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HODGE DECOMPOSITION ON STRATIFIED LIE GROUPS

by John Duddy

1. Introduction and history

The Hodge decomposition theorem is the following :

Theorem. On a compact Riemannian manifold every p-form, a, can be

written as a % + a2 + oc3 where ocx d*ß1; a2 dß2 and a3 fs

harmonic.

This result appears in Hodge's book 77ie Theory and Applications of
Harmonic Integrals (1941) [12]. Since the appearance of this result generalizations

of the theorem have been proven in new settings. Kodaira (1949)

extended the result to certain forms on non-compact Riemannian manifolds

[13] and Dolbeault (1953) derived a similar decomposition for Hermitian
manifolds [5]. Atiyah and Bott (1967) defined an elliptic complex which
generalized the de Rham and Dolbeault complexes [1]. In a different vein

Spencer outlined a program to solve overdetermined equations (1963) [17].
The heart of his program was to obtain a Hodge decomposition paying
special attention to boundary values.

Boundary value problems in complex analysis led to the cb complex. It
was first studied by H. Lewy (1957) [15] and generalized by Kohn and Rossi
(1965) [14] and by Greenfield (1968) [10]. The complex is not elliptic but it
does enjoy certain properties of elliptic complexes. For instance, its Laplacian,

b, (with respect to a Hermitian metric) is hypoelliptic, i.e., if Ubf 9
and g is Cx on an open set U, then / is Cx in U. Folland and
Stein (1973, 1974) [7, 8] wrote down an explicit fundamental solution for

b on the Heisenberg group. The group is not compact so Kodaira's
arguments to obtain the decomposition do not apply. One of the aims of
this paper is to exploit the simple homogeneity properties to obtain a
fundamental solution. The technique generalizes to a class of nilpotent
groups called stratified groups introduced by Folland (1975) [9]. (Also see
Rothschild and Stein [16].)
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The Hodge decomposition for the db complex on the Heisenberg group
appears in [11] by Harvey and Polking and in [4]. The second reference

motivates the technique used here. Harvey and Polking use complex analysis

to obtain their result (solving the ~db problem first, then the [Jb problem).

Using their techniques Dadok and Harvey [2] have found a fundamental
solution for on the sphere in C1. A parametrix for Ob on the sphere

also appeared in [4] but will not be presented here, due to the more

complete result of Dadok and Harvey.
Let us briefly review the Hodge decomposition. For the classical version

see [3] and [12]. Let M be an u-dimensional C00 manifold and let E and

E' be vector bundles over M whose fibers are isomorphic to Fm and Fm\

respectively. (We let F R or C.) We denote the space of smooth
sections of E by C°°(M, E) and when there is no confusion we abbreviate the

notation to C00^). A differential operator is a map D : C00^) - C00^')
such that given any local trivializations of E and E' over U (where U c= M
is open), D can be expressed by an m' x m matrix of differential operators
defined on F-valued functions on R". See [18] for details.

Suppose we are given three vector bundles, El9E29 and E3 over M
and differential operators D1: C00^) - Cco{E2) and D2\ Cco(E2) - CQ0(£3).

If D2 o Di 0 we say that the complex

is a differential complex. Examples of differential complexes are the de Rham,

Dolbeault, and db complex.
Assume there exists a measure dp on M and a metric on the Et

which we denote by •, • )Ux where xe M. For f,ge Cœ(Ei\ one of which is

compactly supported, define

where / e C°°(£2) and geC^iE^). Note that C^{Et) is the subset of
compactly supported elements of CQ0(Fi). Similarly, we define D f. The Laplacian
is given by

(1) Cco(Ei) ^ Cc°(E2) ^

Define the formal adjoint, Df, of D1 by the identity

(f,Dig)2 (DUg).

A DiDf + D$D2
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Let H be the kernel of A in Cc°°(F2)- A Hodge decomposition for

C?(E2) is

Hodge studied the de Rham complex on a compact Riemannian manifold.

The Riemannian metric induced the metrics on the bundles APT*(M) as

well as the volume element.

In the next section we discuss abstract CR manifolds and look at the

Heisenberg group in detail. We write down the db and operators
explicitly and give Folland and Stein's inverse to Qb. In section 3 we

introduce the stratified Lie groups and the associated homogeneous structures.
We present the continuity theorems of Folland and Rothschild and Stein for
convolution operators. In section 4 we prove the decomposition theorem in
the general setting of stratified groups.

