
ELLIPTIC SPACES II

Autor(en): Felix, Yves / Halperin, Stephen / Thomas, Jean-Claude

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 39 (1993)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-60412

PDF erstellt am: 19.03.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-60412


L'Enseignement Mathématique, t. (1993), p. 25-32

ELLIPTIC SPACES II

by Yves Felix, Stephen Halperin1) and Jean-Claude Thomas2)

Abstract. A simply connected finite CW complex X is elliptic if the

homology of its loop space (coefficients in any field) grows at most

polynomially. We show that in all other cases the loop space homology grows

at least semi-exponentially, and we exhibit a number of geometrically

interesting classes of spaces as elliptic, including: H spaces, homogeneous

spaces, Poincaré duality complexes whose mod p cohomology is doubly
generated (any p) and Dupin hypersurfaces in Sn + l.

1. Introduction

Let Xbz a simply connected finite CW complex, with loop space QX, and

denote by Fp, the prime field of characteristic p, p prime or zero. Our first
main result asserts a dichotomy for the size of the loop space homology
H*(QX;FP):

Theorem A. Let X be a simply connected finite CW complex. For
each p (prime or zero) there are exactly two possibilities: either

(i) There are constants C > 0 and re N such that

n

£ dim Hi (Q,X\ Fp) ^ Cnr, n ^ 1

/ o

Key words: loop space homology, depth, polynomial growth, Poincaré complex, elliptic,
Dupin hypersurface.
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or else

(ii) There are constants K > 1 and Ne N such that

n
_

£ dimtf;(QX; Fp) > äY", n ^ iV
/ 0

In case (i) the loop space homology grows at most polynomially, and A
is Zq?)-elliptic in the sense of [6]. If (i) holds for all p then X is elliptic. The
main theorems of [6] assert that if X is elliptic then X is a Poincaré complex
and that H*(QX\ Z) is a finitely generated left noetherian ring.

In case (ii) above the loop space homology grows at least semi-

exponentially. However, when p 0 [2] or p ^ &imX [8], it can be shown that
even the primitive subspace of H*{ÇIX\TP) grows exponentially (implying
the same result for H*{£IX\ F^)), and we conjecture that this should hold
true for all p.

In the dichotomy of Theorem A, the generic situation is (ii) : elliptic spaces

are rare within the class of all simply connected finite CWcomplexes. However

a number of geometrically interesting spaces are elliptic, and our second

objective in this note is to show that these include the following classes of
spaces (provided they are simply connected):

finite //-spaces,

homogeneous spaces,

spaces admitting a fibration F -> X B with F, B elliptic,

Poincaré complexes X such that for each p, the algebra H*(X\YP) is

generated by two elements,

Dupin hypersurfaces in S"*1,

closed manifolds admitting a smooth action by a compact Lie group, with
a simply connected codimension one orbit,

connected sums M # N with the algebras //*(M; Z) and F[*(N\ Z) each

generated by a single class.

This note is sequel to "Elliptic Spaces" [6]. In particular, it supersedes the

preprint "Dupin hypersurfaces are elliptic" referred to in [6].

2. The dichotomy

Consider first any simply connected space X with each Hj(X;Fp) finite
dimensional. Then G H*(Q,X; Fp) is a graded cocommutative Hopf
algebra satisfying G0 Fp and each Gz is finite dimensional. The depth of G
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is the least integer m such that Ext2^; G) =£ 0; if ExtcCF^; G) 0 we say

G has infinite depth. In [3: Theorem A] it is shown that

depth H* (QJ; F,) < LS cat X

Thus the depth is finite when X has the weak homotopy type of a finite CW
complex.

On the other hand suppose G is any graded cocommutative Hopf algebra
with G0 Fp and each G, finite dimensional. We call G elliptic [7] if G is a

finitely generated nilpotent Hopf algebra. According to [4; Theorem A] this
is equivalent to the condition:

n

depth G < oo and Y dim G/ < Cnr fixed C, r, all n)
/ o

In view of these remarks, Theorem A follows from

Theorem 2.1. Let G be a cocommutative Hopf algebra offinite depth
such that G0 Fp and each Gt is finite dimensional. Then there are
exactly two possibilities:

(1) G is elliptic, and for some re N there are positive constants
Ci, C2 such that

n

G\nr < Yj dim Gi ^ G2nr, n ^ 1 ;

/ o

(2) For some constants K > fiVeN
n

Y dim Gi > K^n n ^ N
i 0

oo

Proof. Consider the formal power series G(z) £ dim and for
i 0

oo oo

two formal power series / £ a,z' and £ write if
/ 0 I 0 c

(2-i) D < J] Z?/, all n
i 0 / 0

We shall first show that there are exactly two possibilities:
(2.2) For some reNthere are positive constants Cj, C2 shcä that

nCtnr^J dim G, < C2nr, n ^ 1 ;
/ - 0
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(2.3) For some k e N.

