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UNIMODULAR LATTICES
WITH A COMPLETE ROOT SYSTEM

by Michel KERVAIRE

1. INTRODUCTION

Let Q” be the n-dimensional euclidean space (over the field Q of rational
numbers) endowed with the standard scalar product

(x,¥) = X7_\Xiyi,

where x = (xla ---axn)a Yy = (yls --'ayn)'
A lattice L C Q" is a Z-submodule of rank »n of Q7", i.e.

L={Y!_,av:a,€l},

where v, ..., U, is some basis of Q7. We are interested in integral lattices,
i.e. lattices L satisfying (x,y) € Z for all x,y € L.
An integral lattice L is said to be unimodular if

det(S)= =1,
where S is the n X n matrix of scalar products
S:((Uiauj))a lgla‘lgns

vy, ..., U, being a Z-basis of L. The number dez(S) is called the determinant
of L and is denoted def(L). It does not depend on the choice of the Z-basis
Vi, ...,0, of L.

If L is an integral lattice, the set

R={xelL:(x,x)=2}

is a root system. (For the general notion of a root system see [B], p. 142.)

The author gratefully acknowledges partial support from the Fonds National Suisse de

la R@cherche Scientifique during the preparation of this paper. In particular the FNSRS
provided the necessary computer.
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The root system R will be said to be complete in L if the sublattice N = ZR
of L generated by the roots R is a subgroup of finite index in L.

Our purpose is to study unimodular lattices with a complete root system.

It is well known that there are finitely many isomorphism classes of
unimodular lattices L C Q~ for a given n. (See [MH], p. 18.)

The subcollection consisting of the lattices with a complete root system is
particularly interesting, e.g. in view of the connection with the theory of
error-correcting codes as we shall recall below.

We begin by setting up some necessary conditions that a root system
must satisfy in order to be a complete root system in a unimodular lattice
(Sections 3, 4 and 5).

We are particularly interested in even unimodular lattices, i. e. (x, x) is even
for every x € L. In this case, as is well known, the rank of L has to be divisible
by 8. In dimensions 8, 16 and 24, where the classification of even unimodular
lattices is available, it turns out that every such lattice has a complete root
system, with the sole exception of the 24-dimensional Leech lattice. (History
and relevant literature in e.g. [N], p. 142.)

In dimension 32, there are millions of even unimodular lattices. (See [Se],
p. 95.) Among them as we shall see, only a small subcollection have a complete
root system. In this paper, we endeavour to provide the complete list of such
lattices.

There are 132 indecomposable even unimodular 32-dimensional lattices
with a complete root system. In some cases several lattices happen to have the
same root system. Thus, only a total number of 119 root systems correspond
to these lattices. They are listed in Section 6.

The enumeration of the lattices and their root systems could only be
completed using a computer, thanks to the generous help of Shalom Eliahou
who patiently explained to me the use of mulisp programming language. Of
course any mistake in the programs is my sole responsibility. It is a pleasure
to express to him here my warmest gratitude.

[ am also deeply indebted to Boris Venkov for very valuable discussions,
in particular on the use of the notion of deficiency. (See Section 5.)

2. RELATIONSHIP WITH CODES

As is customary we shall use codes to describe lattices. We briefly recall

how this can be done.
If X C Q" is any finitely generated Z-submodule of Q”, we set

X* ={ueQX:(u,x) e Z for all x e X} .
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Note that if X, X, C Q" are mutually orthogonal finitely generated
Z-submodules of Q7, then

(XIEXZ)# :Xf EX; s

where we write the symbol B to mean orthogonal (direct) sum.

Clearly, a lattice L C Q” is integral if and only if L C L*, and L is
unimodular precisely if L = L#. Indeed, if vy, ..., 0, is a Z-basis of L, and
wy, ..., w, the dual basis of L#, where (v;, w;) = 8; ;, then v; = ¥} _ kW«
for some integral matrix T = (), and if S is the matrix of scalar products
(i, v;), then .
(vi,0;) = (i, kzl tejWi) = tij

and thus
[L#: L] =|det(T)|=|det(S)]|.

