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AN ELEMENTARY PROOF OF A THEOREM ON

QUADRATIC FORMS OVER THE RATIONAL NUMBERS

by David B. Leep

Introduction

It is well known, and easy to prove, that each positive rational number

is a sum of four rational squares. The main idea of the proof is that

the set of nonzero rational numbers which are sums of four squares forms

a group under multiplication.
Let F be a field of characteristic # 2, Fx the nonzero elements of F,

and let <als..., af) denote the quadratic form axx\ + + anx2 where

ate Fx. Let

Then DF{{ 1, a, b, ab» is a multiplicative subgroup of Fx. (See Lemma 1.3.)

Let Q be the field of rational numbers. The goal of this paper is to give

a new and elementary proof of the following theorem of which the result

above is a special case.

Main Theorem. Let a, be Qx. Then

There are essentially three ways to prove the Main Theorem at present.
One way is to use the Hasse-Minkowski theorem ([La], p. 168). This is,

however, a difficult theorem to prove. Proofs of the Hasse-Minkowski
theorem rely on Dirichlet's theorem on primes in an arithmetic progression
([Se], [BS]), class field theory ([Om]), or Gauss' theory on the existence

of certain types of binary quadratic forms ([Ca]). (Actually, Skolem showed
in [Sk] that a weaker analytic result than Dirichlet's theorem suffices to
give a proof of the Hasse-Minkowski theorem.) A second way to prove the
Main Theorem is to use Meyer's theorem that an indefinite 5-dimensional
quadratic form over Q is isotropic. This theorem was originally proved using

n

Dp((al 5 •••? ^n)) — {c E F I C ^ Uj X i X( E F]
i=l

(positive rationals) if a, b > 0

otherwise
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the classical integral theory of quadratic forms over the integers and also

depends on Dirichlet's theorem or Gauss' theory mentioned above. A third
way is to use the so called weak Hasse-Minkowski theorem. A proof of
this can be found in [La], p. 174-178, but knowledge is required of Witt
rings, local fields, exact sequences, and Springer's theory for quadratic forms

over local fields.

Until now, no proof of the Main Theorem, much less an elementary one,
has appeared exploiting the fact that Z)Q«1, a, b, ab}) is a multiplicative
subgroup of Qx. We present a truly elementary proof below using nothing
more exotic than the notion of quadratic residues and the Möbius function.

We follow basic terminology and notation as found in [La]. In particular,
a quadratic form af) is isotropic over F if there exist x1,..., x„ e F,

n

not all zero, such that £ at x f 0. We have the orthogonal sum
i= 1

<0i, —, am} _L (b1,..., bf) <flx,..., am, bln.., bf) and «a, b}} stands for
<1, a, b, ab).

I wish to thank T.Y. Lam for the proof of Proposition 1.4 which is

much simpler than my original proof.

§ 1. Reductions to prove the Main Theorem

1.1. Main Theorem. Let a, b g Qx. Then

fQ > o if a, b > 0
DQ«l,a,M(.» (Q, otherwüe

We begin by stating some basic results needed to prove Theorem 1.1.

1.2. Lemma. Let q a„}, ate Fx.

(a) If q is isotropic over F, then DF(q) Fx.

(b) Let cgFx. Then q 1 <c> is isotropic over F if and only if
- cGDF(q).

Proof (a) Let c g Fx be given. An appropriate linear change of variable

lets us assume q{ 1, 0,..., 0) 0. Then

n

x„) xx(E btXi) + x„

where some bt =£ 0. Choose a2,ansuch that E ^^ 0 and let
i 2
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a, —- Then q(alya2,an) c.
b20-2 + •" + bnan

(b) Suppose q(alt.... a„) + ca2+10 where some at # 0. If # 0,

then q
f_Tl_ ;TL) - e. Ifu„,; - 0. then q is isotropic and (a) implies
\dn +1 ^t1/

-ce DF(q). The converse is trivial.

1.3. Lemma. Let a,beF\ThenDF(«a,b})>) is a subgroup of F\
Proof. Clearly 1 e Df(«a, b») and the following formula shows

Df«<a, b>>) is closed under multiplication.

(x\ +ax22 + bxl + abxl)

(x1y1-ax2y2 — bx3y3~abx4y4)2+

+ b{x1y3 + x3y1+ax4y2 — ax2y4)2 +

If c e Df(«a, b») then 1
c (Tj e Db»).

1.4. Proposition. Let a,b,ceFx. If <<a, b>> _L <c> is isotropic

over F then <<b, c>> 1 <a> is isotropic over F.

