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VALUES OF QUADRATIC FORMS AT INTEGRAL POINTS:

AN ELEMENTARY APPROACH

by S. G. Dani and G. A. Margulis

In response to a longstanding conjecture due to Oppenheim, G. A. Margulis

proved (cf. [17] and [20]) that if Q is a nondegenerate indefinite quadratic

form on R\n ^ 3, which is not a multiple of a rational form then for any

8 > 0 there exists pe Z" - {0} such that 0 < | Q(p) | < s; this also implies, by

a well-known number-theoretic method (cf. [14], §5) that for any a e R and

8 > 0 there exists p e Zn such that

(i) 0 < I Q(p) - a\< &

Subsequently it was proved in [7] (see also [6]) that the element p as in (i)

can also be chosen to be primitive (namely such that the g.c.d. of the

coordinates is 1). Further, we also proved that if Q is a quadratic form as

above and B is the corresponding bilinear form (defined by

B(x,y) {Q(x+y) - Q(x-y)}/4 for all x,yeRn) and a,b,ce R are such

that there exist x,ye R'7 for which Q(x) a, Q(y) b and B(x,y) c then

for any s > 0 there exist primitive integral points p and q such that

(ii) \Q(P) ~a\<s,|Q(ç)- b\<£and <e.
The method of proof in both [20] and [7] is based on studying the orbits

on SL(3, R)/SL(3, Z) of the action, on the left, of certain subgroups of
SL(3,R). In [7] it was proved that if H is the subgroup of SL(3,R) consisting
of all elements leaving invariant a given nondegenerate indefinite quadratic
form on R3 then every orbit of H is either closed or dense; this enables one

to deduce the assertion about the existence of primitive integral solutions to
(i) as also (ii) under the conditions as above. The earlier proof of the

Oppenheim conjecture in [20] is based on showing the relatively compact
//-orbits to be closed and certain other supplementary observations (cf. [20]).

The argument in [7], in its entirety, involves various deep theorems on Lie

groups, algebraic groups, ergodic theory and unitary representations.
Interestingly it turns out that if one is to look only for the existence of primitive
integral solutions to (i) then, with some modifications, the argument in [7] can
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be arranged to yield a proof which not only does not involve any deep theorems
but does not involve even any familiarity with the topics mentioned above. The

proof is accessible to anyone having gone through basic courses in linear
algebra and topological groups! Needless to say that in view of the general
nature of the result and the fact that it already implies the Oppenheim
conjecture, it is worthwhile to record such a proof. That is the purpose of the

present article. We have tried to arrange it so that while a novice should have

as little difficulty as possible in understanding the proof, an expert should be

able to run through the key ideas, getting a quick understanding of the proof.
Many details are included to make the presentation complete.

One major aspect of the present simplification is an observation that to

prove the existence of primitive integral solutions to (i) (cf. Main Theorem

below) it is enough to prove that all the //-orbits (H as above) which are not
closed contain orbits of certain one-parameter semigroups not contained in H
(cf. Proposition 8); that is, one does not need the full strength of the assertion

in [7] that all such orbits are dense in SL(3, R)/SL(3, Z). Thus, the Main
theorem here can be deduced from Proposition 4.1 of [7] rather than
Theorem 2 of [7]. The observation is supplemented by some further simplifications

to make the proof accessible by elementary methods.

We conclude this introduction with the following acknowledgement and

then go on to a formal statement of the Main Theorem.

Acknowledgement. A preliminary version of this was prepared for
presentation at the Swiss Seminar in Bern, by the first named author. The

author would like to thank the ''Troisième cycle romand de mathématiques",
Switzerland, for support. He would also like to thank Professor A. Haefliger
for encouragement, in the context of the paper.

Let R", n ^ 2, be the n-dimensional vector space over R, viewed as the

space of all n-rowed column matrices with entries in R, equipped with the usual

topology. Let ex, • • • ,en be the standard basis of Rn; is the column matrix
with 1 in ith row and 0 in all other rows. A peR" is said to be an integral
point if all its entries are integers; namely if it is of the form

p p\ e\ + • • • -f pnen where /?!,*•• ,pn e Z. We denote by Zn the set of all

integral points in Rn. An integral point p pxex + • • • + pnen is said to be

primitive if the g.c.d. of px, • • -,pn is 1 or equivalently if k~lp is not an

integral point for any integer k ^ 2. We denote by p (Zn) the set of all

primitive integral points in Zn.

We recall that a quadratic form on R" is a function of the form
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Q SPißi) E E aijPiPj for all a, • • • ,/?„ e R
/=i /=i j=i

where {au) is a symmetric nxn matrix with real entries; {au) is called the

matrix of Q. A quadratic form is nondegenerate if and only if the matrix is

nonsingular. A quadratic form Q is said to be indefinite if there exists

p plel + • • • +p„e„eRn with PiF 0 for some /= 1, such that

Q(p) 0. Also, a quadratic form is said to be rational if its matrix is rational

(that is, has rational entries).

Main Theorem. Let Q be a nondegenerate indefinite quadratic form
on R\ n ^ 3. Suppose that cQ is not a rational quadratic form for any
c > 0. Then Q(p(Zn)) is a dense subset of R; in other words, for any
ûfeR and s > 0 there exists a primitive integral point p such that

IQ(p) ~ a\< s

We begin the proof with some general results. The following simple
observation was first noted in [17] and played a crucial role in the original proof
of the Oppenheim conjecture.

1. Lemma. Let G be a Hausdorff topological group and let S be a

Hausdorff topological space with a given continuous G-action on it. Let A
and B be two closed subgroups of G and let X and Y be closed subsets

of S, invariant under the actions of A and B respectively. Suppose

further that Y is compact. Let M be a subset of G such that mY n X
is nonempty for all meM. Then gY n X is nonempty for all geAMB.
Further, if C is a subgroup of A n B such that Cy is dense in Y for
all ye Y then gY C X for all geAMB n N(C), where N(Q denotes
the normaliser of C in G.

Proof. If g amby where a e A, meM and beB then gY n X
a(mbYna~lX) a{mYnX) and hence it is nonempty. Thus the set

T: {geG\gY n XF0} contains AMB. On the other hand since Y is

compact and X is closed, a direct argument shows that T is closed. Hence T
contains AMB, which is precisely the first assertion in the Lemma. Now
let C be a closed subgroup as in the hypothesis and let geAMB n N(C).
Since geAMB, by the first part there exists ye Y such that gyeX. Since X
is a closed A-invariant subset and C C A this yields that Cgy C X. On the
other hand since g e N(Q, Cgy gCy and by the condition on C the latter is
dense in g Y. Therefore g Y C X. This proves the Lemma.
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To be able to apply the Lemma fruitfully one needs to know, in the

appropriate context, "enough" new elements in the set AMB as above. In
our context this is ensured by a simple property of 'unipotent one-parameter

groups of linear transformations' which we now recall.
Let E be a finite-dimensional vector space over R and let S^{E) denote the

space of all linear transformations of E into itself. We consider both E and

equipped with their usual topologies. For any x e fzf(E) the sequence
j

{ Y t'/il} (J° is the identity transformation by convention) converges as
/=o

j oo, to an element of Jzf(E), denoted by exp t. The map x i->exp t, of ~z?(E)

into itself, is continuous. A linear transformation x is said to be nilpotent if
there exists a natural number k such that xk 0, the zero transformation in
fzf(E). A family {w(0}*eR in ^(P) is called a unipotent one - parameter
group of linear transformations if there exists a nilpotent linear transformation
x of E such that u(t) exp tx for all z'eR. A map /:R-»is is said to be a

polynomial map if there exists a basis ex, • • •, ed (where d dimension of E)
and real polynomials /H • • •, fd such that f(t) f\{t)ex + • • • + fd(f)ed
for all te R; if such a basis exists then the components of f(t) with respect

to any basis are polynomials in t. We note that if {exp tx} is a unipotent one-

parameter group of linear transformations of E and p eE then /i—>(exp tx) (p)
is a polynomial map. For the proof of the main theorem we need the following
lemma; it is a slightly weaker version of Lemma 2.2 of [7] and is related to
Lemma 1 of [1] and Lemma 13 of [20].

2. Lemma. Let {u(t)} be a unipotent one-parameter group of linear
transformations of a finite-dimensional R-vector space E. Let F denote

the vector subspace of E defined by

F {p eE\u(t) (p) p for all t e R}

Let M0 be a subset of E - F and let p0eM0 n F. Then there exist a

nonconstant polynomial map cprR^T7 and sequences {m^ in M0 and

{ti} in R suchthat (p(0) /70 and for any s e R, u(sti) (m^ -> (p(s) as

oo.