Suppose now that L is an integral lattice in Q" and that N C L is a
sublattice of finite index in L. Then, N C L C L*# C N* and the finite
abelian group T(N) = N#/N inherits a non-degenerate Q/Z-valued bilinear
form

b:T(N) X T(N)— Q/Z
defined by
b(&,m) =(x,y) modZ,

where x, y € N# project on §,n € T(IN) = N#/N respectively by the natural
map n: N#* = T(N).

The finite scalar product module (7(N), b) is called the discriminant form
of N.

Let M = n(L). Then M is self-orthogonal, i.e. M C M+, for the bilinear
form b on T(IN). Thus M is a self-orthogonal code in (T (N), b). Conversely,
given a subgroup M C T(N) such that M C M+, we recapture the integral
lattice L as L = nw~!(M). Note that L is unimodular, i.e. L = L* if and only
if M =M+*.1f Tis a finite (abelian) group with a non-degenerate bilinear
form b: TX T Q/Z, and M C T is a subgroup such that M = ML, we
say that M is a metabolizer for the scalar product module 7. A metabolizer
is the same object as a self-dual code.

Summarizing, one way of describing a unimodular lattice L C Q” consists
in giving the following data:

1) An integral lattice N C Q”;
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2) A metabolizer M C T(N), where T(N) = N#/N is the discriminant
form of N.

We will presently make use of this: If L is a unimodular lattice with a
complete root system R, then N = ZR C L is a lattice of finite index in L,
and by the above, L can be encoded by the data of the root system R
which determines N =ZR C Q*, N* and T(®R)= N#*/N with its
non-degenerate form b: T(R) X T(R) — Q/Z, together with a metabolizer
M=M"* C T(R).

Note however that if we start with a root system R C Q" and
construct L as L = n~-'(M), where M is a metabolizer in 7T(R), then
R ={aeL:(a,a) =2} will contain R but may possibly be strictly larger.

We shall say that M is an admissible metabolizer if indeed we have
R ={aelL:(a,a) =2}, where L = n~-1(M).

Thus, the problem of deciding whether there exists a unimodular lattice
L C Q" with given root system R such that QR = Q” is equivalent to the
question: Does the finite scalar product module (7 (R),b) possess an
admissible metabolizer?

If RC Q" is a root system and N = ZR C N#* is the lattice generated
by R, we define the norm

n: T(R)—Q

by n(§) = min{(x, x) : m(x) = £}, where the minimum of (x, x) is taken over
all the elements x € N# representing £ € T(R) = N#/N.

We say that & is admissible if n(§) = 0, or n(§) is an integer > 2. It is
easy to see that a metabolizer M C T(R) is admissible if and only if every
¢ € M is admissible. (Note that if R is a complete root system in L, then L
cannot contain any vector u with (u, u) = 1.)

If an even unimodular lattice L is required with a prescribed root
system R, then the metabolizer M C T'(R) will have to satisfy the additional
condition: For all non-zero £ € M, the norm n({) must be an even
integer > 4. Depending on the context, we occasionally change the meaning
of ‘““admissible’” to include this stronger condition, e.g. in Section 6,
when setting up the tables of even unimodular lattices in dimension 32.

The classification of root systems is well known. (See [B], p. 197.) We recall
the facts which are relevant to us in the next section, following mostly the
notations of [N]. The possible lattices N = ZR are thus easily described as well
as the finite scalar product modules T(R) = N#/N.
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The existence of a mere metabolizer for (7'(R), b), perhaps not admissible,
is already a strong restriction on R. We study this condition in the next
Section 3.

We give some necessary conditions for the existence of an admissible
metabolizer using coding theory in Section 4.

In Section 6, after explaining the notations used in the tables, we list the
even unimodular lattices with complete root systems in dimension 32.

3. THE WITT CLASS ASSOCIATED
WITH A ROOT SYSTEM

Recall the Witt group W(Q/Z) of finite scalar product modules: If 7T°
and 7' are two finite abelian groups with non-degenerate bilinear forms
b:TXxT—>Q/Z,b':T"X T - Q/Z, then T and T’ are said to be Witt
equivalent if there exist finite scalar product modules H, H’ each with a
metabolizer M = M+ C H M’ = M'+ C H' such that TH Hand 7' H H’
are isometric. The Witt equivalence classes of finite scalar product modules
form an abelian group W (Q/Z) under the operation induced by orthogonal
direct sum Hl.

We recall below the explicit determination of W(Q/Z).