These results are an extension of the author's dissertation [4]. We wish
to express our deep gratitude to M. Kuranishi. We would also like to thank
D. Tartakoff for his help and encouragement.

Let M be a C00 manifold of dimension 2n + 1. The complexified tangent
bundle of M, CT(M), is the bundle whose fiber is C (g)R Tm(M) where
Tm(M) is the tangent space at meM. When there is no confusion we will
drop reference to M in the notation for T(M), CT(M), etc. So, T(M) T
and CT(M) CT, for example.

A CR structure on M is a subbundle T1>0 c= CT such that (i) T10
n Ti.o {0}, (ii) codim(T1 o ® Tlt0) 1, (iii) if X and Y are smooth
sections of T1>0 then [X, 7] XY — YX is a section Tuo. We set

To,i Tuo. If M has a CR structure it is called a CR manifold.
An example of a CR manifold is a real hypersurface M in a complex

manifold M', M c= M'. Define TU0(M) CT(M) n TU0(M') where Tlt0(M')
is the holomorphic tangent bundle of M'.

If M is a CR manifold set Tuo (resp., T0'1) to be the dual space to
Ti o (resp., T0>1). Let Ap'q be the space of C00 sections of ApTlf0 ® AqT0,1.
Define the operator db: Ap>q -> Ap>q + 1

as follows: Let <\>eAp>q and let
(resp., Y1,...,Yq+1) be sections of Tuo (resp., T0?1). Then

Cf(E2) D^C^EJ) © D*2{C?(E3)) © H

2. CR STRUCTURES AND THE HEISENBERG GROUP
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<öb4>;(AT1 a A Xp)®(Yx A A Yq + 1)>

ta+irlZ(-iy+1 ^<cj);(^i A... A xp)®(Yt A... ?J... A yg+1)>
7=1

te+1)"1 z (-I)i+J<4>;(^i -... - xP)®&Yi9 Yji A y, A... Yt... Yj... A ym
i<j

The A symbol over a section means as usual that it is deleted from the

expression. One can show that

i) d2b 0,

ii) 3„(<|) a v|/) (^(j)) a y -i (— l)p4> a d„\|/ for <(> e A°'p,

iii) <ôbf, Y > Yfforf e A0 0 and Y a section of T0> i.
See [6] for details.

The Heisenberg group, H, is a Lie group with a natural CR structure.
The manifold is C" x R. Let (z, £), (z', £') e C" x R H. The group law

is defined by

(z, t) • (z', £') (z + z', £ +£' + 2 Im(z • z'))

n _
where z • z' ]T The identity element is (0, 0) and (z, £)_1 —z, — £).

7=1

Sometimes we will set w (z, £).

For j 1,..., n if we set Zj Xj + iyj9 the mapping

(z, t) —> (Xi,..., xn,yl5..., yn,£)

defines a C00 coordinate system on H. The left invariant vector fields

(i.e., the elements of the Lie algebra) are R-linear combinations of

ô d ô ô ô '

m x>-^^JrY>'wrlx'^T-Jr
They satisfy the following commutation relations :

(3) IXj,T]lYj,T]IXjX,][Yj, rJ 0

(4) [Z,, TJ -45 JkT

Let CT be the complexified tangent bundle of H. Define

(5) A +
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Then ZJ5 Zj,and T form a basis (over R) of the space of left invariant

complex tangent vector fields. In particular, they form a global frame of

CT. From (3), (4) and (5) we easily see that

(6) [Zj,ZJ[Zj,ZJ [] IZj, T] 0

[Zj,ZJ-2

Let Tlt0 (resp., T0il) be the subbundle of CT spanned by the Z/s
(resp., Z/s). Then

îi,o Tùti

TuonT0 {0}

codim (Tlf o ® T0t 1

n

Also, if L1? K2 are sections of T1'0 we can write Vt £ fifijA 1,2
j= i

where the /fj- are C00 functions on if. Then by (6),

i f i (/iÄ/2fc-/2,z/u))zfc.
k=l\j=l /

So, the splitting of CT defines a CR structure on H.

Impose the left invariant Hermitian metric on CT which makes the Z's,
Z's and T an orthonormal frame. Let co-7 and t be dual to Z} and T,
respectively. Then coJ, co-7 and x form an orthonormal frame for CT*. The
volume element on H is

(7) du 2ndxx a a dxn a dy1 a a dyn a dt.