Proof. Let x be a nilpotent linear transformation of E such that

u(t) exp tx for all te R. By the Jordan canonical form (cf. [11], [21] or [25],

for instance) there exists a basis {ef]} where the indices vary over a set of the

form {(j, k) 11 < y ^ rk and 1 ^ k ^ /}, / and r{, • - - n being fixed natural

numbers, such that for all k 1, • • - /
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T(ef]) 0 and t(ef]) ef\ for all 2 ^y ^ rk

A straightforward computation then shows that

u(t) (ef)ef + tef\ +
1 Pef_, + • • • + —L-

J J 7 1

2
7 ' (y-1)!

for all j, k as above. In particular this means that F is the subspace spanned

by {ef]|l ^ /}. For meM0 let m(j, k) denote the ^-component of m

with respect to the basis {ef]} and let

0 (m) min {| m (y, k) | ~M(J ~ b j 1 ^ k ^ / and 2 ^ j ^ rk}

Then | m (y, k)QJ~l(m) \ ^ 1 whenever y ^ 2. Now let {m/} be a sequence in
M0 converging to p0. By passing to a subsequence and modifying notation,
we can arrange so that there exists a pair (y0, k0) such that y0 ^ 2 and

l^/Oo, fcoJÖ-7«-1 (m/)|= 1 for all i. Passing to a subsequence one again, we

may further assume that for each pair 0, k),\ ^ y ^ rk, 1 ^ k ^ /, the

sequence {/7?/(y, /O^7"1 (>??/)} converges as / - oo; let X(y, £) denote the limit of
the sequence. Observe that | X(J0, &0)| 1. Now choose

cpO) E E Mj> ef] for all seR
(y-i)! /

Then cp defines a polynomial map of R into F. Since |X(yo,£o)|= 1 and
y0 ^ 2, (p is a nonconstant map. It is straightforward to verify that if {/??/} is

the sequence as above (after successive reductions) and i| 0(^7/) then for
any sei?, u{sti) (m,)cp(s) as /-> oo. Also clearly

since mi -> pQ and pQ e F.
We now introduce some notation to be followed throughout. Let

G SL(3, R) be the group of 3 x 3 matrices with real entries and determinant

1, equipped with the usual topology of componentwise convergence of
the entries. For any te R let

(p(0) im, k)e\k)lim £ m,(l. £)ef> a

I1 / ?2/2

Wi(0 0 1 t
\0 0 1

and let
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V\ {(MO./eR}. K2 fe(OkeR}
Vi 0} and F"= 0}

Also for any /eR* (namely a nonzero real number) let d(t) denote the

diagonal matrix diag (t, 1, t ~!) and let

D — \d(t)\t > 0}

As stated before we view R3 as the space of 3-rowed column-matrices and

denote by ei,e2>e3 the standard basis elements. For any (not necessarily

square) matrix £, we denote by % the transpose of £,. The 3x3 identity
matrix will be denoted by 7.

Let Q0 and Qx be the quadratic forms on R3 defined by

Qo(Pie] + p2e2 + Pîe3) - p\ and

Qi{p\e{+p2e2 +Pie-j)p]forall pup2,pie'R

We note that for all peR3 and te R,

(iii) Qo(o,(t)p) Qo('viit) p)Q0(d(±e')p)
and Qo(p2(t) p)+ 2

Let

H {geG\Q0(gp)Qo(p)forall pe R}

Then 77 is a closed subgroup of G containing V} and D.
As for a linear transformation, for any square matrix £, we denote by exp £,

j
the limit of the sequence { £ ^'/i !}. If | is the matrix representing a linear

/=o

transformation x with respect to a basis then exp £, is the matrix representing

expx with respect to the same basis. Let

10 1 °\ 1° 0 1\ /I 0 0

0 0 1 V2 - 0 0 0 and ö I 0 0 0

\° 0 0/ \° 0 oj \o 0 -1/
Then we see that v] v22 0 and that

(v) exp Aq Vi(t), exp tv2 v2(t) and exp d(e()

for all / eR.
We next apply Lemma 2 and deduce the following result which is one of

the main ingredients of the proof of the main theorem. We give two proofs
of the assertion. The first proof uses elementary calculus of several variables
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(strictly speaking, the arguments are motivated by some Lie group theory

which however is not involved directly). The second proof is based on certain

standard arguments in topological groups.

3. Proposition. Let M be a subset of G - HV2 such that IeM.
Then either L2+ or L2~ is contained in HMVX

First proof. Let E M(3, R) be the space of all 3 x 3 matrices with real

entries, equipped with the usual topology. Let P be the subspace of E defined

by

P {£ ifij)\^n - ^33 £12 + ^23 Ê21 + ^32 £ll + ^22 + ^33 0}

Though we shall not need this fact, it is worth noting that P is the ortho-

complement of the Lie subalgebra corresponding to H in the Lie algebra

of G, with respect to the Killing form.
We show that given a sequence {g/} in G such that g/-> I, there exist

sequences {hf in H and {ip} in P such that h-^I, rj/0 and g/ /p(expip)
for all i. Observe that for p eP, the sum of the diagonal entries being zero

implies that the sum of the eigenvalues of p is zero and hence the
determinant of expri is 1. Any ^eE can be expressed uniquely as

E, a/ + a8 + bvx + c!vx + rj where Vi and 5 are as in (iv), a,fl,ô,ceR and

T[eP. Consider the map \|s:E~^E defined by \i/(a/+ ab + bvx + crvx + ri)
•- ead(ea)L>i (b)rux (c) (exp rj) for all a, a, b, ceR and p eP. We note that \j/ is

a C1 map, when E is viewed as R9 with E,/7 as the coordinate variables and

that the Jacobian determinant of \|/ at the point 0 (namely the zero matrix)
is nonzero; in fact the derivative at 0 is the identity map. Hence by the inverse

function theorem (cf. [12] for instance) there exists a neighbourhood W of 0

in E such that the restriction of vj/ to W is a homeomorphism of W onto a

neighbourhood of I in E. Let {g/} be a sequence in G converging to I. Then
by the preceding observation there exist sequences {a/}, {#/}, {£>,}, and {c,-} in
R and {ip} in P such that each of the sequences converges to zero (in R or
P respectively) and g,- e^d{ea>)vx (b^Vx (c,-) (exp ip) for all i.
Comparing the determinants we see that a, 0 for all i. Also in view of (iii),
d(ea>)üx(bi)rtßx(Ci) eH for all /. Thus we get the sequences {hf in H and {ip}
in P as desired.

Now let M be the subset as in the hypothesis. Then M contains a sequence
{gi} such that g, ->/. Let {hi} and {ip} be sequences in H and P respectively
such that E -> I, ip 0 and g,- A/(exp ip) for all /. Let Vj be the matrix as in
(iv). It is easy to see that for any r\ eP, Vip - v[vx eP. Let t: P^> P be the
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map defined by x(n) Viri - T]Vi for all r| eP. Then x is a linear transformation

of P. Further a straightforward computation using the fact that v\ 0

shows that x5 0, the zero transformation of P. Thus x is a nilpotent linear
transformation. We also note that the corresponding unipotent one-parameter

group of linear transformations of P is given by

(vi) (exp tx) (rj) ux(~0 for all /eR and r| eP

We now apply Lemma 2 to the unipotent one-parameter group {exp tx} as

above. A direct computation shows that the subspace F of P consisting of all

rj in P such that (exp tx) (q) ri for all feR is spanned by the element v2 as

in (iv). For all i we have gt- /q(expr|/) eG — HV2 and hence (expq;) $ V2\

this implies that p, e P - F for all i, since F is spanned by v2 and

Qxp tv2 v2(t) e V2 for all te R. Applying Lemma 2 with the set

{T|/ 1,2, * * •} and the point 0 in the place of M0 and p0 there, we conclude

that there exists a nonconstant polynomial map (p: R->R and sequences {4}
and {4} in N and R respectively such that (p(0) 0 and for any

5eR, (exp stlet) (r^) (p(s)v2 as k~* oo. Then for any 5 e R we have

(vii) Vi (stk) (exp — stk) exp {^ (54)^/^1 (-^4)}
- exp {(exp stkt) (h/,)}^ exp (p(^)v2 ^(cp^))

Since {vxist^h^g^v^-stk) - vx (stk) (exp nk)ul (~stk) and since the

sequences {v\{stk)h^1} and {g/J are contained in H and M respectively,

(vii) shows that for all se R, t>2((p(s)) eHMVx. Since (p is a nonconstant real

polynomial and cp(0) - 0, the image of cp contains either all positive numbers

or all negative numbers. Thus we get that HMVX contains either F2+ or K2~

This proves the proposition.

Second proof. Let S be the vector space of all symmetric 3x3 matrices

with real entries. Let Vj be the matrix as in (iv). We observe that for any
<3 eS, 'Vjo + 0V1 is also an element of S and that the map x: S defined by

x(g) -('viO + gvi) is a nilpotent linear transformation; specifically x5 0

(the zero transformation). We also note that the corresponding unipotent one-

parameter group of linear transformations is given by

(viii) (exp ti) (o) % - 0 ovx -1) for all /eR and o e S

Let F {o e S\ (exp ^x) (o) o for all t e R}. A straightforward computation
shows that F is spanned by the elements o0 and Oj defined by
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(ix)

0 0 1\
0 -1 0 and o
1 0 0,

0 0 0

0 0 0

0 0 1

We note that a matrix in F has determinant 1 if and only if it is of the form

o0 + t g J for some t e R. Now let M be the subset as in the hypothesis and let

M0 {{gOog\geM}. Then M0 C S. We show that M0 n F 0. If possible

let geM be such that rgo0geF. Since {go0g has determinant 1, by the above

observation, there exists / eR such that 1go0g o0 + 2tO\. The latter can be

written as tu2(t)G0v2(t). Thus we get that tgo0g tv2(t)ùoV2(t). Hence

thöoh o0, where h gv2(-t). Thus tpthoohp - rpo0p for all peR3 and

this means that Qo(hp) Qo(p) for all pe R3. Therefore heH. But then

g hu2(t) eHV2i which is a contradiction since M C G - HV2. Hence

M0 n F 0.