Let R C Q" be a root system. As before, we denote by T(R) the
associated finite scalar product module. As a group, T(R) = (ZR)*/ZR,
where

ZR)* ={veQR=Q":(v,R) CZ}.

The bilinear form b: T(R) X T(R) — Q/Z is induced from the scalar
product in Q”, restricted to (ZR)*.

The Witt class of (T'(R), b) is an element of W (Q/Z) which we call the
Witt class associated with the root system R and denote by w(R) € W (Q/Z).

As we saw in Section 2, if R is the root system of a unimodular lattice
L CQ", and R is complete in L, i.e. QR = QL = Q”, then (T(R), b)
possesses a metabolizer and therefore w(R) must be 0 in W (Q/Z).

If R =R,H R, is an orthogonal decomposition of the root system R,

i.e. if R is the disjoint union R, Ll R, of two mutually orthogonal root
systems R, R,, then

W(R) = w(R)) + w(R>) .
Indeed,
(ZR)* = (ZR,)* H (ZRy)* ,
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and T(R) is the direct product of the two subgroups 7'(R,) and 7T (R,) which
are mutually orthogonal under the form b.

Now, any root system is an orthogonal sum of uniquely determined
indecomposable root systems. It is therefore sufficient to calculate the Witt
class associated with the indecomposable orthogonal summands.

As is well known, the list of indecomposable root systems (in which every
root has scalar square 2) consists of the two infinite families A;, / > 1
and D,, / > 4 and of three exceptional systems E¢, E;, Eg. In each case the
index indicates the rank, i.e. dimgQR. (See [B].)

If the decomposition of the root system R contains a; copies of the
indecomposable system R;,i =1, ..., r, we write

R=qg R HaR,H..HaR,.
By the above, we have
w(R) = ¥i_,a;w(R) e W(Q/Z),

and w(R) = 0 is a necessary condition for R to be the complete root system
of a unimodular lattice.

In order to evaluate w(R) for a given root system R, we have to determine
the Witt classes w(A;), w(D,;) and w(E,) in W(Q/Z) associated with the
indecomposable root systems. This is the purpose of this section.

We first briefly recall the calculation of W(Q/Z). (See [Sch], p. 166-170
for more details.)

THEOREM. W(Q/Z) = @ ,.p W(¥,), where P =1{2,3,5,...} s the
set of prime numbers, and where W (F,) is the Witt group of the finite
Jield F,.

W, =2/27Z ,

where the generator, denoted (1), is represented by the finite group
T =27/2Z endowed with the bilinear form b:T X T — Q/Z determined
by b(l,1) =; modZ.

For p an odd prime, we have

WEF,) =Z/2LDZL/2Z if p=1 mod4.

The group W(¥,) is generated in this case by the classes, denoted (1)
and (&), of (T,b), (T',b"), where as finite groups T =T =F,
and b, b’ are respectively determined by

b(1,1) =+ modZ, b'(1,1)=% modZ,

P

RS
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where € e Z is a non-square modpZ. (The class of b’ is of course
independent of the choice of ¢.)

WE,) =2Z/4Z if p= -1 mod 4 .

The group W (F,) is generated in this case by the class, denoted (1),
" of (T,b), where T=F, and b is the bilinear form determined by

b(1,1) =, modZ.

Proof. For every finite scalar product module (7, b), we have an obvious

orthogonal sum decomposition
(T, b) = p eP(T)(Tp, bp) s

where P(T) is the set of primes dividing the order of 7 and T, is the
p-primary subgroup of T (consisting of the elements whose order is a power
of p), and where b, is the restriction of b to the subgroup 7,.

It follows that

WQ/Z) = @perW,,

where W, is the Witt group of finite scalar product modules (7, b), where T’
is a p-group and b: T X T~ Z [fj] /Z C Q/Z is a non-degenerate bilinear
form.

The isomorphism W, = W(F,), where W(F,) is the Witt group of the
finite field ¥, is a consequence of the following lemma: If (7, ) is a finite
scalar product module and U C T is a subgroup of 7, let U+ denote the
orthogonal subgroup of U, i.e. U+ ={xe T:b(x,U) =0} .