Since H is nilpotent and, hence, unimodular, the volume element is both left
and right invariant. One can also verify this directly.

Let J (j1, be a multi-index with 1 ^ jt ^ n, i 1,..., q. Define
\J \ q and coJ co-71 a a co-7«. If § e A°'q(H) we may write (j) c()jCöj

where cj)7 is a C°° function from H to C. Let

coJ J co*7 — l)k(bjl a a (ôjk a a co-7« if j jk and (bj J cöJ 0

otherwise. Folland and Stein prove that for cj) g A0,q

i) 564) £ )J,
lfi=«i=i
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n

(8) ii) dt$ - X I\J\=q j= 1

Define the function

n — a

Oa(z, 0 (|z|2-it) 2 (|z|2 + 2

Let 4> e A°,?, q ^ 0, n. For an appropriate constant, cq, define

(9) KqW?) C« I f [
H

<t>j(«)^-24(« 1f)du)rôJ.

Folland and Stein prove that for the appropriate cq

Theorem 1. Let q ^ 0, n. Then d^K^c)) Kqü\b$ (t)-

In [4] we prove a stronger version of the following Hodge decomposition
theorem.

Theorem 2. Let (j) e A°,fl, q # 0, n. Then

i) //()> 0 where H is the orthogonal projection onto the kernel of

ii) c|> dbdfKq4> + dfdbKq<\>.

We also prove

Theorem 3. If c)> e A °,q, q ^ 0,n and if ~dbfy 0 then \|/ ~d*Kq§

satisfies dfc\|/ c|).

These two theorems are special cases of theorems 6 and 7 proven in

We study a class of riilpotent Lie groups which we describe in terms of

their Lie algebras. A graded Lie algebra, n, is a finite dimensional nilpotent
r

algebra which has a direct sum decomposition, n © nf where the nf- satisfy

section 4.

3. Differential complexes on stratified groups

i 1

i) K, n;] £ ni+J if + < r,
ii) [n,. ny] 0 if j + j
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Let n dim rt. Define the homogeneous dimension to be Q £7 dim(rtj).
I J= 1

If n is a graded algebra and if n1 generates n then n is called a stratified

algebra. A Lie group is called a stratified group if its Lie algebra is a

stratified algebra. For a given stratified algebra n we will restrict our
attention to the simply connected group associated to it.

The Heisenberg group is a simply connected stratified group. In fact,

identifying the Lie algebra with the left invariant vector fields, we may take

n1 to be the span of the X9s and F's and n2 to be the span of T.

By (3) and (4) we see that [n^nj n2 and [nx, n2] [n2,n2] 0.

Any graded nilpotent group has a natural family of dilations. First we
r

define them on the Lie algebra. Let X en. Then by definition X £ Xj
j= 1

r
where XjEUj. For s > 0 set 3S(X) sjXj. Because n is nilpotent

j= 1

the exponential map is globally defined. Suppose xeN and x exp(A)
for X en. Define 5s(x) exp(5sX). Suppose we are given an inner product
on rt such that _L n,- for all i ¥= j. Let || X || be the length defined by

r
the inner product. Suppose x exp(A) where X £ Xj, X} e rt^. Then

j= 1

define the homogeneous norm function to be

1*1 .z « ^ 11j' j •

Then (i) | x | 0 if and only if x 0, (ii) x -* j is continuous on N
and Cœ on N - {0}, (iii) | ôsx | s | x |.

On the Heisenberg group, 5s((z, t))(sz, s2t) and | z | (|z| 4 + f2)\
r

Recall that the homogeneous dimension is Q ^7'dim(n Let /j i
be a function on N. We say / is homogeneous of degree p if /(Ss(x))

spf{x). If -Q < p then such an / is in Lfoc for 1 ^ oo. A
distribution F is called homogeneous of degree p if

<F,s~Qg{ôs-,x)>
where geC?(N) and <F,g> is the pairing of C'f(N) with its dual,
D'(iV). A differential operator L (acting on functions) is homogeneous of
degree p if L(/• 8S) sp(Lf) o 8S. Observe that if / is a homogeneous
function of degree p and if L is a homogeneous differential operator of
degree p' then Lf is a homogeneous function of degree p — p'.
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Let Xitl,..., Xitdimixli) be an orthonormal basis of nf with respect to our
inner product. Since nt- 1 rij for i # j the set

{XUJ: 1 < i«S r,1 < < dim(rt,)}

is an orthonormal basis of n. Define the global coordinate chart on N by

(10) (Xy) -> l.XijXij -» exp(ZxyXy).

