Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 39 (1993)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: GÈBRES

Autor: Serre, Jean-Pierre

Kapitel: 1.2. Comodules

DOI: https://doi.org/10.5169/seals-60413

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La forme bilinéaire Tr(uv) met C en dualité avec lui-même; appliquant la méthode de l'exemple précédent, on voit que la structure d'algèbre de C définit par dualité une structure de cogèbre sur C, de co-unité la trace $Tr: C \to K$. En particulier $M_n(K)$ a une structure de cogèbre canonique, pour laquelle on a

$$d(E_{ij}) = \sum_{k} E_{kj} \otimes E_{ik} .$$

(La cogèbre opposée est plus sympathique, cf. exercice 1.)

(5) Soient C_1 et C_2 deux cogèbres, de coproduits d_1 et d_2 et de co-unités e_1 et e_2 . Soit σ l'isomorphisme canonique de $C_2 \otimes C_1$ sur $C_1 \otimes C_2$; le composé

$$(1_{C_1} \otimes \sigma \otimes 1_{C_2}) \circ (d_1 \otimes d_2)$$

munit $C_1 \otimes C_2$ d'une structure de cogèbre, dite *produit tensoriel* de celles de C_1 et C_2 ; elle admet pour co-unité $e_1 \otimes e_2$.

(6) L'algèbre affine d'un schéma en monoïdes affine sur K a une structure naturelle de cogèbre, cf. n° 3.1.

1.2. COMODULES

DÉFINITION 1. On appelle comodule (à gauche) sur C tout module E muni d'une application linéaire $d_E: E \to C \otimes E$ vérifiant les axiomes suivants:

- (1) Les applications linéaires $(d \otimes 1_E) \circ d_E$ et $(1_C \otimes d_E) \circ d_E$ de E dans $C \otimes C \otimes E$ coïncident.
 - $(2) \quad (e \otimes 1_E) \circ d_E = 1_E.$

L'application d_E s'appelle le *coproduit* de E; on se permet souvent de le (la) noter d.

Remarques

- 1) Il y a une notion analogue de comodule à droite; on laisse au lecteur le soin de l'expliciter (ou de remplacer la cogèbre C par son opposée C^o). [Le rédacteur s'est aperçu trop tard qu'il était plus commode d'échanger droite et gauche, i.e. d'appeler «comodules à droite» ceux de la définition 1.]
- 2) Toute application linéaire $d_E : E \to C \otimes E$ définit de manière évidente une application linéaire $d_E^1 : E \otimes E' \to C$. Lorsque E est un K-module projectif de type fini, l'application $d_E \mapsto d_E^1$ est un isomorphisme de $\operatorname{Hom}(E, C \otimes E)$ sur $\operatorname{Hom}(E \otimes E', C)$. Or $E \otimes E' = \operatorname{End}(E)$ a une structure naturelle de cogèbre, cf. n° 1.1, Exemple 4). On peut vérifier (cf. exercice 1) que d_E vérifie les axiomes (1) et (2) si et seulement si d_E^1 est

un morphisme de la cogèbre opposée $\operatorname{End}(E)^{\circ}$ à $\operatorname{End}(E)$ dans la cogèbre C, compatible avec les co-unités.

3) Supposons que E soit *libre* de base $(v_i)_{i \in I}$. Une application linéaire $d_E \colon E \to C \otimes E$ est alors définie par une famille c_{ij} , $i, j \in I$, d'éléments de C telle que $d_E(v_i) = \sum_{j \in I} c_{ij} \otimes v_j$ (pour i fixé, c_{ij} doit être nul pour presque

tout j). Les conditions (1) et (2) de la définition 1 se traduisent alors par les formules:

(1')
$$d(c_{ij}) = \sum_{k \in I} c_{ik} \otimes c_{kj}$$
 pour $i, j \in I$

(2')
$$e(c_{ij}) = \delta_{ij}$$
 pour $i, j \in I$.

(Lorsque *I* est *fini*, cet exemple peut être considéré comme un cas particulier du précédent.)

Exemples de comodules

- 1) Le module C, muni de d, est un comodule (à gauche et à droite).
- 2) La somme directe d'une famille de comodules a une structure naturelle de comodule.
- 3) Si E est un comodule, et V un K-module quelconque, le couple $(E \otimes V, d_E \otimes 1_V)$ est un comodule, noté simplement $E \otimes V$.
- 4) Les notations étant celles de l'exemple 5) du n° 1.1, soient E_1 un comodule sur C_1 et E_2 un comodule sur C_2 . Soit τ l'isomorphisme canonique de $E_1 \otimes C_2$ sur $C_2 \otimes E_1$; l'application

$$(1_{C_1} \otimes \tau \otimes 1_{E_2}) \circ (d_{E_1} \otimes d_{E_2})$$

munit $E_1 \otimes E_2$ d'une structure de comodule sur $C_1 \otimes C_2$.

5) Si G est un schéma en monoïdes affine sur K, et C la bigèbre correspondante (cf. n° 3.1), la notion de comodule sur C coïncide avec celle de représentation linéaire de G (ou G-module), cf. n° 3.2, ainsi que SGAD, exposé I.

DÉFINITION 2. Soient E_1 et E_2 deux comodules. On appelle C-morphisme (ou simplement morphisme) de E_1 dans E_2 toute application linéaire $f: E_1 \to E_2$ telle que

$$(1_C \otimes f) \circ d_{E_1} = d_{E_2} \circ f.$$

Les C-morphismes de E_1 dans E_2 forment un sous-K-module de $\text{Hom}(E_1, E_2)$; on le note $\text{Hom}^{\,C}(E_1, E_2)$.

On note Com_C la catégorie des C-comodules (à gauche); l'addition des C-morphismes munit Com_C d'une structure de catégorie additive.