
in B\ by r parallel strings lying on a ribbon along that string. The ribbon

may be twisted by some integral multiple of In (or % in the case r - 2);
such braids are precisely the central elements of Br.

4.3 Theorem. The centraliser C(r, n) is isomorphic to the direct
product Bln_r+l x Z.

A presentation of C(r, n). In order to establish a set of generators
and defining relations for C(r, n) we recall results of Chow [Ch] regarding
B\. This subgroup of Bk is generated by c±%...9ak-l9 together with
elements a2, ak defined by

^ o r
1

O 2
1

• • • o ^2 (5 O; _ 2
• • • 02 O i

These generators satisfy the usual braid relations:

OiGj GjGi, I i - j I > 1

G / G / + | OI O ,• + i G / G ,• 4, j

as well as the following, for / 2, k — 1:

g jaj g j aj, j i, i + 1

O/û/ g j a i +1

0/Ö/+1 of1 ^r+\aiai+i.

In fact these are defining relations for 5}. Chow also noted that the
subgroup of B\ generated by the a, is a normal subgroup (as is clear from the
above relations), in fact a free group on the generators a-,, and that B\
could be regarded as the semidirect product of that free subgroup with the
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subgroup generated by o2... ok-i, the latter group clearly isomorphic with
the braid group on k - 1 strings.

Applying this to our situation, for each i 1, n - r, let Ar + i be the
«-braid resulting from replacing the first string of the k-braid ai9 defined
above, by r parallel strings which lie on an untwisted band. Specifically,

Ar+i O r Or+1 ' * * G r+ i_2<3r+ i- l) G r _ j O r
* * * Or + /'_3Gr + /_2)

• • • • • • o, CT,) X G ; O ; _ j
• • • Ol) O / + iG/ • • • o2)

G /• + /-] O r + /_ 2
* ' * G r

Also let C denote the well-known generator of the centre of the r-string
braid group, namely C Oi if r 2 and in case r > 2:

C (oiG2 • * • o,_i)r

J

r
1

4.4 Theorem. The centraliser C(r, n) of Br in Bn has the

generators:

Gr + l s &r + 2 î •••? Gn — I A:r4- 1 • • • 5 zl^ C

and defining relations:

OiOj ojOi, I / — y I > 1

G / O / + 1 G / O / + 1 O / O / + 1

OiAjO;1 Ay, j ^ /, / + 1

O/A/O,"1 A/+i
g / + 1 ^ / A/ + ^ A / A / + 1

Co, O/C

CA, - A/C

(Subscripts ranging over all values for which the symbols are in the list of
generators.)

Figure 5

Special generators of C(r, n)
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5. The singular braid monoid and the map r|

Singular braids. Just as Vassiliev [Vas] used singular knots to extend

and organize knot invariants, it is useful, as in [Bae], [Bir2] to extend the

group of braids to the monoid of singular braids. (A related construction
is given in [FRR].) The strings of a singular braid are allowed to intersect,
but only in discrete double points, at which they define a unique common
tangent plane. As with braids, one identifies singular braids which are isotopic.
The isotopy need not preserve levels, but one must move only through
singular braids which have monotone strings, and the tangent plane defined

by the two strings at a double point is required to vary smoothly (in 3-space)

during any isotopy of the singular braids. Multiplication is by concatenation
as with braids; a braid with one or more singularities is not invertible in
the monoid. Let SBn denote the monoid of singular braids on n strings;
generators for SBn are shown in Figure 6.

Figure 6

Generators of SBn

In addition to the braid generators Oi,---,o„_3 we have the cor-
responding elementary singular braids ti, Together these
generate SB„. A proof is sketched in [Bir2] that, with the invertibility
of the o,, and the braid relations given in Section 1, the following additional
relations serve to define SB„ as a monoid:

Ö / T i T / O ; ;

OiXj OjXi, XiXj TjXj, I I 5. 2;

O/OyT, XjGjGj, j / - j ] =1
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Notice that the string labels involving a particular singularity are invariant
under these relations. Any equivalence between singular braids must match
the first singularity involving strings i and j in one braid with the
corresponding singularity of the other, etc.

5.1 Proposition. Left and right cancellation hold in SBn, that is

either of xy xz or yx zx with x, y, z in SBn implies y z.