This identifies N with Rn as a manifold.
Let m1, m2 and m3 be positive integers. For z 1,2,3 define

Et R" x Fmi to be the trivial bundle over N R" with fiber Fmi. Consider
the differential complex (1). We know that each Dt can be expressed as an

mi+l x Mi matrix of differential operators on functions, i 1, 2. If each entry
is homogeneous of degree p we say Dt is a homogeneous differential operator
of degree p. If each entry is left-invariant we say Dt is a left-invariant
differential operator.

On our prototype, the Heisenberg group, we have the left-invariant metric
which makes the Z's, Z's, and T into an orthonormal basis. Let ö)„

be a basis for T0'1 which is dual to Z1,..., Zn. Then

{mJ: J- 0'i. ~Jq),1 < hii < - < jg < n}

is a global orthonormal basis of A0,q for each q. So A0,q is a trivial bundle

over H ^ R2n + 1, and we may identify sections of A0,9 with Cco(R2n + 1, Cm)

where m n!/q\(n — q)\. By (8(iii)) the operator A0'9 — A0,q is given by
1 n

the matrix (ô0- where L — — £ (ZjZj + ZjZj) + i(n — 2q)T. L is
2 k i

left-invariant and homogeneous of degree 2. So, is left-invariant and

homogeneous of degree 2. Similarly, X^cj) defined by (9) can be written as

H
Cq ®n-2q{u lv)I<\>du

where (j)eAc°'? is a q x 1 column vector and I is the q x q identity
matrix. Note that $n-2q is a homogeneous function of degree — In. This

example motivates the following definition of a homogeneous convolution

operator.

Return to N, our stratified Lie group with global coordinates defined

by (10). Let k: N -> Mat(m'xm, F) be a mapping of N into the space of

m' x m matrices with entries in F. Given / e Cf(Fm) and x, y e N the

product k(y~1x)f(y) is an m' x 1 column vector. We set
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(11) KfW k{y 1x)f(y)dy.

The measure, dy, is the Haar measure on N. Under suitable restrictions on

k the integral exists. The operator K is called a convolution operator with

kernel k. If each entry of k is smooth away from 0 and homogeneous of

degree — Q + p, 0 < p < Q, we say that K is a homogeneous convolution

operator of type p. As we mentioned before, a homogeneous function is in

Lfoc so the integral in (11) exists for / g C?{Fm).

Suppose k is homogeneous of degree — Q and for each entry

kij, 1 < i < rri, 1 ^ j ^ m,

we have

(12) kij(x)dx 0

a^\x\^b

for all a and b. We say an operator K is of type 0 if for some constant c

we have

Kf(x) lim f k(y~ 1x)f(y)dy + c/(0) for all / g Cc°° (FM)
J Iv| < l/s

where k satisfies (12). We refer the reader to Folland [9] or Rothschild
and Stein [16] for details.

To study the continuity properties of these operators we define Lp

spaces and Sobolev-type spaces of sections from N to Fm. Let || || LP

denote the usual Lp norm on functions. Let / g Cc3C(Fm) and let fif i 1,..., m
be the components of /. Define the norm

i lp

_ WfiWb)
1 1

/ II
LP(Fm) — X II f i II LP

Let Lp(Fm) be the completion of Ccac(Fm) under this norm.
Let {Xu i,..., Xud} be the orthonormal basis of n1, with d dimfnj.

For brevity, we will drop reference to the first subscript. Let J be a multi-
index, J (j1 J2. -Jq) with 1 ^ ;i < j2 < < jq ^ d. Define | J | q and
define X3 XhXh... Xjq. Define Sp(Fm) to be the closure of Ccœ(Fm)
under the norm

/ HsJ(F^) - II / II LP(F) + X X II Xjfi II LP

A modification of a theorem by Folland [9] yields
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Theorem 4. (i) Let K be a convolution operator of type r for
r > 0. Then K extends from Ccœ(Fm) to a bounded operator from
Lp(Fm) to Lq(Fm') where 1 < p < Q/r and q'1 p'1 - r/Q.{ii)Let K
be a convolution operator of type 0. Then K extends from Cc°°(Fm)

to a bounded operator from S £(Fm) to S%(Fm).