LEMMA. With these notations, suppose that U C T is a self-orthogonal
subgroup of T, ie. UCU*. Let T =U+/U. Then the form b
induces on T' a non-degenerate bilinear form b :T' X T — Q/Z
and (T, b), (T',b") represent the same Witt class.

Proof. Consider the scalar product module
(T,D)H (T, =b)=(TO®T',bD(-b")).

The subgroup M = f(U*t), where f:UL—>T® T’ is given by
S(x) = (x,x"), with x’ the class of x € Ut modulo U, is a metabolizer.
It follows that (7, b) H (T, — b") ~ O, where ~ denotes Witt equivalence

and O on the right hand side is the trivial scalar product module.
Hence,

(T,0) H(T", =b"YH(T",b") ~(T", b") .
Since (7', —b"YH (T’, b’) ~ O, the lemma follows. [
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It is easy to see by induction on the order of T that this lemma implies
w,= W(E,).

Finally, the asserted values of W (F,) for the various primes p result from
the classification of inner product spaces over finite fields. See for instance
[MH, p. 87, Lemma 1.5]. [

In concrete examples, such as the scalar product module (7(R), b)
associated with a root system R, the above lemma enables us to find the Witt
class w(R) € W(Q/Z) by explicit calculation.

CASE R = A,.
Here,
ZA, = {Zﬁzoxie,-:x,-eZ, Zézoxiz 0} C Ql+1 ,

where eg, ey, ..., e, is the standard basis of Q/*!, such that (e;, e;) = J;;.
The root system proper A, is the set {e; — e;:i # j} of vectors in ZA,
with square length 2.
It is well known and easy to verify that the coset decomposition
of (ZA,)# modulo ZA, reads

@A) =11, _ @A, +x,),

where

r l-r [-r+1 [
T Zic0@ ~ Iyl lici-red

.Xr: ej.

Whenever the root system A, has to be specified in the notation, we
denote x, by x,(A)).

The group T(A,) = (ZA))*/ZA, is cyclic of order / + 1, generated by
the class of x; modulo ZA,.

An easy calculation shows that

(xra X,) = %r_l) >

and .in fact, this number is the minimum of the scalar square of any vector
in the class of x, modulo ZA,. Thus n(x,) = % for r=0,1,...,1,
where n(x,) is the norm of x,, as defined in Section 2.

Let p be a prime and let e be the exponent of the largest power of p
dividing / + 1. Set ¢ = p¢ and s = ([ + 1)/g, prime to p.

The p-primary subgroup 7, of T(A)) is cyclic of order g generated by the
class of x; modulo ZA,. The scalar square of this element is

_s(-s+1) §
(XssXs) ==37 = — 4 modZ.
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Thus we have to calculate the Witt class represented by a cyclic p-group
with non-degenerate bilinear form.

Let T be the cyclic group Z/gZ, where g = p¢is a power of the prime p.
Let a be an integer prime to p and let

b:Tx T—Z[;]/2Z
be the bilinear form on T determined by
b(1,1) =% modZ .
Then the Witt class of (7, b) in W (F,) is given by
(a) if e is odd,

0 if e is even,

w(T, b) = {

where (a) is the Witt class in W(F,) of the form b on F, given by
b(1,1) = 5 mod Z.

Indeed, if e is even, e = 2 f, then the subgroup generated by p/ in Z/qZ
is a metabolizer. If e = 2f — 1, let U = p/Z/qZ be the subgroup generated
by p/. Then, Ut =p¢~7Z/qZ = p/~'Z/qZ. The quotient T = U+/U
with the induced form is isomorphic, as a scalar product module, to F, with
the form given by (1,1) = 7. By the lemma above, (T,b) and (7", ")
belong to the same Witt class. The result follows.

Applying this to our example arising from the root system A, with
TA)=2Z/(l+1)Z,q = p¢ the exact power of p dividing /+ 1 and
s=({+1)/q, we get:

The p-component of the Witt class associated with A is
(—=s) ife=v,(I+1)is odd,
0 if e=v,(/+ 1) is even,

Wp(Al) = {

where e = v,(/ + 1) i1s the exponent of the exact power of p dividing / + 1.
Note that for p = 1 mod 4,
(—=s) =(s)=(1), resp. g)

in WF¥,) =2/2Z{1) @ Z/2Z{e) depending on whether s is or is not a
square mod p respectively.
For p = — 1 mod 4, then

(—=s)=(1)in W(,) =Z/4Z{1) ,
if —s is a square mod p, and

(=s8)=(—-1)= (1) in W(,) = Z/4Z(1) ,
if — s is a non-square mod p.
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CASE R = D,.
By definition
ZD,={Y!_,xie;:x;€Z, ¥ _ xi=0 mod2Z}.
It is easy to check that

(ZDI)#Z{Egzléieiiﬁieézyélziz . =& modl},

and thus

7/27 ©® Z/2Z if | is even,

TD)) = (ZD)*/ZD, =
D) = (D) /2D { Z/47 i Iis odd.