We now apply lemma 2 to the unipotent one-parameter group {exp tx) and

the set Mo as above and o0 in the place of p0 and conclude that there exist a

nonconstant polynomial map \|/: R F and sequences {g,-} in M and {//} in R

such that \j/(0) g0 and for any 5"eR, (expsttx) (^g/Gog/) ^ \|/(5) as /-> oo;

substituting from (viii) we get that tvx(-sti) gi<5ogi)V\{~sti) 11/(5) as

i-+ 00. For each s, each matrix in this sequence has determinant 1 and therefore

\j/ (5) has determinant 1. Since \p is a polynomial map into F, in view of the

remark about elements of F with determinant 1, this implies that there exists

a (unique) polynomial (p on R such that ij/^) o0 — 2(p(s,)o1 for all seR;
since if/ is nonconstant, so is cp and since \j/(0) o0, cp (0) 0. Now, for all
^eR we have

(x) 'M~tf/)('g|G0gz)l>l (-#/)-> V(5) Oo-2(p(5)G!

Now consider the G-action on S given by (g, G)i->/g~1Gg"1 for all geG
and oeS. Let T C S be the orbit of o0 under the action. Any g g T is

indefinite (namely there exists peR3, p =£ 0 such that tpop 0) and has

determinant 1. We show, conversely, that if g e S is indefinite and has determinant

1 then g e T. Consider such a o. If 8 is a diagonal matrix with diagonal
entries ± 1 which is equivalent (cogradient) to o, the conditions on o imply
that exactly one of the diagonal entries is 1. Since this holds for o0 as well
we get that o po0'p for some nonsingular matrix p (cf. [11] Ch. V,
Theorem 6). Then clearly p has determinant ± 1 and hence we can choose
geG, g ±'p-* such that g 'g - lo0g 1

; this shows that o e T. Thus T is
precisely the set of all indefinite matrices of determinant 1. This implies in par-

^2(-Q(S))O0L>(-cpCS'))
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ticular that T is a closed subset of S, with respect to the usual topology on
S. In particular T is locally compact with respect to the induced topology.

If g G G is such that tg~lo0g_1 o0 then tptgc0gp =tpo0p for all p e R3,

which implies that geH. This yields that H is the isotropy subgroup of o0

under the G-action as above. Hence we have a canonical bijection 0: G/H -a T
defined by 0(gL/) =rg"1o0g_1. Since G is second countable and T is locally
compact the canonical bijection 0 is a homeomorphism (cf. [9], Ch. V, §1,
Theorem 8 or [10], (1.6.1) for instance), when G/H is equipped with the

quotient topology.
Observe that in view of (x), for any seR, H) - 0(i>2((p(s))#)-

Since 0 is a homeomorphism, this implies that for all s eR,vx(sti)g^1H
-> u2(sp(s))H in the quotient space G/H. Since {g/} is contained in M this

implies, in turn, that VXM~XH contains o2(g>(s)) for all seR. Hence HMVX,
which is the same as (VXM~AH)~X, contains i^OpCs)) f°r all seR. Since (p is

a nonconstant real polynomial such that (p(0) 0, the image of (p contains
either all negative numbers or all positive numbers. Hence the preceding
conclusion implies that HMVX contains either F2+ or K2~ thus proving the

proposition.

4. Proposition. Let he H and veV2-{I} besuchthat uheHV2.
Then h is an upper triangular matrix.

Proof. Let heH and u u2(t), t =f= 0 be such that vh eHV2\ let h' eH
and v' v2(s),seR be such that vh h'v'. By (iii), for any pe R3 we have

Qo (vhp) Qo(hp) + 2 tQi(hp) Q0(p) + 2tQfhp) and

Qo(h'v'p) Qo(u'p) Q0(jp) + 2sQfp)

Since vh h'v', this yields that Q\(hp) (s/t)Qx(p) for all peR3. Let L be

the plane spanned by ex and e2. Then L is precisely the set on which Qx

vanishes and hence the preceding conclusion implies that hex and he2 belong

to L. Further if hex pxex + p2e2% where px,p2eR, then we have

~p\ Qo(P\\ + p2e2) Qo(hex) Q0(e0 0, which shows that

hex *= pxex. This together with the fact that he2eL implies that h is an upper

triangular matrix.
Now let V VXV2. Then V is a closed abelian subgroup of G. Each d e D

normalises the subgroups Vx and V2. Therefore DVX and DV are subgroups

of G. It is straightforward to verify that they are closed subgroups of G. In
the sequel we need the following simple property of DV.
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5. Lemma. Let A be a discrete subgroup of DV; then either À is

contained in V or it is a cyclic subgroup generated by an element of the form
udu ~1, where ueV and deD-{I}.

Proof. We first note that for any deD - {/} and w e Vthere exists u e V

such that dw vdv ~1
; such a v may be readily determined, keeping in mind

that uex,ve2ive2 must be eigenvectors of dw. Now let A be a discrete

subgroup of DV which is not contained in V. Thus there exist deD - {/}
and weV such that dw e A. Let u e V be such that dw udu~l. Let

A' i>_1A^. Then A' is a discrete subgroup of DV containing d. Let au,

where aeD and u e V, be any element of A. Then dJ(au)d~J e A' for all j.
We see that djud"J - / either as j - oo or as j ^ - oo. Hence dJ(au)d~J

a(dJud~]) a either as j -> oo or as j -* - oo. Since A' is discrete this

implies that a(djud~) a for some j. Hence u I. This shows that A' is

contained in D. It is easy to see that any discrete subgroup of D is cyclic. Thus

A' is a cyclic subgroup of D and, therefore A, which is the same as vA'v~\
is the cyclic subgroup generated by vdv ~1, where deD is a generator of A7;

since A is not contained in V, d =£ I. This proves the Lemma.
We next note the following simple fact. While an expert may recognise this

as an immediate consequence of the fact that //contains a subgroup of index 2

which is Lie-isomorphic to PSL(2,R), it can also be deduced directly as

indicated below.

6. Proposition. H/DVx is compact (in the quotient topology).

Proof. Let C {/?eR3 - W\Qo(p) 0}, viewed as a subspace of R3,
and let C be the quotient space of C under the equivalence relation identifying
p, qeC if there exists XeR such that q Xp. Then C is a compact space (it
is a closed subset of the projective space). For any p e C let p e C denote the
equivalence class of p. Consider the action of H on C defined by h(p) hp
for all heH and p e C; it is easy to see that the action is well defined and
continuous. It can be verified directly that for any peC there exists heH
such that h (e[) p\ if p ±~ez then we can find h of the form rUi(t), where

te R, satisfying this and if p ël we can choose h o0 as in (ix), which is
indeed an element of H. Thus C is the orbit of ~e[. Let R be the isotropy
subgroup of el. Since H is second countable and C is compact we get that
H/R is homeomorphic to C, and therefore compact, in the quotient topology
(cf. [9] Ch. V, §1, or [10], (1.6.1) for instance). It is easy to see that if heH
then heR if and only if either heDVx ox he d(-\)DVx. Therefore DVX is
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a subgroup of index 2 in R. Since H/R is compact, this implies that H/DVX
is compact.

Now let T SL(3,Z) be the subgroup of G consisting of all matrices with
integer entries. We equip G/T with the quotient topology and consider the
G-action defined by left translation; g e G acts by taking HT, h e G, to ghT.

7. Proposition. Let X be a nonempty closed subset of G/T. Then the

following conditions are satisfied:

a) If X is Vx-invariant then it contains a minimal (nonempty) closed

Vrinvariant subset and any such subset is compact.

b) If X is DVx-invariant then it contains a minimal (nonempty) closed

DVx-invariant subset and no such subset is a DVx-orbit.

Given a nonempty compact subset X of G/T which is invariant under Vx

or DVX, a simple application of Zorn's lemma shows that X contains a

minimal (nonempty) closed subset invariant under Vx or DVX respectively; we

only need to observe that in view of the compactness of X, any family of
nonempty closed invariant (under Vx or DVX respectively) subsets, which is

totally ordered with respect to the inclusion relation, has a nonempty
intersection. Now suppose that Y is a compact subset which is a DVx-orbit,
say Y » DVxy where y e G/T. Let A — {geDVx\gy y). Then DVX/A is

homeomorphic to Y (cf. [9], Ch. V, or [10], (1.6.1)). In particular DVX/A is

compact. But A is a discrete subgroup of DVX (and in turn of DV) and hence

by Lemma 5, A is either contained in Vx(= VnDVx) or it is a cyclic

subgroup generated by an element of the form udu ~1 where deD and

u e Vx(= e V\udu~l eDVx}). In either case we see that DVX/A is non-
compact. This is a contradiction showing that there are no compact
DLi-orbits. These observations show that the Proposition holds for compact
subsets X.

For a noncompact closed subset the Proposition follows from certain
results on the asymptotic behaviour of orbits on G/T of unipotent one-

parameter groups of matrices. Specifically, we need a 'uniform version' of
what is referred to as Margulis' Lemma in [3]. Theorem 1.1 of [7] is a

quantitative version of what is needed; in [7] we used it to derive the result as in
the present Proposition. The proof of Theorem 1.1 of [7] depends on an

elementary (though rather complicated) argument using some properties of
polynomials. A weaker (qualitative) version adequate in proving the present

Proposition, is somewhat simpler to prove. We are including a proof of a

weaker version in this text. However, since it involves considerable digression,



VALUES OF QUADRATIC FORMS 155

we defer it until the Appendix (cf. Theorem A.8). A deduction of the Proposition

in the general case is given after the proof of Theorem A.8.

8. Proposition. Let xeG/T and let X Hx. Then either X Hx

or there exists yeG/T such that V^y or V^y is contained in X.

