8. GAUSS'S REDUCTION PROCESS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 36 (1990)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
(ii) When $f=p$ (prime) and p does not divide a, we set $I_{1}=I$. If p divides a, we take for I the ideal $a_{1}\left[1, \phi_{1}\right]$ following I in its period. In this case, as $p \mid a$, from $p^{2} D=b_{1}^{2}+4 a a_{1}$, we see that $p \mid b_{1}$ and so, as $\operatorname{GCD}\left(a_{1}, b_{1}, a\right)=1$ we see that p does not divide a_{1}. Then, by (2.12), we have $I_{1}=\rho I$ with $\rho=\frac{a_{1}}{a} \phi_{1}$. Now, by Proposition $5, \phi_{1}=\frac{b_{1}+\sqrt{D^{\prime}}}{2 a_{1}}$ is reduced, so that $1 \leqslant b_{1}<\sqrt{D^{\prime}}$, and

$$
\begin{equation*}
1 \leqslant a_{1}<\sqrt{D^{\prime}}, \tag{7.5}
\end{equation*}
$$

giving

$$
\begin{equation*}
1 \leqslant \rho<\sqrt{D^{\prime}} \tag{7.6}
\end{equation*}
$$

The rest of the proof follows exactly as in the proof of (i) using (7.5) (resp. (7.6)) in place of (7.3) (resp. (7.4)).

8. GAUSS'S REDUCTION PROCESS

Definition 14. (Half-reduced) A representation $\{a, b\}$ of an ideal I is said to be half-reduced if

$$
\begin{equation*}
0<\frac{-b+\sqrt{D}}{2|c|}<1 \tag{8.1}
\end{equation*}
$$

where $c=\left(D-b^{2}\right) \mid 4 a$.
An ideal I is called half-reduced if there exists a half-reduced representation of I.

Clearly, if $\{a, b\}$ is half-reduced, then $b<\sqrt{D}$ and $\{-a, b\}$ is half-reduced.

Lemma 7. Let I be a primitive ideal of O_{D}. To each representation $\{a, b\}$ of I corresponds a unique integer q such that the q-neighbour representation $\left\{a^{\prime}, b^{\prime}\right\}$ is half-reduced. The integer b^{\prime} and the ideal $I^{\prime}=\left[a^{\prime}, \frac{b^{\prime}+\sqrt{D}}{2}\right]$ are determined by I. The value of q is

$$
\begin{equation*}
q=\frac{a}{|a|}\left[\frac{b+\sqrt{D}}{2|a|}\right] . \tag{8.2}
\end{equation*}
$$

The representation $\left\{a^{\prime}, b^{\prime}\right\}$ and the ideal I^{\prime} are the Gauss neighbour of the representation $\{a, b\}$ and of the ideal I respectively, so that

$$
\{a, b\} \xrightarrow{G}\left\{a^{\prime}, b^{\prime}\right\} .
$$

Proof. As $c^{\prime}=\frac{\left(D-b^{\prime 2}\right)}{4 a^{\prime}}=a$ (by (2.10)), the q-neighbour representation $\left\{a^{\prime}, b^{\prime}\right\}$ of $\{a, b\}$ is half-reduced if

$$
0<\frac{-b^{\prime}+\sqrt{D}}{2|a|}<1
$$

that is, by (2.10), if $0<\frac{b+\sqrt{D}}{2|a|}-\frac{a}{|a|} q<1$, giving $q=\frac{a}{|a|}\left[\frac{b+\sqrt{D}}{2|a|}\right]$, which shows that q and $\left\{a^{\prime}, b^{\prime}\right\}$ are determined by $\{a, b\}$. Let $\{ \pm a, b+2 K|a|\}=\left\{a_{1}, b_{1}\right\}$ be another representation of I giving rise to a half-reduced representation, say $\left\{a_{1}^{\prime}, b_{1}^{\prime}\right\}$. As $b_{1}^{\prime} \equiv-b_{1} \equiv-b \equiv b^{\prime}(\bmod 2|a|)$ and $\left|a_{1}\right|=|a|$, we see from the inequalities

$$
0<\frac{\sqrt{D}-b^{\prime}}{2|a|}<1 \quad \text { and } \quad 0<\frac{\sqrt{D}-b_{1}^{\prime}}{2\left|a_{1}\right|}<1
$$

that $b_{1}^{\prime}=b^{\prime}$. Hence, as $|a|=\left|a_{1}\right|$ and $b^{\prime}=b_{1}^{\prime}$, from $D=b^{\prime 2}+4 a a^{\prime}$ $=b_{1}^{\prime 2}+4 a_{1} a_{1}^{\prime}$, we see that $\left|a^{\prime}\right|=\left|a_{1}^{\prime}\right|$. This shows that $I_{1}^{\prime}=I$, which completes the proof of Lemma 7 .