00

g(z) >nn+(^)'i •
c i=i

n

Indeed, suppose £ dim G, ^ C2nr for all n, some C2 and r. Then by
i 0

[4; Theorem B], G is elliptic and hence [7; Prop. 3.6] the formal power series

G(z) has the form
Y[ (1 + zkJ + • • • + ZinJ~

G(z) — 7

n
i 1

It follows at once that (2.2) is satisfied.
n

Conversely, we assume there is no C, r for which £ dimG, ^ Cnr,
i o

all n, and prove (2.3). Let xl9x2a... be a sequence of generators of the

algebra G with degXi ^ degx2 ^ • • •. The subalgebra G(i) generated by

Xi, ...,Xi is then a sub Hopf algebra. Now according to [4; Prop. 3.1] there
is some q such that G(i) has finite depth, i ^ q. Moreover by [7; Prop. 3.5]
G (I) is not elliptic for some I ^ q. Set H G (I); it is a finitely generated

non-elliptic Hopf algebra of finite depth, and dim G/ ^ dim Ht.
Next, let R be the sum of the solvable normal sub Hopf algebras of H.

Then [3; Theorem C] R is elliptic. Hence [7; Prop. 3.1] and [3; Prop. 3.1]
the quotient Hopf algebra H// R has finite depth, but [7; Prop. 3.3] H// R

is not elliptic. Clearly, however, H // R is finitely generated and has no central

primitive elements. Now by [4; Prop. 3] there is an integer n0 and an infinite
sequence of non zero primitive elements yt e H//R such that for all i,
deg ^ degy/+i ^ degy, + n0. A linear embedding

00

P[yi]/y*-+H//R

is then defined by y\l (x) • • • (x) yz -> y\l • • • y^, and so

oo

n (l+^o « (H//R) (z) < H(Z) < G(z) •

i=i c c c

Since degy/+i < in0 + degyi it is sufficient to take k max(degyi, n0) to
achieve (2.3).
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It remains to deduce the inequality (2) from (2.3). If the inequality (2)

holds for some power series h(z) it will also hold for h(zk), at the cost of
i

replacing K by K2k. By (2.3) we are thus reduced to showing that the power
series

Ê h? n (i+z')
i 0 i 0

satisfies (2). But this is an immediate consequence of a theorem of Hardy and

Ramanujan [10].

Corollary of proof. If G satisfies the hypotheses of Theorem 2.1

(2) then for some k e N,

oo

G(Z) > n [! + («*)'] •
c

Z 1

'3. Elliptic spaces

In this section we establish the ellipticity of the spaces listed in the

introduction.

3.1. Finite simply connected H-spaces, X.

Because X is an H-space, H*(£IX\ ¥p) is commutative, all p. Since it has

finite depth [3; Theorem A] it is elliptic [7; Prop. 3.2]. Hence X is elliptic.

3.2. Simply connected homogeneous spaces, G // H.

We may suppose that G is simply connected, and hence elliptic by §3. The
fibration G -> G/H BH loops to the fibration QG-> Q(G/H) -> H in
which 7ii(H) acts trivially in i/*(QG; Fp) [1; Lemma 5.1]. Thus we can use
the Serre spectral sequence to deduce polynomial growth for
H*(Q(G/H); Fp) from the same property for H*(QG;1?P).

3.3. Fibrations F - X -> B with F, B elliptic.

Here all spaces are simply connected and we can apply the Serre spectral
sequence to deduce that H* (X; Z) is concentrated in finitely many degrees, and
finitely generated in each. Hence X has the weak homotopy type of a finite
CW complex. Loop the fibration F -> X B and use the fact that
H*(QF; ¥p) and H*(QB; ¥p) grow polynomially to deduce the same
property for H*(QX; ¥p).
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3.4. Simply connected Poincaré complexes X with H*(X; J?p) at most
doubly generated.