Proof. Since DVX C H, X is DVx-invariant and therefore by Proposition

7 b) it contains a minimal nonempty closed DVx -invariant subset, say

Xx. By Proposition 7 a) Xx contains a minimal nonempty closed Vx -invariant
subset and any such subset is compact. Let Tbe such a subset. We shall show

that unless X Hx, F2+ Y or Y is contained in X. Let y e Y. We divide

the proof into three cases as follows.

a) there exists a subset M of G - HV2 such that IeM and myeX for all

m e M.

b) there exists a neighbourhood W of I'm G such that {ge W\gyeX} C H.

c) there exist a neighbourhood Q of / in G and a sequence {^} in V2 — {/}
such that {g e Q|gy e X} C HV2, ut -> / and v-ty e X for all /.

We first observe that at least one of the three cases must hold. Suppose

a) and b) do not hold. Then there exists a neighbourhood Q of / in G such

that {geQ|gye.A} C HV2 and there exists a sequence {g/} in G - H such

that gi / and g,yeX for all i. Without loss of generality we may also

assume {g/} to be contained in Q. By the property of Q this implies that each

gi can be expressed as h^v, where hteH and u,- e V2. Since {g/} is contained in
G - H, Uj ^ I for all i. Also for any peR3 we have Qo(giP) Qo(hiVip)
— QoiPiP) Qo(p) + 2t,Qx(p) where {/,} is the sequence in R such that

Vj v2(tj) for all /. Since g/ -> I, this implies that tiQxi<p) -> 0 for all peR3.
Hence tt 0, which means that Vf v2(tj) /. Also since g,y hjVjyeX for
all / and X is H-invariant, we get that UtyeX for all i. This shows that c)
holds.

Case a) In this case we see that X and Y are two closed subsets of G/T
invariant under H and Vx respectively, Y is compact and mY n X is

nonempty (as it contains my) for all meM. Further since Y is a minimal
Fi-invariant closed subset, Vxy is dense in Y for all y e Y. Under these
conditions Lemma 1 implies that gY C X for all g eHMVX c\ N(VX), N(VX)
being the normaliser of Vx in G. By Proposition 3, HMVX contains either
F2+ or V~ Since V2 C N{VX) we now get that F2+ Y or V~ Y is contained
in X.
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Case b) In this case we have Wy n X C Hy. Since Hx is dense in X this
implies Hx n Hy is nonempty and hence Hx Hy. We next observe that
X\ - Hy is a closed DVX -invariant subset of Xx, not containing y. Since Xx
is a minimal nonempty closed i-invariant set, this implies - Hy is

empty. Hence Xx C Hy. Since by Proposition 6 H/DVX is compact, there
exists a compact subset K of H such that H K(DVx) (cf. [9], Ch. V for
instance). Since Xx is DVX -invariant Xx DVxXx and hence

KXx K{DVx)Xx HXx which shows that the set KXx is //-invariant. But
since K C H and Xx C Hy, KXx C Hy and hence KXx being //-invariant
implies that KXx — Z/y. On the other hand since K is compact and Xx is

closed, KXi is closed. Thus we get that Hy is closed. As X Hx and

Hx Hy this implies that X Hx, thus settling the case.

Case c) By replacing Q by a smaller neighbourhood if necessary, we may
assume that the following conditions also hold for Q: i) Q is open, ii) any g e Q

has only positive entries on the diagonal and iii) any element of Qy can be

expressed uniquely as gy, where geQ; the last condition can be ensured since

T is discrete. We now first deduce that Qy n DVX y is contained in
(QnDV)y. Let geDVx be such that gyeQy; say gy wy where weQ.
Then for all / we have gutf (gvLg"1 )gy (gVig~l)wy. Since Q is a

neighbourhood of w and guig ~1 w w there exists a j such that gUjg
~~1 w e Q.

Since gUjg ~lwy gujy e X the last assertion and the property of Q imply
that gUjg ~1 w e HV2. Also similarly, since wy gyeX, we HV2. Let he H
and ueV2 be such that w hv. Then gVjg~lhv eHV2. Since geDVx C H
and u e V2, this implies that Vjg~lheHV2. Since Vj e V2 - {/} and g~xheH,
by Proposition 4, this implies that g~lh is an upper triangular matrix. Since

geDVi this yields that h is an upper triangular matrix. By the restriction on
Q the diagonal entries of w hv are positive and hence the same holds for
h. It is easy to see that an upper triangular matrix with positive entries on the

diagonal belongs to H only if it belongs to DVX. Thus heDVx. Therefore

w hveDV and hence gy wy e(QnDV)y, as claimed.

Now suppose that there exists an open neighbourhood Qj of / such that

Qj C Q, Qi is compact and Qxy c\ DVxy C (QxnDVx)y. Since Xx is a

minimal nonempty closed DVx-invariant subset, DVxy Xx and in view of
this, the last condition readily implies that Qxy n Xx C (Qx n DVx)y. But
then (Xx - DVxy) is a closed DVX-invariant subset disjoint from and

hence by minimality of Xx as a nonempty closed DVX-invariant set, we get

that X\ - DVxy is empty. As Xx is DVX-invariant, this implies that it is a

DVX-orbit. But by Proposition 7 b) there are no closed DVX-orbits and hence
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this is a contradiction. Thus there does not exist any neighbourhood Qi as

above. _
Next let Qi be any open neighbourhood of / such that Qi C Q and Qj

is compact. Then by the above observation there exists geDV\ such that

gy eQiy - (Qi nDVx)y. Since Qy n DVxy C(Qn DV)y and since any

element of Qy can be expressed uniquely as wy where weQ, the preceding

conclusion implies that there exists we(Qj n DV) — DV\ such that gy wy.

Since this holds for every Qx as above we get that there exist sequences {w,}

in DV - DVi and {g,} in DV\ such that w7 / and w{y gty for all L For

each i, w,- can be expressed uniquely as Piü2{ti) where pteDV\ and /,-eR; we

see that tt ^ 0 for every / and tt-+ 0.

Let A {geDV\gy y). Then A is a discrete subgroup of DV and

therefore by Lemma 5 it is either contained in V or it is a cyclic subgroup

generated by an element of the form vdv~l where veV and deD. It is easy

to see that for ueV and deD,0 is an isolated point in the subset

{£ eRlDFi^CO contains vdjv~x for some je Z} of R. For all i we have

gjlPiü2(ti) g[lWjE A with gjlpi eDVU tj 3= 0 and tt -> 0 and hence the

preceding assertion implies that A is not generated by an element of the form
udv~l with ue V and deD. Hence A is contained in V. Thus gjxPiV2(ti) e V
and therefore gjlPiE V n (DVX) V{ for all i. Since gjlPiU2(tj)y y, this

yields that v2{tj)yeY for all i. Hence v2(ti)Y v2(ti)Vly u2(ti)Vly
V1u2(Ji)y V\ Y, Y namely Y is v2(ft) invariant, for all i. Since {z1,} is

contained in R - {0} and 0 the subgroup generated by {|/ 1,2, ...}
is dense in R. Hence the preceding assertion implies that v2(t) Y Y for all
t e R, namely V2 Y Y. In particular V2 Y is contained in X. This completes
the proof of the Proposition.

Like Proposition 7, our next proposition also uses, in the general case,

Theorem A.8 on the asymptotic behaviour of trajectories of unipotent one-

parameter subgroups of G on G/T. Also as in the case of that Proposition
the proof here goes through without the need for Theorem A.8 if a certain
set, namely HgT/T as in the statement, is assumed to be compact rather
than only closed. This observation has some relevance to what one can prove
about values of Q, without involving Theorem A.8; we shall amplify this later
(see Remark 1).

9. Proposition. Let geG and Q be the quadratic form on R3

defined by Q(p) Q0(gp) for all R3. Suppose that HgT/T is
closed. Then there exists c 1=0 suchthat cQ is a rational quadratic form.
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Proof. As before let S be the space of 3 x 3 symmetric matrices with real
entries. Let À (,g~lHg) n T and let F be the subspace defined by

F {g e S|'ôgô o for all ôeÀ}.

We see that o0 is the matrix of the quadratic form Q0 and hence tho0h o0

for all heH. Since gAg_1 C H, this implies tgo0geF. In particular Fis of
positive dimension. Let {Çl5 • • - L,k} be a basis of F, where k ^ 1 is the

dimension of F. Let W ^ Sk ^ S ® S ® - - - ® S (k copies) and let £ e W
be the element (^, • • •, £*). We define a map /: G/A -> W by f(xA)
— (1x — 1 x_ 1, • • • £,kx-1 ); it is easy to see that the map is well-defined
and continuous.

Let {u{t)} be a unipotent one-parameter group of matrices

contained in H. We assert that there exists a compact subset F of
HgT/T such that {t e R|u(t)gT eK} is an unbounded subset of R.

The assertion is obvious if HgT/T is compact. In the general case

it follows from Theorem A. 13 in the Appendix (known as Margulis'
lemma) and the assumption that HgT/T is a closed subset of G/T.
Since there is a canonical homeomorphism of HgT/T onto {g~xHg)/A given

by hgTi—> (g~lhg)A for all heH, the preceding assertion implies that there

exists a compact subset Kx of (g ~1 Hg)/A such that {t e R | g ~1 u (t)gA e Kx} is

unbounded; hence the set R : {teR|/(g-1w(OgA) e f (K\)} is also

unbounded. Since / is continuous and Kx is compact / (Fj) is compact. On

the other hand

tl—*/(g'1 u(t)gA)

is a polynomial map of R into W. Since R is unbounded and

/(Fi) is compact, the map must be a constant map. Thus f (g~lu(t)gA)

f (A) for all te R. Comparing the components we get that

tgtu{-t)tg-x^jg-lu(~t)g Çj for all j 1, • • - k and te R.