Proposition 11. Let $\{a, b\}$ be a half-reduced representation of a halfreduced ideal I. Let $\{a, b\} \xrightarrow{G}\left\{a^{\prime}, b^{\prime}\right\}$ and set $I^{\prime}=\left[a^{\prime}, \frac{b^{\prime}+\sqrt{D}}{2}\right]$. We have
(i) if $b<-\sqrt{\bar{D}}$ then $b^{\prime}>b+2 \sqrt{D}$,
(ii) if $b>-\sqrt{D}$ then I^{\prime} is reduced.
(iii) if I is reduced, then I^{\prime} is reduced, and moreover if $\{a, b\}$ is the representation of I such that $a>0$ and $\phi=\frac{b+\sqrt{D}}{2 a}$ is reduced, then the Lagrange neighbour and the Gauss neighbour are the same.

Proof. For any representation $\{a, b\}$ of any primitive ideal, we have

$$
\begin{equation*}
\left|\frac{\sqrt{D}-b}{2 c}\right|\left|\frac{\sqrt{D}+b}{2 a}\right|=1 . \tag{8.3}
\end{equation*}
$$

Now take $\{a, b\}$ to be a half-reduced representation of the half-reduced ideal I so that $0<\frac{-b+\sqrt{D}}{2|c|}<1$, where $c=\left(D-b^{2}\right) / 4 a$.
(i) Suppose that $b<-\sqrt{D}$. Then we have $b^{2}-D=4|a||c|$ so that (8.3) becomes $\left(\frac{\sqrt{D}-b}{2|c|}\right)\left(\frac{-b-\sqrt{D}}{2|a|}\right)=1$. As $0<\frac{-b+\sqrt{D}}{2|c|}<1$, we see that $\frac{-b-\sqrt{D}}{2|a|}>1$. But, as $\left\{a^{\prime}, b^{\prime}\right\}$ is also half-reduced, we have $\frac{-b^{\prime}+\sqrt{D}}{2|a|}<1$, so that $-b^{\prime}+\sqrt{D}<2|a|<-b-\sqrt{D}$, proving that $b^{\prime}>b+2 \sqrt{D}$.
(ii) Suppose that $b>-\sqrt{D}$. Then, we have $|b|<\sqrt{D}$, and (8.3) can be written

$$
\left(\frac{\sqrt{D}-b}{2|c|}\right)\left(\frac{\sqrt{D}+b}{2|a|}\right)=1
$$

showing that $\frac{\sqrt{D}+b}{2|a|}>1$. Or the other hand, as $\left\{a^{\prime}, b^{\prime}\right\}$ is half-reduced, we have $0<\frac{\sqrt{D}-b^{\prime}}{2|a|}<1$, that is $0<\frac{\sqrt{D}+b}{2|a|}-\frac{a}{|a|} q<1$, so that

$$
\frac{a}{|a|} q=\left[\frac{\sqrt{D}+b}{2|a|}\right] \geqslant 1 .
$$

Hence we obtain

$$
\sqrt{D}+b^{\prime}=\sqrt{D}-b+2 a q=(\sqrt{D}-b)+2|a|\left(\frac{a q}{|a|}\right)>2|a|
$$

which, together with the inequalities $0<\frac{\sqrt{D}-b^{\prime}}{2|a|}<1$, shows that ϕ^{\prime} is reduced if $a>0$ and $-\phi^{\prime}$ is reduced if $a<0$, proving that I^{\prime} is reduced. (iii) We suppose that I is reduced and choose the representation $\{a, b\}$ of I with $a>0$ and $\phi=\frac{b+\sqrt{D}}{2 a}$ reduced. As ϕ is half-reduced and $b>-\sqrt{D}$ from (ii) we see that I^{\prime} is reduced. Moreover, the integer q used to obtain both the Lagrange neighbour and the Gauss neighbour of $\{a, b\}$ is [$\phi]$. This shows that the two neighbours of $\{a, b\}$ are the same and concludes the proof of Proposition 11.