In this case, the associated finite scalar product module 7'(D;) always
represents 0 in the Witt group W(Q/Z).
The coset decomposition of (ZD;)# modulo ZD, is

(ZD))* = ZD, L1 (ZD;+ y,) LU (ZD;+ y,) U (ZD; + y3) ,
with
Y1 = % Eﬁzl €,
y2 = €,
Y3 = %(Eﬁ;i e;— ey,

and y,, y,, V3 as above are of minimal square length in their class mod ZD,.

Therefore, n(y;) = n(y3) = ﬁ and n(y,) = 1.
When we need to include the root system in the notations, we write

xi (D) for yi.
CASE R = Eg.
Recall that
ZE; = {Zlexie,-:Zx,-eZ,xi—xjeZ, Zlex,-=x7+xg =0}.
(ZEg)* = ZEg Ul (ZE¢ + 77) U (ZEg — z1) ,
where
zi =3 (e + e+ e+ es—2(es + eg))

and (z1,21) = ‘3—‘ Here again, z; has minimal square length in its class

modulo ZE¢ and hence n(z;) = (21, 21) = %
We write x;(E¢) for z; when convenient.
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The associated Witt class is

W(E6) = <1> in W(F3) i

CASE R = E;.
The definition is
ZE, ={Y% xie;:2x;€eZ,xi—x;€Z, ¥;_, x;=0}.
Here,
(ZE)* = ZE; Ul (ZE; + 24) ,
where
zi=;(er+testes+est+es+es—3(er+e))

satisfies (z1, 21) = % and is of minimal scalar square in its class mod ZE;.
Again, z, is noted x,(E4) if convenient.
The Witt class w(E;) is the generator (1) of W (¥F,) = Z/2Z.

CASE R = Egs.

Here, T(Eg) = 0. The associated Witt class is 0.

4. WEIGHT ENUMERATORS
OF FINITE SCALAR PRODUCT MODULES

Let 7 be a finite abelian group with a non-degenerate bilinear form
b:TXT—Q/Z.

Suppose that we have a decomposition of 7T as an orthogonal direct sum
of subgroups 7, ..., Ts:
T=T1 T2 TS.

Then we can define the weight x¥® e Z[x,,...,x;] of an element
ue T by tabulating its non-zero components in the decomposition
U=u, + U, + ...+ u;, u,T;, as

xw@) = x‘;"(m) . x;’(llz) - xW(”s)

N b

where

( ) 0 ifui=0,
wilu;) =
1 ifu,-th.
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If M is a subset of T, the weight enumerator of M is the polynomial

PM(xl, ...,XS) = ZueMXW(u) .

We denote by ¢q;, i = 1, ..., s the order of the subgroup 7;.
We show in this section that MacWilliams duality is still valid in this more
general setting:

THEOREM. Let M C T be a subgroup of the scalar product module
T=T, T, .. B T,. Set gq;,=Card(T)), and let M+ be
the subgroup orthogonal to M. Then, we have the formula, where
| M| = Card(M):

Pr(xy,.0,%) =
1 2 1 —x; 1 — x
_H (1 +(gi— x;)* Py N '
| M| = 1+ (g —1)x; I+ (gs— 1)xg
Note that if some of the subgroups 77, ..., Ty are mutually isomorphic

(or more generally have the same order), then we can write the decomposition
of T in the form

T = anl n2T2 anr,
where n;T; stands for the orthogonal sum
n,-T,~ = T,' T,' T,‘

of n; copies of T;.
The weight of an element

u= W +..tu )+ .o+ WU+ .ot u,)

is then defined as

Vr
ros

XV = x{t e xte o x

where v, is the number of non-zero components of #; ; + ... + u; ,, in n;7T;.
The duality theorem then takes the seemingly more general form