For each j 1, • • % k put r\j
1

g ~l g ~l. Then by the above observation,

for any unipotent one-parameter group of matrices {«(/)} contained in

H, we have rw(0h;w(0 rjy for all j 1, • • - k and te R. In particular this

holds for {i>i(0} an^ {^i(0} in place of {u(t)}. But it is easy to see that

for o eS the conditions tol(t)öüi(t) o and o imply that o is

a scalar multiple of o0. Since rj!, ••• r\k satisfy these conditions and are

linearly independent, this implies that k 1 and co0 for some c F 0.

Hence Fis the one-dimensional subspace spanned by £,i 1 go0g.
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Since AC T SL(3, Z) we see that F is the subspace defined by a system

of linear equations with integer coefficients; the entries of o are the variables.

As F F {0}, the system of equations has a nonzero solution and hence, the

coefficients being integers implies that there exists a nonzero solution in

integers. Thus F contains a nonzero integral matrix. Since tgo0g spans F we

get that there exists c ^ 0 such that ctgo0g is an integral matrix. Since

Q(JP) Qo(gp) for all p e R3, {gOog is the matrix of the quadratic form Q and

therefore the preceding assertion implies that cQ is a rational quadratic form.
This proves the proposition.

The above argument to deduce from the one dimensionality of F the

rationality of a multiple of 1go0g, was pointed out by A. Borel. Our earlier

argument involved Galois automorphisms. While the two arguments are essentially

equivalent, the present form is evidently more suitable.
Before embarking on the proof of the theorem we also note the following

simple observation; it would be appropriate to formulate it for all R77, n^2.

10. Lemma. Let Q be a nonempty open subset of Rn, where n ^ 2,
such that for all weQ and t > 1,/weß. Then Q contains a primitive
integral element.

Proof. Since Q is a nonempty open subset of R" and n ^ 2 there exist

p, qeQ such that p and q are rational (that is, all their entries are rational),
linearly independent and tp + (1 - t)q e Q for all t e [0, 1]. By replacing them
by the multiples kp and kq where k is a suitable positive integer we may assume
that p, qe Zn. The condition on Q as in the hypothesis then implies further
that sp 4- tq e Q for all s, t ^ 0 such that s + t ^ 1.

There exists y eSL{n, Z), namely a nx n integral matrix with determinant

1, and a natural number m (namely the g.c.d. of the coordinates of p)
such that yp mex, ex, * • % en being the standard basis of R". (This follows
from [13] Ch. I, §3, Theorem 5, for instance). Let yq be expressed as

mxex + m2e2 + ••• + mnen, where mU''-,mne Z. Since p and q are
linearly independent so are yp and yq and hence there exists i ^ 2 such that
mt F 0. Let p0 be a positive prime number such that p0 ^ m{ and p0 does not
divide mh Let r p0ei + m2e2 + ••• + mnen {Po~mx)ex + yq. Then
as p0fmt, r is a primitive integral element and hence so is y ~lr. But y~lr
— J l(Po~mx)ex + q m l(po~mx)p + q. Since p0 — mx ^ 0, by our
remark above this shows that yheü. This proves the Lemma.

Proofof the Main Theorem. We begin by noting that it is enough to prove
the theorem for n 3; an elementary argument for this simple observation,
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well known to experts, may be found in the beginning of the proof of
Theorem 1 in [7] - we shall not repeat it here. We now consider the case of
n 3. Let Q be a nondegenerate indefinite quadratic form on R3. The
matrices of both Q and Q0 have to be equivalent (cogradient) to one of
d( — 1) or - d( — 1) (cf. [11], Ch. V, Theorem 6 or [21], § 12.5). Hence there
exists a nonsingular matrix p, say p Xg where XeR* and g e G, such that
either Q(p) Q0(ç>p) k2Qo(gp) for all pe R3 or Q(p) - Q0(pp)

- k2Q0(gp) for all p e R3. In view of this, in proving the theorem, without
loss of generality we may assume Q to be the quadratic form defined by
Q(P) Qo(gp) for all pe R3, where g eG.

Now let p be the set of primitive integral vectors; viz. primitive elements

in Z3. We see that T P P T being the subgroup SL(3, Z) as before. Now

G(P) Qo(gP) Qo(gTp) QoiHgTp)

Hence by continuity Q0(HgT p) is contained in Q(p). Since Q is not a

multiple of a rational quadratic form, by Proposition 9, HgT/T is not
closed. Hence by Proposition 8 there exists ye HgT/T such that either

V2 y or V2 y is contained in HgT/T. Suppose that F2+ y is contained
in HgT/T. Let g$eG be such that y g0r« Then L2+ £0 is contained in

HgT. Hence Q0(V^ g0p) C Qo(HgTp) C Q(p). We shall show that Q0(V^ g0p)
R. Let seR be given and let s0 min {5, 0}. Consider the set

Q {p eR3|Qo(go/0 < so and Qi(goP) > 0}. Then Q satisfies the condition
of Lemma 10 and therefore contains a primitive integral element. Thus
there exists pep such that Qo(gop) < s0 ^ s and Q\(goP) > 0.

Let t » (s~Qo(goP))/2Qi(goP)-Then t> and, by (iii),
Qo(goP)+ 2tQt(g0p) =jS. Thus tegofFj This shows that

Qo( v; gc, p R. Hence Q( p R or equivalently Q( p) is dense in R, as

desired. A similar argument works if V^y is contained in HgT/T. This

proves the theorem.

Remark 1. It was noted earlier that while in the general case the proofs
of Propositions 7 and 9 (and hence also Proposition 8 as it depends on

Proposition 7) involve Theorem A.8, one can do without the latter under

certain compactness conditions in each case. Specifically, Propositions 7 and 9

were proved without recourse to Theorem A.8 when X and HgT/T as in their

respective statements are compact. Also proving Proposition 8 when the set

X as in its statement is compact involves Proposition 7 only for compact
subsets. We shall refer to the particular cases of Propositions 7, 8 and 9 with
the appropriate set as above assumed to be compact, as the restricted versions
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of the respective propositions. It may be of some interest to note that one can

indeed deduce the following result on values of quadratic forms just from these

restricted versions. "Let Q be a nondegenerate indefinite quadratic form on

R3, n > 3, which is not a multiple of a rational quadratic form (just as in the

Main Theorem). Then for any s > 0 there exists a pe Z" — {0} such that
I Q(p) I < s". We see this as follows. Firstly, as in the case of the main theorem,

this needs to be proved only for n 3 and Q defined by Q(p) Qoigp) for
all p e R3, where g e G is fixed. Since Q is not a multiple of a rational form,
the restricted version of Proposition 9 implies that HgT/T is not compact.

Therefore either HgT/T is'compact and HgT/T is not closed or HgT/T is

noncompact. If the former condition holds then the restricted version of
Proposition 8 implies that there exists ye HgT/T such that either F2+ y or V^y
is contained HgT/T and then the proof can be completed just like that of the

Main theorem. Now suppose that HgT/T is noncompact. Then by the Mahler
criterion (cf. [13] Ch. 3, Theorem 2 or [2] Ch. V - see also the following
Appendix for some details) there exist sequences {hi} in H and {/?,} in
Z3 - {0} such that higpi 0. Then Q(pt) Q0(gPi) Qo(higPi) 0 and

hence, given 8 > 0 there exists p pl for some i such that | Q(p) | < s ; this

proves the claim.
The above assertion which is the same as Theorem 1 of [20] proves the

Oppenheim conjecture for the quadratic forms for which there does not exist

any pe Z" - {0} such that Q{p) 0. For the general case some more work
is needed (cf. Theorem T in [20]). Using Theorem A.8 not only takes care of
this difficulty but enables one to get a primitive integral solution.

Remark 2. The study of orbits of unipotent one-parameter subgroups in
[7] and [8] also leads to some more results on values of quadratic forms, than
the Main theorem here. One of these, involving the quadratic form and also
the corresponding bilinear form has already been mentioned in the introduction

(see (ii)). In [8] we also prove the following. Let Q and Q' be two quadratic
forms on R3 such that no nonzero linear combination of Q and Q' is a
rational quadratic form. Suppose that there exists a basis fu f2, /3 of R3
such that

Qiplf 1 + Plf2+ Plf3) r2p\Pï—p\
and Q'(Pif \ + Pif2 + Pif3) p\

for.all pup2,Pi eR. Then for any a, beR, b > 0, and s > 0 there exists a
primitive integral point p such that

IQ(p) — a\< z and \Q'(p)-b\<z.
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As yet it does not seem that these results would be accessible by elementary
arguments.

The study of flows on homogeneous spaces leads also to various other
number theoretic results, which we shall not go into here. We refer the reader
to the survey articles [4] and [19] for some of the ideas involved.

Appendix

Trajectories of unipotent flows and minimal sets

We prove here a 'qualitative version' of Theorem 1.1 of [7] and use it to
deduce the general case of Proposition 7. We also deduce a result used in the

proof of Proposition 9. The proof of the 'qualitative version', namely
Theorem A.l below is in the same spirit at that of Theorem 2.1 of [7] and the
earlier related results in [16], [3] and [5]. But the exposition here is simpler,
especially on account of the weaker formulation.