Definition 15. (Gauss's reduction process ([1]: §§ 183-185)) We start with
a primitive ideal I_{0} of O_{D} and a representation $\{a, b\}$ of I_{0}, and define the sequence of representations $\left\{a_{n}, b_{n}\right\}$ of the primitive ideals I_{n} by

$$
\left\{a_{n}, b_{n}\right\} \xrightarrow{G}\left\{a_{n+1}, b_{n+1}\right\} \quad(n=0,1,2, \ldots) .
$$

We now show that Gauss's reduction process leads to a reduced ideal equivalent to I_{0}. In addition we give an upper bound for the number of steps required to obtain a reduced ideal I_{n} as well as bounds for a quantity ρ in the relation $I_{n}=\rho I_{0}$.

Proposition 12. (i) The ideal I_{n} is reduced for

$$
n>\max \left(\frac{\left|a_{0}\right|}{\sqrt{D}}+1,2\right)
$$

(ii) Let I^{\prime} be the first reduced ideal obtained by applying Gauss's reduction to I_{0}. Then $I=\rho I_{0}$ with $\frac{1}{\left|a_{0}\right|} \leqslant \rho<\sqrt{D}$.

Proof. We suppose that $n>\max \left(\frac{\left|a_{0}\right|}{\sqrt{D}}+1,2\right)$ so that $n \geqslant 3$.
If $b_{1}>-\sqrt{D}$, by Proposition 11 (ii), I_{2} is reduced and so, by Proposition 11 (iii), I_{n} is reduced.

Suppose on the other hand that $b_{1}<-\sqrt{D}$ and that I_{n} is not reduced. Then, by Proposition 11 (ii), we see that $b_{i}<-\sqrt{D}$ for $i=1,2, \ldots, n-1$. Then, by Proposition 11 (i), we have

$$
b_{n-1}>b_{1}+2(n-2) \sqrt{D} .
$$

Hence we obtain

$$
\begin{aligned}
b_{n-1} & >-b_{0}+2 a_{0}\left(\frac{a_{0}}{\left|a_{0}\right|}\left[\frac{a_{0}}{\left|a_{0}\right|} \frac{\left(b_{0}+\sqrt{D}\right.}{2 a_{0}}\right]\right)+2\left(\frac{\left|a_{0}\right|}{\sqrt{D}}-1\right) \sqrt{D} \\
& >-b_{0}+2\left|a_{0}\right|\left(\frac{b_{0}+\sqrt{D}}{2\left|a_{0}\right|}-1\right)+2\left(\frac{\left|a_{0}\right|}{\sqrt{D}}-1\right) \sqrt{D} \\
& =-\sqrt{D},
\end{aligned}
$$

which is a contradiction. This completes the proof that I_{n} is reduced for $n>\max \left(\frac{\left|a_{0}\right|}{\sqrt{D}}+1,2\right)$.
(ii) Let I_{n} be the first reduced ideal obtained from I_{0} by Gauss's reduction
process. If $n=0$ then $\rho=1$, so that $\frac{1}{\left|a_{0}\right|} \leqslant \rho<\sqrt{D}$. If $n \geqslant 1$ we have $I_{n}=\rho I_{0}$ with (by (2.12))

$$
\rho=\left|\frac{a_{1}}{a_{0}} \phi_{1} \ldots \frac{a_{n}}{a_{n-1}} \phi_{n}\right|=\left|\frac{a_{n}}{a_{0}}\right|\left|\frac{b_{1}+\sqrt{D}}{2 a_{1}}\right| \ldots\left|\frac{b_{n}+\sqrt{D}}{2 a_{n}}\right| .
$$

As the representations $\left\{a_{k}, b_{k}\right\}$ are half-reduced for $k \geqslant 1$, we see, by (8.3), that $\left|\frac{b_{k}+\sqrt{D}}{2 a_{k}}\right|>1(k \geqslant 1)$ so that $\rho>\left|\frac{a_{n}}{a_{0}}\right| \geqslant \frac{1}{\left|a_{0}\right|}$. On the other hand we have

$$
\rho=\left|\frac{b_{1}+\sqrt{D}}{2 a_{0}}\right| \ldots\left|\frac{b_{n}+\sqrt{D}}{2 a_{n-1}}\right| .
$$