Finally, we mention the interaction between the homogeneous convolution

operators and the left-invariant differential operators. Let D : C°°(Fm')

- C°°(Fm") be a left-invariant homogeneous differential operator of degree 1

and let K be a homogeneous convolution operator of type r, with r ^ 1.

Then DK is a homogeneous convolution operator of type r — 1. Moreover,
if r > 1 the kernel of DK is given by Dk(x).

4. The Hodge decomposition

Consider the complex (1) where Et R" x Fm<. Assume that each of the

Dt is a first order, left-invariant operator, homogeneous of degree 1. So
d

each entry of Dt is of the form £ aj^ij where aj is constant. Construct
j= i

the Laplacian, A, with respect to the euclidian inner products on

Fm£, i 1, 2, 3. Assume there exists a homogeneous convolution operator of

type 2, K, which inverts A. If f e Cf(Fm2) then f(x) AKf(x) KAf(x).

Theorem 5. Let feS l(Fm2). As distributions, A/ 0 if and only if

f o.

Proof Obviously, if / 0 then A/ 0.

Assume A/ 0. Let {ff be a sequence in Cf(Fmi) such that fj - /
in 52(Fm2). Then fj f in the sense of distributions. Moreover, Afj
-> A/ 0 in L2(Fm2). Let g e Cf(Fm2). Then

<f,g> lim <fj,g> lim <f},AKg> lim <Afj,Kg>
j->co • j~* oo j-*mo

Because geCf(FW2) it is in LP where p 2g/(g + 4). Therefore, by

Theorem 4(i), Kg e LP where

q'1 (ß + 4)/2ß - 2IQ - 1/2, i.e., Kg e L\Fm2).

For Q ^ 5, 1 < p < q < oo. So

I < f >
I ~ I < j, Kg> I ^ lim || Afj \\^2(Fm2| || Kg ||z>2(f^2) 0-
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So, as a distribution, / 0. This proves the theorem.

We have shown that the only harmonic element in S^F"12) is the zero

element. Let feS\{F"12) and let - / in Sj(F"12) with fjeC?(Fm2).
Then

/ - lim AX/,- « lim D.DfKf + lim D*2D2Kf DJ)\Kf + D\D2Kf
J ^ co j-^co jco

To complete the Hodge decomposition we must prove that

D^fKf ±D$D2Kf

We need the following notation. Let D(R) {jc e N : | x | < R} and

S(R) {xeN:\x \ R}. Endow each set with the left-invariant metric
induced by N. The metric gives rise to the corresponding volume elements

which, in the case of D(R), is the restriction of dx. Let d\iR denote the
volume element on S(R). For f,ge C(D{R), Fmf) define

(/(*)> g{xj)i,xdx
Dm

(/; S7)d(JJ), i

where )Uxis the metric on F"". Similarly for e C 'J(S(R), Fmi) define

(/> d)s(R), i ~ (f(x),
S(R)

By restriction, any element / eC°°(N, Fmi) gives rise to an element of
CX'(S(R),Fmi) or Cco(D(R), Fm'). In our notation, we will not distinguish /

from its restrictions.
We will be integrating by parts on D(R) which will involve a boundary

integral on S(R). To that end we define the symbol of our differential
operators. Define c,(x) [ x | - Randlet g eC\N,Fmi).Let x e S(R). Then
£(x) 0. The symbol of D, at x e S{R) acting on d.% and on g is given by

a(D„dtMx)
The integration by parts formula is

(13) {Did, Dom,,i+i {g,D*f)D(R)ti+ (ct(D,,

Theorem 6. Assume f e L2(Fm2) n L«(FM2) where q + 2.
Then f D1DfKf + D%D2Kfand D^Kf ± D$D2Kf.

Proof. We have already seen that/ + D *D2Kf. To prove the
orthogonality we restrict our attention to for R large.
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For brevity let h (D1DfKf,D%D2Kf)2. Also, let

h(R) (Z^D^X/, D%D2Kf)D{R)2

Then lim h(R) h. Note that DxDXK and D%D2K are type 0 operators.
-R-> 00

Since / g L2(Fm2) by theorem 4 (ii) we know that h is defined. Furthermore

h(R) is bounded for all R by || D^D^Kf ||L2(Rm2) || D%D2Kf \\l2{Rm2).