Suppose p 4=- 2 and H H*(X; F^) contains an element of odd degree.

Then it has an odd generator a. Using Poincaré duality it is easy to see that
there are only three possibilities for the algebra H:

H Aa or Aa (x) Aß or Aa (x) F^[ß]/ß*

In each case a simple, classical computation [11] produces Torf/(F^, Fp) and
shows that it grows polynomially. Since the Eilenberg-Moore spectral sequence

converges from Tor77 (F^, Fp) to H*(QX; Fp), H*(QX; Fp) also has this

property.
In all other cases (p 2 or H concentrated in even degrees) H is a

commutative local ring in the classic sense. Because H satisfies Poincaré

duality it is a Gorenstein ring. Now a theorem of Wiebe [12; Korollar p. 268]

asserts (because H has at most two generators) that H is a polynomial algebra
divided by a regular sequence. It is thus easy (and classical [11]) to compute
Tor77 (F^, Fp), and deduce that it grows polynomially. Hence so does

H*(QX;FP).
3.5. Simply connected Dupin hypersurfaces E in Sn + X.

In [9; Table 2.1] are listed the possibilities for H*(E; Z). We divide these

into three cases, using the notation of [9].

Case (a): E has the same integral homology as Sk or as Sk x Sl.

In this case Poincaré duality shows that E has the same integral cohomo-

logy ring as Sk or as Sk x Sl, and we can apply 3.4.

Case (b): E has the rational homotopy type of ^43(2), >43(4), ^43(8), ^44(2) or
A6(2).

In these cases the calculations of [9 ; § 6] show explicitly that the ring
H*(E\ Z) is torsion free and generated by two elements. Thus each

H*(E; ¥p) is doubly generated, and we can apply Wiebe's result as in 3.4.

Case (c): E has the integral homology of Sk x S1 x Sk+l, with k < I.

We need, in this case, to recall from [9 ; § 2] that there are linear sphere
bundles

Sk E~> B and Sl E~+ Bx

with BQiB\ simply connected focal submanifolds of Sn + l. Moreover if
D0, D\ denote the corresponding disk bundles with boundary E then

S" + l D0 U Di.
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Fix p ^ 0 and consider the Serre spectral sequence for the fibra-

tion Sk^E-+B0 with coefficients in Fp. If this fails to collapse then

Hk(n0):Hk(B0;¥p) Hk(E;Fp) is surjective. Since / > k it is always true

that Hk(711) is surjective. Choose classes a e Hk(B0; Fp), ß e Hk{Bx ; Fp)

mapping to the same non-zero class in Hk(E;Fp). The Mayer-Vietoris

sequence for the decomposition Sn + l A) y A then gives a class

y e Hk(Sn + l;Fp) restricting to a and ß, which is absurd.

Thus the spectral sequence for Sk ->• E -> B0 collapses and so H*(B0; Fp)

H*(Sl x Sl+k; Fp). Using Poincaré duality for B0 we see that H*(B0; Fp)

and H*(Sl x Sl+k; Fp) are isomorphic as graded algebras. Thus B0 is elliptic
by 3.4 and E is elliptic by 3.3.

3.6. Simply connected closed manifolds M with a smooth action by a

compact Lie group G, having a simply connected codimension one orbit.

Here we may assume G is connected. Let the orbit be G/K, and convert
the inclusion of G/K into a fibration F -> G/K - M. From [9; Table 1.5] we

see that for any p, dim if/(F; Fp) < 2, all i. Thus applying the Serre spectral

sequence to the fibration Q(G/K) - QM F and using 3.1 for G/K we see

that ¥p) grows polynomially.

3.7. Simply connected manifolds M#N with each of the rings
H*(M; Z), H*(N; Z) generated by a single class.

By Van Kampen's theorem both M and N are simply connected, and so

their fundamental cohomology classes are not torsion. Since each ring is

monogenic, H*(M; Z) and H*(N; Z) are torsion free. Thus H*(M; ¥p) and

H*(N; Fp) are also monogenic, and so if*(M# TV; Fp) is doubly generated.
Now apply 3.4.
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