Proof. By symmetry and induction, it is enough to check left
cancellation, and the special cases x oy, which is trivial, or x xj4 But if
tjy tjZ, the singularity of xy in each of the two singular braids can be

topologically characterised as the one involving the j and j + 1 strings that
is nearest to the left end, so an equivalence taking tj-y to tjZ must take t,
to tj and therefore y to z. D

Let us take ZBn to be the group ring of the braid group Bn. Then the

natural map Bn -> ZBn can be extended to a monoid homomorphism,
ri : SBn ->• ZBn by taking

Ti(a/) oi,Î|(T,')o, - c,"1 •

Note that SBn is a (2-sided) ZBn-module and p is a ZBn-homomorphism.
J. Birman in [Bir2] used this homomorphism (with target CBn) to

establish a relation between the Vassiliev knot invariants and quantum group
(or generalised Jones) invariants. She conjectured that the kernel of rj is

trivial, i.e. a nontrivial singular braid in the monoid SBn never maps to zero
in ZBn. A stronger conjecture is that r| is an embedding. The weak version

of Birman's conjecture (as actually stated) is rather easy — we give the

proof below. The injectivity question seems much harder, and is still an

open question at the time of this writing. In the next section we will apply
techniques developed in the previous sections to show that rj is injective at

least when restricted to singular braids with no more than two singularities.
We understand that Birman also has obtained these results independently.

To analyse the r| map, it is useful to consider the degree of a (singular)

braid, by which we mean the total exponent sum of all the oy in an expression

of the braid in terms of generators. It is well-known, and easy to see from
the homogeneity of the braid relations, that degree is well-defined. Likewise,
the number of singularities is invariant and we define SB(^ C SBn as the

subset of singular braids with exactly t singularities. The following is

routine to verify.
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5.2 Proposition. Suppose x e SB(p is a singular braid of degree s.

Then ri(x) e ZBn is a linear combination of V elements of Bn (call

them terms). There is a unique term of maximal degree s + t and a

unique term of minimal degree s - t. More generally, for each integer

u, 0 ^ u < t, ri(x) has (^) terms of degree s + t - 2u, and each of
these terms has coefficient (-1)". D

There may be some cancellation among the terms of degree strictly
between s - t and s + t, but since there is only one term of maximum

and one term of minimal degree, they cannot be cancelled and we draw

the following conclusions.

5.3 Corollary. No element of SBn maps to zero under rj.

The kernel of r| is also trivial in another sense.

5.4 Corollary. If 1 e Bn C SBn denotes the identity braid, then

Ti - 1 (1) 1.

To close this section we consider the natural extension of r| to the monoid
ring ZSBn.

5.5 Proposition. The extension r| : ZSBn ZBn is not injective.

Proof, ti and Oi - are two elements of ZSBn with the same

image. For a more subtle example, consider the elements

x Ti^of1 + TiG2Ti, y t2o1~1t2 + G2TiT2

An easy calculation verifies that q(x) r|(y). However, x ^ y, as can
be seen by examining their images under the map tG/, o,-- g,-.

The above example is related to certain canonical relations obeyed by
the Vassiliev invariants — see [Bir2], p. 274, or [Bar].

6. Results regarding injectivity of p

Note that if xje SBn satisfy y\(x) r| (y), then they both have the same
number of singularities, i.e. x e SB ^ if and only if y e The relevance
of bands to the injectivity question will be illustrated by first checking
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injectivity of r| restricted to SB^]. (Of course, it is injective on SB^0) Bn,
because it is simply the inclusion of the basis of ZBn.)

6.1 Lemma. For a braid ß e Bn, the following are equivalent:

(a) i/ß 1= ßTy,

(b) xf ß ßuf for some positive integer m.

(c) ß has an (i,j)-band.

Proof. Clearly (a) => (b) and, using the homomorphism SBn Bn

defined by xk-+ ok, ok^ ok, we see that (b) implies of ß ßof, which
implies (c) by Theorem 2.2. Finally, (c) => (a), because the band can be

used to convey T/ on the left of ß to become ty on the right.

In Section 7 we will prove a generalisation of this lemma in which ß is allowed

to be a singular braid.

6.2 Theorem. If x,yeSB{nl) and rj(x) i\(y), then x y.

Proof We can write x aT/ß and y a% ß' for (nonsingular) braids

a, a', ß, ß' and compute:

ti(a) a ö/ß - a of1 ß

Tl(^) a'a,ß' - a'Gj-'ß'

Equating the terms of highest and lowest degree, we have:

ao/ß a'oyß' and aof !ß a'of
1

ßr

It follows that

ö^(ßß/-1) (ßß,-1)oy2

and, by the lemma,

t/(ßß'-O-Cßß'-1)^
öKßß'-1) (ßß'-^ö;

We quickly deduce that ßß'-1 aa'_1 and it follows that

a T/ß a'xyß'

We will now work towards the injectivity of r| on SB(„2). Define a

singular ribbon to be a map k:IxI->CxI such that R embeds I x t into
C x t, except for finitely many points t, for which the image is a single

point in C XL One also assumes, at these singular points, that there is a
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tangent plane in C x I for the singular ribbon. Singular ribbons are the best

one can do for ribbons for singular braids. As with braids, we say a singular

ribbon is proper for a singular braid if it sends {0, 1} x I along two of its

strands and the image is disjoint from the other strings of the singular braid.