Proof We can assume «b, c» and hence <1, b, c> is not isotropic over

F otherwise we are done. By Lemma 1.2 (b), there exists e such that

- c xj + axj+ bx\ + abx\. Then + a{xl + bxl)
and both sides are nonzero since <1, b, c) is not isotropic over F. It

-y
^ _1_ /iy ^ —1— P

follows — a
" 1

2 ~ 2—£DF{((b,c}}) since DF(((b, c>>) is a
X 2 + ^Xj

subgroup of jF x by Lemma 1.3. Therefore «h, c» 1 <a> is isotropic over F

by Lemma 1.2 (b).

We see from Lemma 1.2 (b) that the Main Theorem is equivalent to

the following more convenient formulation.

l.L. Theorem. Let a,b,ce Qx. If a,b,c are not all positive, then

<<a, byy X <c> is isotropic over Q.

We begin now setting up the proof of the Main Theorem. We can assume

a, b, c e Z since a, b, c can be replaced by aoc2, bß2, cy2 for any nonzero
oc, ß, y e Z. Suppose the Main Theorem is false. Then there exist nonzero
a,b,ce Z, not all positive, such that <<a, &>> _L <c> is not isotropic over Q.
We can assume | a | Hb 1 b | + j c | is minimal among all such
counterexamples and we can assume | a | ^ | b \ ^ | c | by Proposition 1.4.
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1.5. Lemma. Continue the assumptions from above. Then \b\ < | c \ and
I c I is an odd prime number.

Proof If I c I 1, then | a | | b | 1 and b}} L <c) is isotropic
over Q since a, b, c are not all positive. Thus | c | > 1.

Suppose I fc I I c I. If c — b then <<a, 6)) 1 <c) is isotropic over Q,

a contradiction. If b c then fr>> _L <h> is not isotropic over Q.
Then Proposition 1.4 implies <<h, b>> 1 {a} <<1, h>> 1 <a> is not
isotropic over Q. But l + |h| + |fl|<|a| + |b| + |c| and a, b are not
both positive (since b c). This contradicts the minimality assumption and
therefore \ b\ < \c\.

Suppose I c\ is not a prime number and let — c — (^e1)( — c2) where
I ci I I c2 I < I c I

• If c < 0, we can assume in addition that c1,c2 < 0.

Then <<a, b}} _L <cf>, i 1, 2, both have at least one of a, b, ct negative.
Since \ a\ + \b\ + \ci\<\a\ + \b\ + \c\i it follows <<a, b>> 1 <cf> is

isotropic over Q, i 1, 2. Then — c1, — c2 e DQ«<a, b}}) by Lemma 1.2(b)
and —ce DQ(«<z, b))) by Lemma 1.3. This implies b}} _L <c) is

isotropic over Q by Lemma 1.2(b), a contradiction. Therefore | c | is a prime
number.

If I c I 2, then \ a \ \ b \ 1. If a — 1 or b — 1 then

<<a, h>> JL <c> is isotropic over Q. If a b 1, then c — 2 and

<<1, 1)) _L < — 2) is isotropic over Q. These contradictions imply | c | / 2

and therefore | c | is an odd prime.
To finish the proof of the Main Theorem we are reduced to proving

Theorem 1.6:

1.6. Theorem. Suppose p is an odd prime, a, b e Z, and 0 < | a |, | b |

< p. Then there exists m e Z, 0 < | m | < p, such that Imp e DQ(«a, fc»).

We shall assume Theorem 1.6 has been proved and finish the proof of the

Main Theorem now. We apply Theorem 1.6 with | c | in place of p.

Then there exists meZ, 0 < | m | < | c |, such that 2m\c\e DQ(«a, ft»).
Our minimality assumption implies <<a, h>> 1 < — |m|> and <<a, 6>> 1 < —2>

are both isotropic over Q. Then 2, | m | and hence 21 m | all lie in

DQ«<a, h>>). If a, b > 0 then c < 0 and it must be that — ce Dq«<ö, h»).
If either a < 0 or b < 0 then - 1 g DQ(«a, 6») since «a, 6» 1 <1> is

isotropic over Q by our minimality assumption. Therefore — ce DQ«<a, h>>)

in both cases and «a, 6>> 1 <c> is isotropic over Q. This contradicts our

assumption that a counterexample to the Main Theorem exists and finishes

the proof of the Main Theorem.
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Remark. A natural attempt to finish the proof of the Main Theorem

would be a version of Theorem 1.6 where one finds Me Z, 0 < | M | < p,

such that Mp e DQ{((a,b}}). But according to [Mo], p. 169, one can only

guarantee | M | < y/2\ ab \ < ^Jlp2 s/2 p. If one could also make M even,

then this result in [Mo] would give a proof of Theorem 1.6.