PM_L(xl, ...,x,) =

1 d 1—x1 1-x,
——— I @ +(gi= Dx)"- Py - ,
Card(M) i1 1+ (g1 — Dx; 1+ (q,— Dx,

This identity can be viewed as a system of linear equations for the
coefficients of the weight enumerator polynomial P;, of any putative
metabolizer M = M~+. If M exists, this system must be solvable in
non-negative integers.
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Proof of the duality theorem. One of the classical proofs of MacWilliams
duality in a vector space over a finite field goes over with only insignificant
changes. We repeat the argument for the reader’s convenience.

Let ¥:Q/Z— C* be the character given by x(a) = e?™*, Set

B(u,v) = x(b(u,0)).
We cook up the function f: T — C[x,, ..., X5] given by
fw)y =Y, Bu,v) x¥®

and evaluate Y, _,, f(u) in two different ways, using the following lemma:

LEMMA.

Card(M) ifveM+,

ZueMB(u’U):{O 1fU$MJ-

We first recall the proof of the lemma.

If veM*, then B(u,v) =1 for every u € M, thus Y e Bu,0)
= Card (M) as stated in this case.

If v ¢ M+, there is an element u; € M such that b(u;,v) # 0, and then
B(u,,v) # 1. We have

EuEMB(u9 U) = EHEMB(Z’II + U, U)
= ZueA{B(uI:U)B(ua U) = B(ul’U)ZuEMB(ua U) .
This implies the statement of the lemma for v ¢ M.

We now proceed to the proof of the duality theorem.
Firstly,

LuemSW) =X, L, rBuwv) x*® = Yoer (X, enBu,0) - xv®
= Zuez\/ﬂ- Card(M) : xw(u) = Card(M) . PMJ_(XI, '“5x5) .
Secondly,

f(U) = EUETB(us U) s x )
= ZmeTl,...,useTSB(ul’Ul) T B(uS’US) ' XXV(UI) BETER x;V(US)
S
= I1i (Zy e Bui,0) - X7y,
where u = u; + ... + u, is the decomposition of u e T = T, T,.
Using the lemma again, we have
1+ (q,-— l)x,- if u, =0,

ZUETiB(ui’U) .x;V(U) N {
1—Xi if u; 0.
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Thus,

Su) = H (1+(g:—Dx;) - H 1-x,

ieS ieS’

where S C {1, ..., s} is the set of indices i for which #; = 0, and S’ C {1, ..., s}
the set of indices i for which u; # 0.
Another way of writing f(u) is

Sfu) = f[ (1 =x)»@0 - (1 + (g;— Dxp)! =~ 7o
P=1

Plugging this formula into ), _,, f(u), we get

s - x; w(u;
LyemS (M) = Hj=1(1 +(gi — Dx;) - zueMﬂi:l (1+(q,-—1)x,~) o
s 1—-x 1 — x5
=], (0 +(q;i— l)xi)'PM(1+(ql—11)xl>“"1+(qs~1)x5) :

Comparing the two expressions for }  _,, f(u), we get the theorem.

5. THE DEFICIENCY

The main further necessary condition for a root system to be contained in
an even unimodular lattice of the same rank is provided by the notion of
deficiency (Defekt) introduced and studied in [KV].

If R is a root system of rank #n, the deficiency of R, denoted d(R),
is the difference n — m, where m is the maximal cardinality of a set
{ay, ..., a,} C R of mutually orthogonal roots

(a[,aj)=26,'j, for all 1 gl,jém

We use this notion only if all roots in R have the same scalar square 2.
If R=R,HR,, then d(R) =d(R,;) + d(R,). The values of the
deficiency for the irreducible root systems are

dA) = [3]
0 for / even,

dD,) =
) {1 for / odd ,

dE¢) =2,dE;) =dEs) =0.
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By Satz 5 of [KV], if R is the (complete) root system of an even unimodular
lattice of rank 32, then

d(R)=0,8,12,14,15 or 16 .

The proof consists in constructing from the given lattice a new lattice L,
still of rank 32 and containing the orthogonal sum of m = 32 — d(R) copies
of Z. Thus, L = Z"™ L,, where L, is again unimodular and of rank d(R).
(Hence, rank (L) < 16.)

