Objekttyp: Abstract

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 37 (1991)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 19.09.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

ON THE AVERAGE BEHAVIOUR OF THE LARGEST DIVISOR OF n PRIME TO A FIXED INTEGER k

by Y.-F.S. PÉTERMANN

RÉSUMÉ. On étudie le comportement de la fonction bornée $h_k(x) := x^{-1}E_k(x)$, où $E_k(x) := \sum_{n \leq x} \delta_k(n) - (k/2\sigma(k))x^2$ est le terme irrégulier du comportement asymptotique moyen de $\delta_k(n)$, le plus grand diviseur de n premier à k (et où l'on peut sans perte supposer que k est sans facteur carré). On s'intéresse plus particulièrement aux nombres I_k et S_k , les lim inf et lim sup de $h_k(x)$ (lorsque $x \to \infty$), dont les valeurs exactes ne sont connues que si k = 1 ou si k est un nombre premier (Joshi et Vaidya [JV]). En établissant l'existence et la symétrie de la fonction de répartition de $h_k(n)$ (au sens de Wintner), on simplifie le problème en démontrant que $I_k = -S_k$. Puis, pour tous les k non premiers et sans facteur carré, on améliore explicitement l'estimation $S_k \geq k/\sigma(k)$ (de Herzog et Maxsein [HM], et indépendamment Adhikari, Balasubramanian et Sankaranarayanan [ABS]).

0. Introduction and statement of the results

For a fixed natural number k we denote by $\delta_k(n)$ the largest divisor of n which is prime to k. If κ is the squarefree core of k we have $\delta_k(n) = \delta_{\kappa}(n)$, and we shall assume from now on that k is squarefree. We define the associated error term

(0.1)
$$E_k(x) := \sum_{n \leq x} \delta_k(n) - \frac{k}{2\sigma(k)} x^2,$$

where σ is the sum-of-divisors function. The behaviour of $E_k(x)$ has been investigated in [Su], [JV], [HM], [ABS], [AB], and very recently in [A]. It is known that [JV]

$$(0.2) E_k(x) = O(x)$$