An isotopy of a singular braid can be extended to an isotopy of any of its

proper singular ribbons, with the following caveat: under the equivalence

t/%j Tjt/ one may have to reparametrise the singular ribbon.

In contrast to the situation for ordinary braids, it is not always possible

to find a singular ribbon proper for a given singular braid x and with
a given arc A as its intersection with C x 0. For example, consider an
(z, i + l)-arc A, suppose ß is a braid such that {i, i + 1} * ß {y,y + 1} and
consider a singular braid x of the form x ßxy •••. Then a necessary
condition for the existence of a singular ribbon, whose intersection with C x 0

is A, would be A * ß [y, y + 1]. On the other hand, for the same reason
as for ribbons, we do have the following.

6.3 Proposition. If a singular ribbon R is proper for the singular
braid x and i?(I x 0) and R(I x 1) are isotopic as proper arcs
to [jj + 1] x 0 and [k, k + 1] x 1, respectively, then O/X xoy
in SBn.

Definition. We will extend our previous definition and say that a
singular braid has a (y, k)-band if it has a proper ribbon or singular ribbon
connecting [jj + 1] x 0 to [k,k+ 1] x 1. The crucial facts we've proved are
that a braid ß has a (y, k)-band if and only if oy ß ßo^, and for singular
braids, having a (y, A:)-band is a sufficient condition for satisfying such an
equation.

A singular ribbon NOT a singular ribbon
Figure 7

Singular ribbons only intersect two strands of a singular braid
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6.4 Lemma. Let a, ß be braids such that both ao,ß and aß
have (y, k)-bands. Then ax,ß also has a (y, k)-band.

Proof. Consideration of the induced permutation implies that the pair
{y',y + 1} * a is either {/, i + 1} (case 1) or disjoint from {i, i + 1} (case 2).

In either case, let A [y*,y + 1] * a. Then, since aß has a (y, /:)-band we have

[jj + 1] * (aß) [k, k + 1], and so A [k, k + 1] * ß ~1 ß *[k,k+ 1].

Similarly the hypothesis that ao/ß has a (y, k)-band implies that A * o/ A.
Now, in case 1, A is an (i, i + l)-arc and we must have A * c/ Ä.

Lemma 3.2 implies that A [/, i + 1]. We conclude that a has a (y, /)-band
and ß has an (/, £)-band, and these combine with the obvious singular

(/, /)-band for x, to provide a (y, /:)-band for ax/ß.
In case 2, Lemma 3.1 applies, and we may assume after an isotopy of

the (y, k) band for aß that its intersection, A, with Cx 1/2 is disjoint
from [/, / + 1]. This implies that we may insert x, between a and ß so that
the singular strands are disjoint from the band, and we conclude that ax/ß
has a nonsingular (y, A:)-band.

6.5 Theorem. The map r| is injective on SB^2).

Proof. Consider an equation of the form

r|(ax/ßxyY) T|(a'x/' ß'x^Y')

where a, a'y ß, ß', y, y'> e Bn •

Now

t|(at,ßxyY) ao/ßoyY - aa,"'ßcyY - aa.-ßo/'y + aaf'ßo/'y
and ri(a'xz-ß,xy-Y/) has a similar expansion. If they are equal in ZBn, then

considering the degrees we must have one of two sets of equations. Either

(1) ao/ßöyY a'ö/' ß'oyY'

(2) aar'ßoyY a'o^'ß'oyY'

(3) ao/ßo/'y a'o/'ß'o^'y'
(4) aof'ßo/'y a'a^'ß'o^'y'
or

(1)

(2')

(3')

(4)

ao,ßoyY a'o/'ß'oyY'

ao,"1 ßayY a'ocß'op'Y '

aa/ßcj1 y a'o,T1ß'ay-Y'

ao,~1 ßay"1 y a'cv'ß'o^V
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(5)

(6)

We claim that in either case the following are true:

aßy a'ß'y'

aT/ßiyY a'T/'ß'x^y'

Assume initially that (1), (2), (3) and (4) are satisfied. Eliminating ß'cvy'
between (1) and (2) gives a'-'aaj af,a'~1a. The main theorem now

implies that a'"'a has an (/", i)-band. Similarly eliminating a'o,'ß'
between (1) and (3) implies that yy'"1 has a (y,/)-band. Applying these

facts to (1) gives

and therefore (6) also holds in this case.