We begin by setting up some notation. As before we denote by Rn, n ^ 2,

the ^-dimensional vector space of n-rowed column vectors with entries in R,
by ex, • • •, en the standard basis of R" and by Zn the subgroup generated by
{^i >

* * *, en}. By a lattice in R" we mean a subgroup generated by n linearly
independent elements in Rn; a discrete subgroup A of R" is a lattice if and

only if RVÀ is compact. (Cf. [13], Ch. I, §3, Theorem 2.)

We equip R" with the usual inner product < > with ex, • • •, en as an

orthonormal basis, and the corresponding norm || • || This induces an inner

product on each (vector) subspace of R". For any subgroup A of R" we

denote by AR the subspace of R spanned by A. Let A be a discrete subgroup
of RC Then there exists a basis Xj, • • •, xr, where r dimension of ÀR, such

that A is generated by {xu • • • ,xr) (cf. [13], Ch. I, §3, Theorem 2). Let t be

a linear transformation of ÄR such that t _1Xi, • • •, % ~lxr is an orthonormal
basis of AR, with respect to the induced inner product. The number | det t | is

independent of the choice of the basis xXi • • v, xr and the linear transformation

t, so long as the above conditions are satisfied; the number is called the

determinant of A and is denoted by d(A).
As usual let SL(n, R) be the group ofnxn matrices with entries in R and

determinant 1. By a unipotent one-parameter subgroup of SL(n, R) we mean

a unipotent one-parameter group of n x n matrices (-they are clearly contained

in SL(n, R).) We now state the theorem on orbits of lattices under unipotent
one-parameter subgroups, needed in the proofs of Propositions 7 and 9.
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A.l. Theorem. Let 2 be fixed. Then for o > 0 there exists a

8 > 0 such that for any lattice A in Rn, any unipotent one-parameter

subgroup {w,},6R of SL{n, R) and any T^O either there exists s^T
such that I usx || ^ S for all xeA - {0} or there exists a nonzero

(discrete) subgroup A of A such that d(ut A) < a for all t e [0, T\.

We introduce some more notation and prove some preliminary results

before going to the proof of the theorem. For any lattice A in R" we denote

by // (A) the set of all nonzero subgroups of the form A n Ws where W is

a (vector) subspace of R"; such a subgroup is called a complete subgroup of
A. For each lattice A we equip -S^(A) with the partial order given by the

inclusion relation on subgroups and for any totally ordered subset S of S/\K)
define

if (S, A) {A e (A) - S | S u {A} is a totally ordered subset} ;

the subgroups belonging to if (SA) are said to be compatible with S.

We next observe some properties of the function d on class of discrete

subgroups of RC It is easy to see that if À is a discrete subgroup generated
by r linearly independent elements X\, • • •, xr then the determinant of the

r x r matrix (< xi9 Xj>) (with < Xj, Xj > in the i th row and j th column) is

d2{A). Under the same conditions, d2(A) also coincides with the sum of
squares of the determinants of all r x r minors of the n x r matrix with
Xi, - - • ,xr as its columns. This may be verified either directly or using
exterior products (if the reader would wish to save trouble, it may be
mentioned here that Propositions 7 and 9 involve the contents of the Appendix
and in particular these observations only for n 3). These characterisations
enable us to deduce various properties of d needed in the sequel.

A.2. Lemma, a) For any lattice A in R and any p > 0 the set
{A e ff (A) I d (A) < p} is finite.

b) Let A be a discrete subgroup of Rn. Let xeR" - AR and let A'
be the (discrete) subgroup generated by A and x. Then d(Af)
< v 1 d(A),

Proof, a) Clearly, for any nonsingular matrix g there exist constants a
and b such that for any discrete subgroup A, ad (A) ^ d(gA) < bd(A). Since

any lattice is of the form gZn for some nonsingular matrix g, this shows that
it is enough to prove a) for A Zn. If A is a subgroup of Zn generated by
r linearly independent elements xu-'9xr, then the determinants of all r x r
minors of the n x r matrix with columns -xi9 • • •, are integers. The condi-
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tion d(A) < p then implies, by one of the characterisations of d, that there

are only finitely many possibilities for the values of the determinants of the
minors. The finiteness assertion in the Lemma therefore follows from the fact
that if the corresponding r x r minors of two n x r matrices £, and r| have same
determinants then the columns of £ and rj span the same subspace of R".

ii) This is obvious, for instance, from the characterisation of d(A) in terms
of the determinants of r x r minors of the n x r matrix whose columns are

linearly independent and generate À.

A.3. Lemma. Let A be a nonzero discrete subgroup of R" and let

{ut} be a unipotent one-parameter subgroup of SL(n, R). Then d2(ut A)
is a polynomial in t of degree at most 2n(n-\). Further, d{utA) is

constant (that is, d(utA) d(A) for all te R) if and only if AR is

{ut}-invariant (that is utAR AR for all /eR).

Proof. If v is a n x n nilpotent matrix then by the Jordan canonical form
vn 0. This implies that for any unipotent one-parameter subgroup {ut} of
SL{n, R) and any xeR", the coordinates (entries) of utx are polynomials in
t of degree at most n - 1. Now let A be a discrete subgroup generated by r
linearly independent elements xx, * • •, xr. Then d2(u( A) is the determinant of
the rxr matrix (< utXi, utXj >). By the preceding remark each entry

<utXi,utXj> is a polynomial in t of degree at most 2(n-l). Hence the

determinant is a polynomial of degree at most 2n(n-l).
Next let A be a discrete subgroup such that d(utA) d(A) for all /eR.

Let xu *'• - ,xr be linearly independent elements generating A. The determinant

of each rxr minor of the n x r matrix with columns utxx, • • •, utxr is

a polynomial in t. Since sum of squares of these is d2(ut A) d2{A) for all

/eR, it follows that each of them is constant. Thus for each /eR any rxr
minor of the n x r matrix with columns utxx, • • •, utxr has the same
determinant as the corresponding minor in the n X r matrix with columns

xu - - -, xr. This implies that for any t, utx{, • •, utxr span the same subspace

as X\, - • ',xr, or equivalently utAR AR. This proves the Lemma.

For any me N we denote by the set of all nonnegative polynomials
of degree at most m; 'nonnegative' refers to the values being nonnegative —

some of the coefficients could be negative. For the proof of Theorem 8 we

need the following simple properties of nonnegative polynomials.

A.4. Lemma, a) For any me N and X > 1 there exists s > 0 such

that the following holds: if Pe^m and there exists se[0, 1] such that
P(s) ^ 1 and P{1) < 8 then there exists te [1, X] such that P(t) 8.
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b) For any me N and (i > 1 there exist constants Si, s2 > 0 such

that the following holds: if P e x/m, P(s) ^ 1 for all 5 6 [0,1] and

P( 1) 1 then there exists i, 0 ^ ^ m, such that Si ^ P(t) ^ s2 for all

te [|i2/ + 1, p2/+2].

Proof. It can be seen that given an interval / of positive length
and a c > 0 there exists a constant M such that any P e ym such that

P(t) ^ c for all tel, has all the coefficients of absolute value at most M; in

particular, any sequence of polynomials bounded by c on / has a subsequence

converging to a polynomial in ffm. Now if a) does not hold there must exist

a sequence {PA} in such that Pk(t) - 0 uniformly on [l,X] but the

supremum of each Pk on [0, 1] is at least 1; this is impossible by the above

observation. To prove b) we first observe that existence of the upper bound

c2 follows from the bound on the coefficients as above, when we take

/ [0, 1] and c 1. Thus if b) does not hold there exists a sequence {PA} in
such that for each k, Pk(s) ^ 1 for all se[0, 1],PA(1) 1 and

inf {PA.(0ke [q2/ + I, q2/>2]}0 as &00, for each i 0, - • •, m; this is

impossible since the limit of any subsequence would be a nontrivial polynomial
in with at least m + 1 zeros.

For the rest of the argument we fix some constants as follows: Let ne N
and [i > 1 be arbitrary. Let m In2 and X > I be such that
(X-1) ^ (p - l)/ji2/" + 2. Let 0<a<l be such that condition a) as in
Lemma A.4 holds for s a2 with m and X as above and let 0 < ßj < 1 < ß2

be such that condition b) of Lemma A.4 holds for 81 ft] and e2 with
m and p as above.

A.5. Proposition. Let {uf be a unipotent one-parameter subgroup of
SL(n, R), A be a lattice in R" and S be a totally ordered subset of
y (A). Let i > 0 and T ^ 0 be such that for each O e F (S, A) there
exists a te [0, 7] such that d(u,&) ^ x. Then either d(uT<&) ^ ax for
all O g {S, A) or there exist a Ae f(S, A) and a T{ e [Tt (2 - p -1 )7]
such that the following conditions are satisfied:

i) xct(31 ^ d(u{À) ^ xaß2 for all t e [7~i, T+ p(Ti — 7~)]

ii) for each O e&(S, A) there exists te[T,Tx] such that
d(ut$>) ^ ax.

