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REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS 1Ö1

in [0, 1] containing only 0's and 2's in their ternary expansion), then C has

measure 0, and it is not hard to show that C + C [0, 2]; see Borel [40] or
Pavone [233]. The result is due to Steinhaus [310]; I am most grateful to
G. Myerson for bringing this to my attention.

As we have seen above, the set and hence each &k, also has Lebesgue

measure zero. In 1947 Hall proved the following theorem [126]:

Theorem 3. Every real number x can be written as x y + z,
{ where y, z e &4. Every real number x ^ 1 can be written as x yz,

where y, z e rfU-

An exposition of Hall's result can be found in Cusick and Flahive [67].

Using the notation of the first paragraph of this section, we could rephrase
the statement of Hall's theorem as follows: + <^4 R, and

[1, 00) Ç • S84.

In 1973, Cusick [61] proved that ^3+^3+^3 R, and ^2 + &2
+ ^2 + R. He also observed that 4=- R, and ^2 + ^2
+ ^2 9t R. These results were independently discovered by Divis [90] and J.

Hlavka1) [149]. Hlavka also showed that + ^4 R, and similar results.

Apparently the status of <^2 + and ^2 + is still open.
For results of a similar character, see Cusick [60]; Cusick and Lee [68];

and Bumby [47].

9. Explicit examples of transcendental numbers
WITH BOUNDED PARTIAL QUOTIENTS

In Lang [179] we find the following statement:

No simple example of [irrational] numbers of constant type, other than the
one given above [real quadratic irrationals], is known. The best guess is
that there are no other 4'natural" examples.

(Also see Lang [180].)

However, in 1979 Kmosek [167] and Shallit [275] independently discovered
the following "natural" example of numbers of constant type.

Theorem 4. Let n ^ 2 be an integer and define

(]) f(n) J) n~2i
/> 0

*) Note this is not same person as E. Hlawka!
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162 J. SHALLIT

Then K{f{2)) 6 and K{f{n)) n + 2 for n ^ 3.

For example, we have

/(3) [0, 2, 5, 3, 3, 1, 3, 5, 3, 1, 5, 3, 1, ...]

It is also possible to show that K{nf(n)) n.
For related articles, see Köhler [171]; Pethö [237]; Shallit [277], and Wu [305].

(An aside: Mignotte [213] proved that there exists a constant c such that

p
/(2) - -

Q

c
> —

q3

for all integers p and odd q. However, by combining Theorems 1 and 4, we

get the improved bound

1P/(2) - -
q

> —
8q2

for all integers q ^ 1. Also see Derevyanko [86].)
Kempner [159] had proved in 1916 that f{n) is transcendental for all

integers n ^ 2. Mahler [200] also proved this result; also see Loxton and van
der Poorten [195].

(Kempner seems to be responsible for a mistake that has been perpetuated
in several papers. He called the series in Eq. (1) above the Fredholm series,

in the belief that Fredholm studied it. Kempner referred to a paper of Mittag-
Leffler [215], but this paper discusses the series

E X'2,
0

which is very different. An examination of Fredholm's collected works [108]

did not turn up any papers on the series in Eq. (1). This mistaken attribution
was repeated by Schneider in his classic work on transcendental numbers [273],
and then repeated by other authors; see, e.g. Pethö [237]; Mendès France

[207].)
Mendès France pointed out an intriguing connection between the continued

fraction expansion of / (n) and iterated paper folding, which we now describe

briefly.
If we fold a piece of paper in half repeatedly, say n times, always folding

right hand over left hand, we get a series of 2n - 1 hills and valleys upon
unfolding. Let us denote the hills by + 1 and the valleys by - 1. Letting Xn
be the sequence of folds so obtained, it is not hard to see that

X„+l=Xn (+1) -XRn,
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where juxtaposition denotes concatenation, and by XRn we mean the sequence

X„ taken in reverse order.

More generally, we can choose to introduce a hill or valley at the nth fold.

If we denote the nth fold by an9 then after folding with au a2, a„9 upon

unfolding we get the sequence

Fai(Fa2(---(Fan(£))•••))

where 8 denotes a sequence of length 0, and F, is the folding map, given by

Fi(X) X i -XR.
Mendès France observed that the continued fraction expansion of f(n)

could be written in terms of the folding map F}; see Mendès France [207];
Blanchard and Mendès France [33]; Dekking, van der Poorten and Mendès

France [80]; Shallit [276]; and Mendès France and Shallit [209].
More recently, van der Poorten and Shallit [248] discovered a closer

connection between paperfolding and continued fractions. Suppose we
consider the formal power series

g(X)= £ X-»eQ((l/X))
k^O

Then Xg(X) can be expanded as a continued fraction, and it is not hard to
prove that

xg(X) [i9F.x(F.x('"(F.x(X))•••))] ;

i.e. the continued fraction is given by the iterated folding of a piece of paper!
Using this result, we can prove the following theorem: let s0 1 and

8/ ±1 for / ^ 1. Then the continued fraction expansion of each of the
numbers

2 £ e,-2 -2'
i ^ 0

consists solely of l's and 2's. For example,

2/(2) [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, l, 1, 2, ...]

Let us now turn to other constructions of transcendental numbers with
bounded partial quotients.

Since the set Sd is uncountable, while the set of algebraic numbers is
countable, it is clear that almost all elements of are transcendental.
However, many investigators were concerned with the explicit construction of
transcendental elements of SB. For example, Baker proved that
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8 16 32

[0, 1, 2, 2, 1, 1, 1, 1, 33, 733, 33, ...]

and similar numbers are transcendental; see [16]. Previously, Maillet had given
similar examples, but not explicitly [201]. Other examples have been recently
given by Davison [79]. Also see Grant [120].

10. "Quasi-Monte-Carlo" Methods and Zaremba's Conjecture

In this section we briefly discuss some integration methods that depend on
rational numbers with small partial quotients. There is a large literature on
this subject; the interested reader can start with the comprehensive survey of
Niederreiter [220].

(This section is tied to the main subject in the following manner: we wish

to construct explicitly rational numbers with small partial quotients. One way
to do this is to take an irrational number with bounded partial quotients and

employ the sequence of convergents.)
In ^-dimensional "quasi-Monte Carlo" integration, we approximate the

integral

(2) f(t)dt
' [0, lp

by the sum

- Yf(*k)
Yl 1

where xlfx2, is a set of points in [0, lp.
The goal of quasi-Monte Carlo integration is to choose the points

Xi, x2, so as to minimize the error in the approximation.
In the method of good lattice points, we assume that the function / is

periodic of period 1 in each variable. We choose a large fixed integer m and

a special lattice point g e Zs. Then we approximate the integral (2) with the

sum

1 I /(-«) •

m i^k^m \m
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