It remains to prove Theorem 1.6. If p is an odd prime, let —j be

the Legendre symbol: If (c, p) 1, then y-J ± — 1 where c 2

mod p. In the course of proving Theorem 1.6 we will use the following

result.

1.7. Theorem. Let p be an odd prime, p ^ 5, and let a, b be integers

such that (-) (-)= 1. Then there exist x, y g Z such that
\Pj \PJ

ax2 + by2\
^ ,221

— 1 and x + y < p.
P

We shall assume Theorem 1.7 has been proved and give now the

Proof of Theorem 1.6. If <<a, h)> is isotropic over Q then we are done

by Lemma 1.2(a). Now assume <<a9b)) is not isotropic over Q. First
assume at least one of — a, — b, — ab is a quadratic residue mod p. Let

a e {— a, — b, — ab} where J 1. There exists ß, 1 < ß < p — 1, such

that p |ß2 — oc and ß2 — a is even (replace ß by p — ß if necessary).
Then | ß2 — a | < ß2 + | a | < p2 + p2 2p2. Therefore, ß2 — a Imp
where 0 < | m | < p and 2mp g DQ«<ß, h))).

If p 1 mod 4 then at least one of — a, — b, — ab is a quadratic

residue mod p since ^—- j 1 and p f ab. Now suppose p 3 mod 4.

Then at least one of — a, — b, — ab is a quadratic residue mod p unless

(^j 1. Suppose 1 and choose x, y as in Theorem 1.7.

Since p 3 mod 4, we have - (ax2-\-by2) is a quadratic residue mod p
and hence there exists ß, 1 < ß < p - 1, such that p \ ß2 + ax2 + by2 and
ß2 + ax2 + by2 is even. Then | ß2 + ax2 + by2 \ ^ ß2 + | a \ x2 + | b \ y2

< p2 + p (x2 + y2) < 2p2. Therefore, ß2 + ax2 + by2 - Imp where
0 < I m I < p and ß2 + ax2 + by2 g DQ(«a, &»).



196 D. B. LEEP

The proof of Theorem 1.7 is given in the next section. Although we
need Theorem 1.7 only when p 3 mod 4 we give a complete proof since

very little additional work is required.

§ 2. The proof of Theorem 1.7

In this section p denotes an odd prime number. We begin by recalling
a result about sequences of quadratic residues and nonresidues mod p.

2.1. Lemma. The number of pairs (n,n +1) in the set {1, 2,..., p — 1}

i i fn\ 1 (n+1\ 1 • i

P

\ P J
such that — 1, — 1 is equal to —.\pj \ p J 4

Proof This elementary result is proved completely in [Ha], p. 157-158.

(See also [An], Chapter 10.)

The next two lemmas give a way to count the number of lattice points
(x, y) e Z x Z, x, y > 0, satisfying the conditions of Theorem 1.7.

Let

$f{x) {(a, ß) g Z x Z I a, ß > 0, a2 + ß2 < x2}

and let ^(x) {(a, ß) e 3P{x) | (a, ß) 1}. Let S(x) | 6P{x) | and P(x)
I TP(x) I. (It will be clear from context whether we mean the point

(a, ß) or the greatest common divisor of a, ß.)

2.2. Lemma. Let R be the set of nonzero squares mod p.

(a) The function 0 \0>fJp)-^R qiven by 9(x, y) ^ mod p is an

injection.

(b) pufp) <l(p-i).

Proof Clearly (a) implies (b) since | R | ^ (p— 1). If (a) is false then there

r y i y 2exist two distinct points (x1, y J, (x2, y2) in PP(Jp) such that —j —r mod p.
x J x J

Then y\x\ - xfy\(yiX2 + x1y2){yxx2-x1y2) 0 mod p. We have

y i k2
+ xxy2 A 0 since xi9 yt > 0 and yLx2 — xxy2 A 0 otherwise — — and

x1 x2
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then the points (x1, yJ, (x2, y2) would be equal since — 1, i — 1, 2.

We have

(x J+ }'?)(*!+y I) (x1x2 + y+ (y1x2-x1y2)2

(x1x2-y1y2)2 + (y1x2 + x1y2)2.

Either (y1x2-x1y2)2 or (y1x2 + x1y2)2 is ^ p2 since both are nonzero and

one of them is divisible by p2. Therefore (x \ + y \) {x 2 + y 2) ^ p2 and then

either x\ + y \ ^ p or x\ + yj > p. This is a contradiction since both

(xi > ki) and (x2, y2) he in
Remark. Although (b) in the preceeding lemma is not needed in what

follows it was included since it gives a fairly good upper bound for

P{y/p) that is valid for all primes. It can be shown using Lemmas 2.4, 2.5

below (see also [HW], p. 268) that lim JL ~ 477 it is unusual
p-*- 00 P 271

to obtain, with so little work, such a good estimate that is valid for all
prime numbers.