Proof. Let {O e y (S, A)|</(wrO) < ax}. If is empty then we
are through. Now suppose that j^is nonempty. By Lemma A.2 a) is finite;
say - {Oj, • • - OJ, where q ^ 1. For each j, 1 ^ j ^ q, we choose
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tjE [71 XT] as follows: Observe that d(uT®j) < ai and that there exists, by

hypothesis, a /e[0, T] such that d(utQ>j) ^ x. Hence applying Lemma

A.4, a) to the polynomial t\-^ d2(utT<!>j)/%2 we conclude that there exists a

tjE [71 XT] such that d(utjQ>j) — ax; taking the smallest such number we may
also assume tj to have the further property that d(utQ>j) ^ ax for all

te[T,tj].
Next let 1 ^ k ^ q be such that tj ^ tk for all 1 ^j^q. We

choose A <!>k. Then we have d(utA) ^ ax for all îe[T, tk] and

d(utk.A) » ax. Hence by Lemma A.4 b), applied to the polynomial
t \— d1(u{tk_T)t+T A)/a2x2, it follows that there exists an / such that 0 ^ i ^ m
and

(*) xaßi ^ d(utA) ^ xaß2 for all /e[71, T2]

where 71 T + |i2/+1(4 - T) and T2 T + [i2i+2(tk - T). Then

T+\i(Tx-T) r+ji2/+2(4-r) ^ r+ |Li2w+2(4-T)

^ r+ p2w+2(X-i)r ^ p7\
since / ^ m, tk e [71 AT] and (X-\) ^ (p - l)/p2w + 2. This shows that

Txe[T, (2-p-1)71]. Also (*) shows that condition i) as in the Proposition is

satisfied for A. Condition ii) is obvious from the construction; if O $ 3^then
d(uTO) ^ ax and if O e 3~, say O « where 1 ^ j ^ q, then we have

T ^ tj < tk ^ T\ and d(ut.q>j) ax, which verifies the condition for all

A). Hence the Proposition.

A.6. Corollary. Let {ut}, A, S, x > 0 and T ^ 0 as in Proposition

A.5. Let p be the cardinality of S. Then there exist a totally ordered

subset M of (A) containing S and a Re[T,\iT] such that the

following conditions are satisfied:

1) a("-/7)ßix < d{uRQ>) ^ aß2x for all O eM - S

2) d(uRO) ^ a{n~ph for all (M, A).

Proof. We proceed by induction on (n -p). If p n then S is a maximal

totally ordered subset (so fé (S1 A) is empty) and the desired assertion holds

for M S. We now assume the result for p + 1 in the place of p and consider

A, S, x and T as in the hypothesis. If d{uTQ>) ^ ax for O e Sf (S, A) then we

can choose M S and R — T. If not, then by Proposition A.5 there exist

Ae jf(S, A) and 71 e [71 (2-\i~x)T] such that xaßi ^ d(ut A) ^ xaß2 for all

te[Tx,T + p(71 - T)\ and for each e W(S, A) there exists a tE[T}Tx]
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such that d(ut<&) ^ ax. Put Ai uTA, Sx {wr0|0 A or <De£} and

Tj ax. Then A! is a lattice in R", Sx is a totally ordered subset of 5/ (Aj)
and the second part of the preceding conclusion implies that the hypothesis

of the corollary applies to A\, Si, tx and Tx — T in the place of A, S, x and

T respectively; we note that any T e S£ (Sx, Ax) is of the form

uTO, eSê(S, A). Hence by the induction hypothesis there exist a subset Mx

of y (AO containing Si and a Ri e [Tj — 7*, fx(T'1 — 71)] such that

a^-^DßiXi ^ d(uRlAx) ^ aß2Xi for all AxeMx-Sx and d(uRlO)

^ a{n~p~l)xx for all O e Sf (Mx, Ai). Put M {u-TAx | Aj eMj} and

R T + Rx. Then T ^ R ^ T + [i(Tx - T) ^ \xT, since Txe[T, (2 - jli -1 7^].

Observe that M - S {0|0 A or ut®eMx - Si}. The choice of A,

using Proposition A.5 shows that Condition 1) in the conclusion of the

Corollary holds for <t> A. If utQ>eMx — Sx then we have d(uRO)

d(uRluT®) e [a^-^-^ßjXi,aß2xi] C [a(n-^ßiX, aß2x], since Xj ax and

a < 1. Thus Condition 1) holds for all O e M - S. For O e $£ {M, A) we have

d(uR<ï>) d(uRxuTO) ^ a(n~p'lhx a("_/7)x, since utO e (M, Ax) and

Xi ax; this shows that Condition 2) is also satisfied. This proves the

Corollary.

Proof of Theorem A.l. Let n and o be as in the hypothesis of the

theorem. Let p > 1 be chosen arbitrarily and let a, ßi and ß2 be the constants
chosen ahead of Proposition A.5, depending on n and p; recall that 0 < a < 1

and 0 < ßi < 1 < ß2. Let t min{o, o-1} and let 8 a"ßiß2-1x.
Now let {ut} be any unipotent one-parameter subgroup of SL(n, R), A be

any lattice in R" and let T ^ 0 be such that there does not exist any nonzero
subgroup A of A such that d(ut A) < g for all t e [0, T]. This implies that for
all Oey (A) there exists x e [0, T] such that d(utQ>) ^ g ^ x. In other
words, the condition in the Corollary holds if we choose 5 to be the empty
subset. Hence by the Corollay there exists a totally ordered subset M of 5^ (A)
and a R e [T, p71 such that a"ßjX ^ d(uR<S>) ^ aß2x ^ ß2 for all <3> eM and
d(uR&) ^ anx for all O e (M, A). Now let x be any primitive element in A
and let A be the subgroup generated by v. Then Ae Sf (A). If jc is contained
in every element of M then we see that AeMu^ (M, A) and hence
I uRx J d(uR A) ^ a"ßix ^ 8. Now suppose that x is not contained in
some elements of M and let O be the largest element of M not containing x.
Let T be the smallest complete subgroup of A (element of M (A)) containing
O and v. Then we see that T eM u (M, A), as every element of M
containing O as a proper subgroup also contains v. Now, by Lemma A.2 b)
d(uR T) ^ J uRx 1 d(uR<&). But since OeM and T eM u (M, A) we have
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d(uRQ>) ^ ß2 and d(u^ a^u. Thus we get that || uRx || ^ a"ßiß2_1T
ô. Hence || uRx || ^ ô for all primitive x in A and hence the same holds for

all xe A - {0}, thus proving the Theorem.

A.7. Corollary. Given o> 0 there exists a neighbourhood Q of 0

in R" such that for any unipotent one-parameter subgroup {ut} in

SL(n, R) and any lattice A in R 7 one of the following holds:

1) {/ ^ 0| ut A n Q «= (0)} is an unbounded subset of R.

2) there exists a nonzero subgroup A of A such that the subspace spanned
by A is {ut}-invariant and d(utA) d(A) < o for all feR.

Proof. Let ô > 0 be such that Theorem A.l holds for the given o and

let Q — {xeRw| x || < ô}. Let {ut} and A be as in the hypothesis and

suppose that Condition 1) does not hold. Then by Theorem A.l there exists

a nonzero subgroup A of A such that d(ut A) < o for all t > 0. Since d2(ut A)
is a polynomial in t, this implies that d(ut A) is constant; i.e.

d(ut A) d(A) < o for all te R. By Lemma A.3, this implies that the

subspace AR spanned by A is {wj-invariant. This proves the corollary.
We next relate Theorem A.l and Corollary A.l to behaviour of orbits of

unipotent one-parameter groups of SL(n, R)/SL(n, Z), where SL(n, Z) is the

subgroup consisting of integral matrices. This involves the Mahler criterion
(sometimes also called Mahler's selection theorem) recalled below. The reader

may refer [2], [13] or [24] depending on the background; one could also consult
Mahlers original paper [15].

Let be the set of all lattices in R". On one defines a topology by
prescribing that for each basis xu • - - ,xn of R" and s > 0 the set

Q(xu —',xn,z)> of all lattices A such that A is generated by a basis

yu * ' ',yn of R" satisfying [ xt - yt || < s for all i, be open. This indeed

defines a first countable Hausdorff topology on Szfn. The Mahler criterion
asserts that if {A/} is a sequence in and there exist c and ô such that for
all i, d(Ai) < c and || x || ^ ô for all xe A, - {0} then {A/} has a convergent
subsequence. The criterion implies in particular that is locally compact.

Now let be the subset of consisting of all lattices of
determinant 1. Then °^n is a closed subset, as d is continuous, and in particular
it is locally compact. For each geSL(n,R) and Ae°^n,gAe0^n and the

map (g, A) I—> gA defines a continuous action of SL(n, R) on It is easy to
see that the action is transitive and that SL(n, Z) is the isotropy subgroup of
the lattice Zn, under the action. Hence SL(n, R)/SL(n, Z), equipped with the

quotient topology, is homeomorphic to <%n via the correspondence
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gSL(n, Z) i— gZ" for g eSL(n,R)(cf. [9], Ch. V, §1, Theorem 8 or [10],

(1.6.1)). The Mahler criterion therefore implies that for any 5 > 0 the set

{,gSL{n,Z)|I gpI> 6 for all Z" - {0}}

is a compact subset of SL(n, R )/SL(n,Z).Theorem A.l and Corollary A.7

therefore imply the following

A.8. Theorem. Let n^2 be fixed. Then for any o > 0 there exists

a compact subset K of SL(n,R)/SL(n,Z) such that for any

x gSL(n, Z) e SL(ns R)/SL(n, Z), where geG, and any unipotent one-

parameter subgroup {ut} of SL(n, R) the following conditions are

satisfied:

a) for any T ^ 0 either there exists a t ^ T such that utx eK or there

exists a nonzero discrete subgroup À of Zn such that d(utgA) < a

for all ^g[0, T],

b) if {t ^ 0|UfXeK} is bounded then there exists a nonzero subgroup A

of Zn such that the subspace spanned by A is {g~lutg}-invariant
and d{utgA) d(gA) < o for all te R.

We next deduce the general case of Proposition 7, which we had deferred

until proving the above theorem. We follow the notation G, T, V{, DV\ etc.,

as in the main part. The diagonal matrix diag (X, 1, X _1) where X e R* will be

denoted by a(X), rather than d(X), to avoid confusion with d(A) for discrete

subgroups A. Also as before we denote by e{,e2, e3 the standard basis of R3.