We can compute h(R) as follows :

h(R) (Dj^D *Kf, D 2D2{Kf))D(R)> 2 (D2D1D JX/, D2Kf)D{R) 3

+ {D.DfKf, c(Di,d(\x\))D2Kf)SiRh2

by (13). We now prove a sequence of lemmas.

Lemma 1. h(R) is continuous.

Proof. This follows from Lebesgue's dominated convergence theorem.

Lemma 2. Let R ^ 1, x e N and | a | R. Then

I o(D%, d\x\)g(x) \ ^ I

where C is a constant independent of g.

Proof Recall that X1,..., Xd is our orthonormal basis for rx1 where

d dim^). The entries of Df are linear combinations of the Xt,
i 1 ,...,d with coefficients in F. Let be the ij entry, 1 ^ i ^ m2,

d

1 ^ j ^ m3. Then Dtj £ C\jXk. Thus, for x g S(R)
k 1

m2 m3

\<j(D%,d\x\)g(x)\<C £ I £ Dy((|xt-Ä)^(x))|
i=i j i

< C X \CljXk((\x\-
ij.k

<cZI (Xk\x\)gj(x) I (since | x |

jk

«S C(max (A*|x|)) | g/x) |.
k

We must show Xk \ x\ is bounded. But | x | is Cœ away from the origin
and homogeneous of degree 1. So Xk | x | is homogeneous of degree 0.

Thus, it is determined by its values on {| x | 1}. It is C00 on this set

and, therefore, bounded. This proves the lemma.

Since h(R) - h as R oo we have
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Lemma 3. For e > 0, lim —
r-+ oo -^E

h(R)dR h.

We continue with the proof of our theorem. By the preceding lemma it

suffices for us to prove that lim —
r-* oo -^E

h{R)dR 0. But,

(14)

1

2s
(D,D*Kj\ a(D*2,d\x\)D2Kf)x

r-e^ |x| + s

because d\iRdR \\ d \ x \ \\ dx. We claim that d I x I || is bounded. Let
coi; be dual to Xtj where Xtj is our orthonormal basis. Then d \ x |

X (Xij\x\WJ- Since | x | is homogeneous of degree 1 and Xtj is

homogeneous of degree i we have XL is homogeneous of degree 1 — i.

Hence, for | x | ^ 1 each Xtj \ x | is bounded. So || d | x | || is bounded.

By assumption, / e Lq(Fm2\ q Q/Q + 2 and we know that D2K is

type 1. By Theorem 4(i) we know that D2Kf e L2(Fm2). Thus, by Lemma 2

I xr&{D f, d\x\)D2Kf I ^ C I xrD2Kf I where Xr is the characteristic function of
{r — s ^ I x I ^ r + e}. We conclude that Xr^i^i » à\x\)D2Kf e L2(Fm2). By
the Schwarz inequality and the fact that || d | x | | is bounded, we get, from (14)

1

2e
h(R)dR ^ ~ || XrD.DtKf ||L2(Fm2) || xrD2Kf ||L2(Fm3).

As r-* co, both || xrD1D^Kf||L2(Km2)and || %rD2Kf || L2(F-3) tend to 0. So

h lim
2e

h(R)dR 0. This proves the theorem.

This theorem together with Theorem 5 proves the Hodge decomposition.
A similar argument gives the solution to the problem of finding g such
that Dxg f for a given /.

Theorem 7. Letf e L2(FM2) n L"(Fm2) with q Q/Q + 2. Suppose
D2f 0. Then there exists g e L2(Fm') such that Dtg f.

Proof. We have / D^fKf + D$D2Kf. It suffices to prove
•/• D^D2Kf) 0 because this implies D%D2Kf 0 since

D.DXKf LD*2D2Kf
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We may set g DfKf. Using the same notation as in the preceding theorem

we have

(f,D*2D2Kf)2 lim (f,D*D2Kf)DIRu2
R-* oo

lim {(D2f,D2Kf)Dm3+

lim (f,a(D *2, d\x\)D2Kf)sm2(since 0).
R^x

The same argument as in Theorem 6 proves that the limit is zero. This

proves the theorem.
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