2.3. Lemma. Assume I — J I — J 1. Let x : jR — {0, 1, — 1} where

fa + bz2\
Then

V P

Tx(z2)

Proof. Since ] 1, we have x(z2) — 1

h / a

P

l+b-z2
a

— — 1. Since

1, by Lemma 2.1 this happens if and only if - z2 is one of the
a

-V
elements ß in R such that - I 1, J — 1. Therefore,

ß+1

there are exactly

a-h b-

Since
* - 1

P

elements z2 in R such that t(z2) — 1.

'ax2 + by2^

- 1 when p Jf x, it follows

from Lemmas 2.2, 2.3 that proving Theorem 1.7 is equivalent to finding (x, y)
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such that t o 0(x5 y) — 1. This is equivalent to showing 0(^C\/p))
-1N

P
P ~

nx x(— 1) is nonempty. Since 0 is injective, |x 1(— 1) |

P- 1
P -

it is sufficient to show P(y/p) +

1

and I R \

^ „ - w r/ 4

Thus to prove Theorem 1.7, we are reduced to showing

P ~ 3

>

4

p - 1

P ~
>

-1
4

P~ 1

if p 3 mod 4

if p EE 1 mod 4

As pointed out earlier, lim « .477. Thus it is clear that for all
co P

but finitely many primes p we have > —, i.e., PL/p) > Since
p 4 v 4

we need to check this result for all primes p, p # 5, it is necessary to give
rather careful estimates. We now compute P(x) and compare it to
x2 - 1

Let ja be the Möbius function: If n e Z, « ]^[ pp, then
i i

il
if n 1

— I/ if each et — 1

0 if some > 1

Let [ ] denote the greatest integer function.

00 /x\ I x
2.4. Lemma. P(x) p(z)Sl — £ p(i)S -

Proof. Since 5(^/2) 0, we have S
* 0 if i ^ LA

+ 1. In order

to count how many times each lattice point is counted in the sum
OO / -jA
£ p(ï)5(— J we partition the lattice points in SP(x) into the rays passing

through the origin. Let (a, ß) g and consider all multiples (ma, mß)
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that lie in Sf{x). Let n be the unique positive integer such that (na, wß) e SP(x)

but ((n+l)a,(n+l)ß)£«9%>c). Then for a given positive integer i, we have

(jajß) e SP precisely for values of j since if + 1 (o, ß)e<P

then i + 1 (a, ß) g SP{x). But i
n +1)—
i

+1 I ^ n + 1. Therefore exactly

points on the ray through (a, ß) lie in SP — It follows that in the

sum to be evaluated, the points on the ray through (a, ß) contribute

n

i
X KO

i 1

1. To prove this last equality we start with the well known fact

I KO {! iîm " Î Then 1 - I I KO KO
i\m ^ if Wl > L m= 1 i\m i 1

n n
since —

i i
IS

the number of multiples of i that are ^ n. Therefore the sum to be

evaluated counts the number of points in <P(x) and this completes the proof.

2.5. Lemma. For all x ^ 1, — x
4

2
— 2x + 1 < S(x) < — x2.

Proof. To each point (a, ß) e SP(x) associate the lattice square for which
(a, ß) is the lower left corner. Let denote the region covered by these

squares. Then S(x) area of M1. Let M2, M3 be the two strips of length x,
width 1, parallel to the axes where M2 {(x:x, yf) | 0 ^ x1 ^ x, 0 ^ y1 ^ 1},
and M3 {(xl, y J | 0 ^ xx ^ 1, 0 ^ jq ^ x}. When x ^ 1, these strips
cover a combined area of 2x — 1. Since the quarter circle of radius x

is contained in M1 u M2 u M3, it follows — x2 < S{x) + 2x — 1.

Now to each point (a, ß) in SP{x) associate the lattice square for which
(a, ß) is the upper right corner. These lattice squares lie entirely in the

71 „first quadrant and inside the circle of radius x. Therefore S{x) < - xL

2.6. Lemma. Let m > n ^ 1, m, ne Z. Then

1 1

(n+l)2 (n + 2)2

1 1 1

+ ...+ — <
n m

iProof Apply the integral test to j — dt or observe
n l>

m- 1 1

Ii=n (i + 1)
V 1 i

2 < E T-ri i T 1

1

_
1

n m



200 D. B. LEEP

We now use Lemmas 2.4, 2.5 to estimate P(x). We need to determine

values of x for which P(x) >

x

x2 — 1 X
First assume x > 10. Then —— > 7

4 ^2
SO

V5.
^ 7.