By Martin Kneser’s classification of unimodular (positive definite) lattices
of rank < 16, the rank of L, i.e. d(R) can only take the above values.
(See [Kn], Satz 1.)

In setting up the tables we conveniently use the deficiency to discriminate
the various root systems R according to the value of d(R).

6. THE TABLES

We now proceed to list the indecomposable even unimodular lattices L of
rank 32 with a complete root system R.

The presence in R of a factor of type Eg would produce a unimodular
sublattice ZEg = L, C L, and hence a decomposition L = L, L, for some
(even) unimodular L, of rank 24. Hence, we assume throughout that R has
the form

R=A,1...Aerml...DmsmE6nE7,

with no factor of type Es.

Altogether there are N = 88523 such systems (of rank 32). The possible
dimensions for mE; H nE, are

D =10, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 32}
and for d € D, there is a unique pair (m, n) such that d = 6m + 7n. Hence
N=7Y, 220 p(gB2-d-1i),

where p (i) is the number of partitions of i and ¢ () is the number of partitions
(Jis--sJ0) of j with 4 < j; < ... <J,. (Of course, we use the convention
p0) =¢q(0) = 1)

Among these, only 21209 have an acceptable deficiency, i.e. d = 0,8,12,14,15
or 16. They are distributed as follows:
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Deficiency 0 8 12 14 15 16 Total

Number 347 | 9799 | 6282 | 3027 | 1523 | 231 || 21209

Number with zero
Witt class 347 848 | 306 90 57 28 1676

Number of connected
root systems with zero
Witt class 347 | 410 | 108 34 24 11 934

We say that a root system R is not connected if R=R, I R, is a
disjoint union of mutually orthogonal root systems R;, R, such that T(R;)
and T'(R,) have relatively prime orders.

If R=R,; IR, is not connected, a metabolizer for T(R) = T(R,)
T(R,) will have the form M = M, H M,, where M, is a metabolizer
for T(R;),i = 1,2 and any lattice L with (complete) root system R will split
as L = L, L,, with L, L, unimodular and with root systems R, R,
respectively. Thus, if R is not connected, it does not qualify as a candidate
root system for an indecomposable unimodular lattice of the same rank.

Sifting the root systems for the purpose of setting up the tables, we retain
only the connected ones. Of course, a decomposable 32-dimensional lattice
which does not involve a ZEg factor can only be the orthogonal sum
of 2 copies of the indecomposable 16-dimensional lattice I';¢ in the notation
of [MH], Lemma 6.1, p. 27. However, the criterion is a handy one to include
in a computer program and it does considerably shorten the lists of candidates.
The number of remaining systems is shown as the last line in the above table.

In order to get some experimental estimate on the relative strengths of the
various conditions we are using, let me display the (otherwise irrelevant) list
of connected systems of admissible deficiencies. (See the table next page.)

Comparing the last lines of the two tables we see that the condition on the
Witt class is fairly stronger than merely requiring the order of T'(R) to be
an integral square. (Of course, if T(R) contains a metabolizer M = M+,
then | T(R) | =|M|*.) A simple example of a root system R with non-zero
Witt class but | T(R) | a square is R =2As H Ay H D, H Dg which is
connected (and has deficiency 8). There are 1302 — 934 = 368 such.
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Deficiency 0 8 12 14 15 16 Total
Connected
root systems 347 | 2154 | 1051 | 425 | 150 25 4152

Connected root
systems with
| T(R) | @ square 347 | 610 | 214 | 79 | 38 | 14 || 1302

The 934 root systems of the bottom row of the first table all possess a
metabolizer. However, a metabolizer M C T(R) will produce a unimodular
lattice L with root system exactly R only if for each non-zero s € M the norm
n(s) is an integer larger than 2:n(s) > 2. (The norm has been defined in
Section 2.) Moreover if L is to be an even lattice, n(s) must in addition be
an even integer. A metabolizer M satisfying n(s) = 0 (mod2) and n(s) > 2
for every s € M, s # 0 will be called admissible.

The norms of the elements of T(A)), T(D,), T(Es), and T (E;) have been
recalled in Section 3:

n(x,) = 5220 for x, € T(A), r=0,1,..., 7,

n(y) =n(y;) =+, n(y)=17fr TMD),
for ze T(Eg¢), 2+ 0,
forze T(Eq),z+0.