As $\left\{a_{k}, b_{k}\right\}$ is a half-reduced representation for $k=1,2, \ldots, n$, we have $0<\sqrt{D}-b_{k}<2\left|a_{k-1}\right|$. Furthermore, for $k=1,2, \ldots, n-1$, we have $\sqrt{D}+b_{k}<2\left|a_{k-1}\right|, \quad$ as otherwise $0<\sqrt{D}-b_{k}<2\left|a_{k-1}\right|<\sqrt{D}+b_{k}$, which is equivalent to $0<\sqrt{D}-b_{k}<2\left|a_{k}\right|<\sqrt{D}+b_{k}$ so that by (4.2) the primitive ideal I_{k} would be reduced. Therefore, for $k=1,2, \ldots, n-1$, we have

$$
\left|\sqrt{D}+b_{k}\right| \leqslant \sqrt{D}+\left|b_{k}\right|=\left\{\begin{array}{lll}
\sqrt{D}+b_{k}<2\left|a_{k-1}\right|, & \text { if } & b_{k} \geqslant 0, \\
\sqrt{D}-b_{k}<2\left|a_{k-1}\right|, & \text { if } & b_{k}<0,
\end{array}\right.
$$

so that, as $\left\{a_{n}, b_{n}\right\}$ is reduced,

$$
\rho<\frac{b_{n}+\sqrt{D}}{2\left|a_{n-1}\right|}<\sqrt{D}
$$

which completes the proof of Proposition 12.
We remark that Proposition 7 and 12 suggest that Lagrange's reduction process may lead to a reduced ideal much faster than Gauss's reduction process, as the number M_{0} of Lemma 6 is much smaller than $\max \left(\frac{\left|a_{0}\right|}{\sqrt{D}}+1,2\right)$.

Example 5. We apply both Lagrange reduction and Gauss reduction to the representation $\{3655,7068\}$ of the primitive ideal $[3655,3534+\sqrt{21}]$ of O_{84}. We obtain

$$
\{3655,7068\} \xrightarrow{L}\{-3417,-7068\} \xrightarrow{L}\{4,234\} \xrightarrow{L}\{3,6\} \quad \text { (3 steps) }
$$

and

$$
\begin{aligned}
&\{3655,7068\} \xrightarrow{G}\{-3417,-7068\} \\
& \xrightarrow{G}\{3187,-6600\} \xrightarrow{G}\{-2965,-6148\} \xrightarrow{G} \ldots \\
& \xrightarrow{G}\{-1,-12\} \\
& \xrightarrow{G}\{-5,8\} \quad(30 \text { steps }) .
\end{aligned}
$$

We remark that M_{0} is approximately 8.72 and $\frac{\left|a_{0}\right|}{\sqrt{D}}+1$ is approximately 399.8 .

REFERENCES

[1] GaUSS, C.F. Disquisitiones Aritmeticae, in Untersuchungen über höhere Arithmetik, reprinted Chelsea Publishing Co., New York (1965).
[2] Lagrange, J.-L. Solution d'un problème d'arithmétique (1766), CEuvres de Lagrange, Vol. 1, pp. 671-731. (Gauthier-Villars (1867)).
[3] —— Sur la solution des problèmes indéterminés du second degré (1769), CEuvres de Lagrange, Vol. 2, pp. 377-535. (Gauthier-Villars (1868)).
[4] Lenstra, H. W., Jr. On the calculation of regulators and class numbers of quadratic fields. London Math. Soc. Lecture Note Ser. 56 (1982), 123-150.
[5] Scholz, A. and B. Schoeneberg.Einführung in die Zahlentheorie. Walter de Gruyter. Berlin and New York (1973).
[6] Schoof, R. G. Quadratic fields and factorization. Computational Methods in Number Theory (H. W. Lenstra Jr. and R. Tijdeman, eds). Math. Centrum Tracts. Number 155, Part II, Amsterdam, 1983, 235-286.
[7] Shanks, D. The infrastructure of a real quadratic field and its applications. Proc. 1972. Number Theory Conference, Boulder, Colorado, 1972, 217-224.
[8] Smith, H.J.S. Note on the theory of the Pellian equation, and of binary quadratic forms of a positive determinant. Proc. Lond. Math. Soc. 7 (1876), 199-208.
[9] Stephens, A.J. and H.C. Williams. Some computational aspects on a problem of Eisenstein. Preprint.