H
POO S 0(05 - X o(05 -

M

> — x2 — 2x +1
4 \2 4 \3 4 \5

i — 7 V I

2

>
23TI

200
x2 +

\/2Ä 7\ x-
— x + 2, since Jlx

23n 7Let f(x) — x +Jy J
200 - — x x + 2, #(x) =3

3

x2 — 1

One can check

that /( 10) > gr(10), /'(10) > ^'(10), /"(10) > ^"(lO). Therefore P{x) > f{x)

> g(x) for all x > 10. This implies P(y/p) > p- 1

if ^Jp > 10, i.e.,

p > 100. It remains to show P{y/p) >
P - 1

•if p < 100, p / 5.
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At this point we simply count lattice points directly and construct the

I
table below. The table shows P(sfp) > —-— for all primes p < 100 except

p — 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

P P(y/p) where P(^/p) > V——

59 27 59 < p ^ 97

31 15 31 ^ p ^ 53

19 9 19 ^ p ^ 29

11 5 11 ^ p ^ 17

7 3 P 7

3 1 p 3

5 1 1
5 ~ 1^ 4

§ 3. Consequences of the Main Theorem

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let <<a, b, c>> denote the 3-fold Pfister form

<1, a) ® <1, by ® <1, c) — <1, a, b, c, ab, ac, be, abc)

3.1. Proposition. Let a,b,ce Qx. Then «a, b, c>> is hyperbolic
over Q if and only if a, b, c are not all positive.

Proof If \(a, b, c>> is hyperbolic, then consideration of «a, b, c>> over
the field of real numbers shows at least one of a, b, c is negative.

Now suppose a < 0. Then the Main Theorem implies —ce DQ«<a, b>>)
and <<a, h>> 1 <c> is isotropic over Q by Lemma 1.2(b). A theorem of
Pfister ([La], p. 279] implies <<a, b, c» is hyperbolic over Q.
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3.2. Proposition. Let a,b,ceQx,a,b,c> 0. Then

«a,6,c» «1, 1,1» 8<1>

Proof. Calculating in the Witt ring WF we have

«a, b, 1» 1 (-1) «a, b, c» «a, fe» «1, 1> 1 (-1) <1, c>)

<<a, h>> <1, —c) <<a, b, — c>> 0 by Proposition 3.1.

Therefore <<a,b, 1)) b, c». Repeating the same calculation with a, b

in place of c yields the result.

3.3. Corollary. Let a,b,ce Qx and let H <1, —1>. T/zen

7/ f«l,l,l>> if a, b,c>0«a,b,c» -|4H Mliemjse

3.4. Theorem. IsQ is torsion-free.

Proof. Corollary 3.3 shows that the only nonzero 3-fold Pfister form
in I3Q is <<1, 1, 1)). Therefore I3Q Z and I3Q is torsion-free.

REFERENCES

[An] Andrews, G. Number Theory. W.S. Saunders, Philadelphia, 1971.

[BS] Borevich, Z. I. and I. R. Shafarevich. Number Theory. Academic Press,
New York, 1966.

[Ca] Cassels, J. W. S. Rational Quadratic Forms. Academic Press, New York, 1978.

[Ha] Hasse, H. Vorlesungen Über Zahlentheorie. Springer-Verlag, Berlin, 1964.

[HW] Hardy, G. H. and E. M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 4th ed., 1960.

[La] Lam, T. Y. The Algebraic Theory of Quadratic Forms. Benjamin, 1973.

[Mo] Mordell, L. J. Diophantine Equations. Academic Press, New York, 1969.

[Om] O'Meara, O. T. Introduction to Quadratic Forms. Springer-Verlag, Berlin,
1963.

[Se] Serre, J.-P. A Course in Arithmetic. Springer-Verlag, 1973.

[Sk] Skolem, Th. On the Diophantine Equation ax2 + by2 + cz2 + dv2 - 0.

Norske Videnskabers Selsk. Forh. 21 (1948), 76-79.

(Reçu le 10 avril 1989)

David B. Leep

Department of Mathematics
University of Kentucky
Lexington, KY 40506
(USA)


	AN ELEMENTARY PROOF OF A THEOREM ON QUADRATIC FORMS OVER THE RATIONAL NUMBERS
	Introduction
	§1. Reductions to prove the Main Theorem
	§2. The proof of Theorem 1.7
	§3. Consequences of the Main Theorem
	...