Thus, the norm of any element in the discriminant 7(R) of a root
system R can easily be calculated. Of course, in general n(s + s”) # n(s)
+ n(s’)fors,s” € T(R). However,n(s + s") = n(s) + n(s’) holds trueif s, s’
belong to the discriminants 7(R;), T(R,;) of mutually orthogonal root
sub-systems.

Only the weights of admissible elements may occur with non-vanishing
coefficient in the weight enumerator polynomial P,, of a putative
(admissible) metabolizer M.

Before embarking on using the duality theorem, it is possible, in some
favorable cases, to eliminate a root system directly by inspection:

n(z) =

Nlw WA

If M C T(R) is an admissible metabolizer, then for every prime number
p, the p-component M, of M is an admissible metabolizer for the induced
bilinear form on the p-component 7 (R), of T(R). There are cases of root
systems R and suitable choice of p for which it is apparent that no metabolizer
of T(R), is admissible. As an example, suppose that R = A, H As; H R’,
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where the order of T(R’) is prime to 3. Then, T(R); = T(A, H Ajs);
= T(A;) H T(As);s = Z/3Z @ Z/37Z generated by s; = (1,0), s, = (0, 2),
where (1, 0) stands for the projection of x; € (ZA,)* in T(A,) H T(As);
and (0, 2) stands for the projection of x, € (ZAs)#* in T(A,;) H T(As); in
the notations of Section 3. Now, n(s;) =§ and n(s;) = -:-, and for every
s € T(A, H As); one has n(s) < 2.

This argument eliminates the root systems of the form R = X H R’, with
T(R") of order prime to 3 if X is any member of the following (small but
frequently arising) black list:

X=A2E]A5, 2A2E]2A5, 2A2A5E6.

Similarly, R = mA, H nAs HH Ay H R’, with T(R’) of order prime to
3 cannot occur for any m,n = 0.

Indeed, for any putative admissible metabolizer M, one should
have M; C T(mA, H nAs); H 3T(Ag) because any s € M; with 3s # 0
would produce an element s’ = 3s = (0™”,0”, +3) €e M3, s" # 0, of norm
n(s’) = 2, which is inacceptable.

But then M = M;n T(mA, H nAs); would be a metabolizer in
T(mA, H nAs);, and therefore My = M n T(R,) a metabolizer in T(R,),
where Ry, = mA, nAs; R’. (The subgroup M; is obviously self-
orthogonal and it has the right order.) Setting m,: (ZRy)#* = T(R,), the
natural projection, the inverse image L, = 7, '(M,) would be a unimodular
sublattice and hence an orthogonal summand of L.

If no such simple argument is available, the root system is to be tested using
the duality theorem of Section 4.

For a given root system R, the coefficients in P,, of weight monomials
which are not representable by any admissible elements in 7(R) must be 0.
The duality theorem, using M = M+, is then a linear system for the
remaining coefficients of P,, which must be solvable in non-negative integers.
In many cases, this system is not even solvable in rational numbers or if it is,
some coefficients turn out to be negative or fractional. Here, all cases occur.
In most of the remaining cases where the existence of the polynomial is not
prohibited by MacWilliams duality, an admissible metabolizer and hence an
even unimodular lattice can actually be constructed.

Completeness of the lists thus relies on a lengthy elimination procedure,
let alone the heavy use of machine testing, subject to all sorts of failure. It
would certainly be desirable to supply an alternate, perhaps less computa-
tional, approach.
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The above classification program really begins with the root systems of
deficiency 8. For the root systems of deficiency O, there is another, fairly
different method, due to H. Koch and B. Venkov, which we recall in the
next paragraph.

NOTATIONS IN THE TABLES

The notation for root systems R is self-explanatory: If e.g. R = 8A,
8A;, then ZR is the orthogonal direct sum

ZR =Z7ZA, H --- H ZA, H ZA; H --- H ZA;

of 8 copies of ZA; and 8 copies of ZAj;.

In order to describe a unimodular lattice L containing ZR we display a
filling set S, i.e. a set of vectors in (ZR)* which together with ZR
generate L. The terminology is intended to be reminiscent of the similar
notion of a glueing set occuring i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>