Now assume that the equations (1), (2'), (3') and (4) hold. A similar
elimination as in the first case implies that ßo7yy7_1 has an (/,y7)-band
and a'-1ao/ß has an (/',y)-band. So

Gi'ß'oj' a,_1ao/ßoyyy,_1 o/'a7-1ao/ßyy7-1

The above can be written as

(7) ao/ßy a'ß'oyy7

Similarly from equation (4) we have

(8) ao,"1 ßy a'ß'a^1 y'

Eliminating a_1a'ß' between (7) and (8) gives o-ßyy'-1 ßyy
so ßyy'-1 has an (/,y7)-band, and with Lemma 6.6 we deduce that ßx/yy7-1
has an (/,y7)-band. We can also conclude that equation (5) holds in this
case. A similar argument shows that a7-1 aß has an (/7,y)-band.

o/'ß'oy - a'^ao/ßo^yy7-1 <= ora' *aßyy7 lGy

and (5) follows in this case.

Similarly using (5)

t / ' ß7 ty ' i/'Œ7 _1aßyy7 _1T/ a'-^T/ßTy-yy7-1

Hence

a'~laTi$Tjyy'-1 a7 ~1 aßi^yy7 ~1

T//a7~1aßyy7-1Ti//

T/'ß'V
So (6) is true in this case as well.

(/,y7)-band

band
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7. CENTRALISERS IN SBn

7.1 Theorem. For a singular braid x e SBn the following are

equivalent:

(a) GjX xok;
(b) GjX XGrk, for some nonzero integer r;
(c) GjX XGrk> for every integer r;
(d) tjx XT k;

(e) TjX XT rk, for some nonzero integer r;
(f) x has a (possibly singular) (y, k)-band.

Proof. We only show (b) implies (f). The other implications are quite
clear. The term "band" will include the possibility of a singular band.

Suppose GjX XGrk. Then we have that G2rx XG2kr. Assume x ßiyy,
where ß is a braid; in other words t/ is the first singular generator appearing
in x. Then we have ß ~1 o^ßi/j TtyG2kr. Recall that isotopy, or the
extended Reidemeister moves for singular braids, do not change the order
of singular generators on the same strings. Since ß_1o2/'ß is a pure braid,
the tJ in T/yo 2kr corresponds under some homeomorphism, to the t, in
ß -1 cj?rßT/jv. Hence the image, under that homeomorphism, of the trivial
singular band near the first u; provides a band for ß_1oy2rß. Therefore, t,
commutes with ß_1o2rß. It follows that T/ß ~1 o2/"ßy i/jöf. By Proposition

5.1, we have ß_1oy2/"ßy yo2kr, i.e. o2rßy - ßyo2/". By induction,
ßy has a (y,/:)-band. Since t, commutes with ß ~ 1 rß, so does o/5 thus

we have ß_1o2/"ßo/y G/ß-1o2rßy o;yo^, i.e. o2/"ßo/y ßo/yo^r. It
follows from induction assumption that ßo/y has a (y, /:)-band. Since both
ßy and ßozy have a (y, A:)-band, we can use the argument of Lemma 6.4

to conclude that x ßu/T has a (y, /:)-band.

The above theorem allows us to identify monoid centralisers in SBn.
Notice that SB2 is abelian. On the other hand, for n ^ 3, any singular braid
with a singularity involving strings labelled, say, j and k, y < k, could not
possibly commute with t*, as any (singular) band from [k, k + 1] xO
to [/:,£+ 1] x 1 would have a forbidden intersection with the y string,
see Figure 7. Therefore for n ^ 3, only nonsingular braids are central. We will
conclude with two applications whose proofs, at this point, can safely be left
to the reader.
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7.2 Theorem. The centre of SBn is all of SBn for n 2. But in

case n ^ 3 it is the same as the (infinite cyclic) centre of Bn C SBn,

generated hy A2.

7.3 Theorem. Under the natural inclusion, the centraliser of SBr in

SBn, r ^ n, is generated as a monoid by the generators (see Theorem 4.4)

of C{r,n):

Or-f 1 (5 /• -f 2 J • • • 5 Ofl— + 1 C 5

together with their inverses and the singular generators:

t,+ 1, if r^ 3, or

t i t3, t4, t w i if r 2 D
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