The subspaces spanned by {e{} and {e{, e2} are denoted by Wx and W2

respectively.
We first prove part b) of Proposition 7, namely the following:

A.9. Proposition. There are no closed DVx-orbits. Any nonempty closed

DV\-invariant subset contains a minimal nonempty closed DVx-invariant
subset.

Proof. Let K be a compact subset of G/T such that the contention of
Theorem A.8 holds for (n 3 and) o 1. We first show that for any
x gT e G/T, where geG, there exists > 0 such that for all
X ^ X0,{t ^ 0\ux(t)a(X)xeK} is unbounded. Let geG be given and let
x gT. Define

X0 max {1, \/d{gZ3 n Wx), l/t/(gZ3 n W2)}
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Let X ^ X0 be arbitrary. Let À be a nonzero discrete subgroup Z3 such that
ÀR is a proper subspace invariant under the action of g ~1 a(X) ~1 Vx a(X)g

g~lV\g- Then gAR is a nonzero proper Vx-invariant subspace. A simple

computation shows that Wx and W2 are the only such subspaces. Hence

gÀR Wx or W2. Both Wx and W2 are ö(X)-invariant and the determinant of
the restriction of a(X) to either subspace is X. Hence the preceding observation

implies that d(a(X)gA) Xd(gA). Since gA is contained in either gZ3 n Wx

or gZ3 n W2, by the choice of X0 we get that d(gA) ^ Xq1 Hence

d(a{X)gA) > X/X0 ^ 1 g. In view of this verification for all A as above,
Theorem A.8 b) implies that {t ^ Ol^ (t)a(X)x eK) is unbounded as claimed;
note that as g 1, the subgroup A in Theorem A.8 b) spans a proper
subspace.

We now deduce the assertions as in the proposition. If possible let xe G/T
be such that DVxx is a closed orbit in G/T. Let O - {geG|gx x). Then
O is a discrete subgroup of DVX and the map 0: DVX /<D - DVxx defined by
0(gO) gx for all geDVx is a homeomorphism (cf. [9], Ch. V, §1,
Theorem 8 or [10], (1.6.1)). By Lemma 6 O is either contained in Vx or it is

a cyclic subgroup generated by an element of the form vdu~l where deD and

veVx. Suppose the latter possibility holds. Then we see that for each

X > 0, Vxa(X)<& is closed and 11— ux(t)a(X)<& defines a homeomorphism of R
onto Lia(X)0/0. Since 0 is a homeomorphism, this implies that for each
X > 0, Vxa(X)x is closed and z1!— ux(t)a(X)x is a homeomorphism of R onto
Vxa(X)x. But, by our observation above, there exists X0 such that for
X ^ X0i {t ^ 0|vx(t)a(X)xeK) is unbounded. This is a contradiction since by
the preceding observation it implies that {vx (t)a(X)x\t > 0} n K is a closed

noncompact subset of K. Now suppose is contained in Vx. Let {X/} be a

sequence of positive numbers such that X,- oo. Then we see that as O C Vx,

for any sequence {6} in R, {a(X,/)t>i (^,-)0} has no convergent subsequence in
DVX/O. Since 0 is a homeomorphism this implies that for any sequence {6}
in R, {a(Xj)ux(ti)x} has no convergent subsequence. But this is a contradiction
since K is compact and for all large X there exists t ^ 0 such that ux (t)a(X)x

a(X) (ux (X _1 t))x eK. Hence there are no closed DVX-orbits.

Now let X be any nonempty closed DVX -invariant subset of G/T. We see

that if {Xi)ieI is a totally ordered family (with respect to inclusion) of
nonempty closed DVX -invariant subsets of X (indexed by a set 7), then n/G/X{
is nonempty as it contains nieI(Xi n K) and by the above observation each

Xj n K is a nonempty compact subset. Hence by Zorn's lemma the class of
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all nonempty closed DVX-invariant subsets of Xhas a minimal element. This

proves the Proposition.
To prove the other part of Proposition 7 we need the following Lemmas.

A. 10. Lemma. Let q 1 or 2 and for any p > 0 let

Mq> P) {&r|g<eG, gZ3 n Wq spans Wq and d{gZ3 n Wq) p}

Then A(q, p) is a closed subset of G/T.

Proof. It is straightforward to verify that any subset as in the statement

can be expressed as QqaY/Y for some diagonal matrix a, Q\ and Q2 being the

subgroups defined by

Qi {geGlgei e{} and Q2 {geG\f ge3 e3}

Now consider the natural action of G on R3. We see that Yet is a discrete

subset of R3. Hence so is Yse{ for any seR. Let b be a diagonal matrix.
Then bex sei for some seR and hence Ybex is a closed subset of R3. The

continuity of the action and the fact that Q{ is the subgroup consisting of all
elements fixing ex now implies that YbQx is a closed subset of G, for any
diagonal matrix b. Hence so is QxaY (Ya~lQx _1, for any diagonal matrix
a. This proves the case of the Lemma with q 1. The case of q 2 follows
from a similar argument with the contragradient action, defined by
(&P)h~+tg~lP for allpeR3, in the place of the natural action, and e3 in the
place of e\.

A.ll. Lemma. Let Z be a locally compact space and let {(p,}^/? be a

one-parameter group of homeomorphisms of Z acting continuously on Z.
Suppose that there exists a compact subset K of Z such that for each

zeZ, the sets {t ^ 01 g>tz e K} and {f < 01 g>tz e K} are unbounded. Then
Z is compact.

Proof. Let q> (pi. Replacing K by the larger compact set
{(psz\ -1 ^ s ^ 1, zeK) if necessary, we may assume that for each

zeZf{ke1H\^kzeK} and {k e N|cp ~kz eK) are unbounded subsets of N.
Let K{ be a_ compact neighbourhood of K and let Q Z - Kx. Let
B n J qQ^'Q. Then (p JB CBCQCZ — K for all yeN and hence the
condition on K implies that B is empty. Hence q>B is empty. Since K{ is compact

this implies that there exists me N such that n l cpz'Q is contained in Q.
Then r\J=0g*JQ, nj1=lcp^'Q E say. Then we see that g>E C E and hence
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cpjE C E for ally e N. Since E C Q C Z - K, the condition on K implies that
E is empty. Hence Z uym=1qy(Z-Q), which is compact.

Part a) of Proposition 7 now follows from the following Proposition and
the earlier observation for compact invariant sets.

A. 12. Proposition. Any nonempty closed Vx-invariant subset of G/T
contains a compact nonempty Vx-invariant subset.

Proof. Let A be a nonempty closed ^-invariant subset of G/T. For
<7=1,2 and any p > 0 let A(q, p) denote the closed subset of G/T as in
Lemma A. 10. In proving the Proposition, by replacing A by a smaller

(nonempty) subset if necessary, we may assume that for each q 1,2 and

p > 0, either X n A(q} p) 0 or X C A(q, p); note that the sets A(q, p) are

Li-invariant and that for each q the sets {A{q, p)} p > o are mutually disjoint.
Now let o ^ 1 be such that if X is contained in A(q, p) for some q 1 or 2

and p > 0 then o ^ p. Let Abe a compact subset of G/T such that the contention

of Theorem A.8 holds for this o. We shall show that for each xeX the

sets {t ^ 0\üi(t)x e K} and {t ^ 0\ux(t)x e K} are unbounded; by
Lemma A. 11 this implies that X (rather the replaced set) is compact, thus

proving the proposition. Suppose for some xeX, say x gT where g e G, one
of the sets as above is bounded. Then by Theorem A.8, applied to either

{i>i(0} or {6*1 — t)} in the place of {ut} and x as above, it follows that there
exists a nonzero subgroup A of Z" such that ÀR is g~lVxg-invariant and

<^(Ti(0&A) d(gA) < o for all /eR. Since o ^ 1 (as in the proof of
Proposition A.7) we see that gAR Wx or W2. This implies that

x gT eX n A{q, p), where q 1 or 2 and p is the determinant of the complete

subgroup of A containing gA and spanning the same subspace. By the

assumption on X we now get that X C A(q, p). By our choice of o we then
have o ^ p. But this is a contradiction since p ^ d(gA) < o. Hence the sets

as above are unbounded and thus the proof is complete.
As noted earlier Propositions A. 12 and A.9 yield parts a) and b) of Proposition

7, which thus stands proved. We next note the following variation of
Theorem A.8, first proved by Margulis [16], which was used in the proof of
Proposition 9.

A. 13. Theorem. Let n ^ 2 be fixed. Let {ut} be a unipotent one-

parameter subgroup of SL(n,JT) and let x e SL(n, R)/SL(n, Z). Then there

exists a compact subset K of SL{n, R)/SL(n, Z) such that

{t ^ 0|utxeK] is an unbounded subset of R.
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Proof. Let geG such that x gSL(n, Z) and let A - gZn. In view of

Lemma A.2 a) there exists o > 0 such that d(A) > a for all subgroups A of

A. Hence by Theorem A.l there exists 5 > 0 such that for any T ^ 0 there

exists a s ^ T for which || us%|| >6 for all E,eA - {0}. Let

K { hSL(n,Z)11 hpJ ^ ô for all peZ"- {0}}. Then by the Mahler

criterion, recalled earlier, Kisa compact subset of SL{n, R Z). From

the choices it is clear that {5 ^ 0| usxeK)isan unbounded subset. This

proves the theorem.
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