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246 S. AKBULUT AND H. KING

§5. Algebraic Structures on P.L. Manifolds

To prove that P.L. manifolds are homeomorphic to algebraic sets we first
define a class of stratified spaces (T-spaces) which admit "topological
resolutions" to smooth manifolds, then we prove that these spaces are

homeomorphic to algebraic sets. Then the result is achieved by showing that this
class is big enough to contain all P.L. manifolds.

Define T0-spaces to be smooth manifolds. Inductively let Ak-spaces to be

spaces in the form M M0 (J Nt x cone(Zi) where M0 is an ^space and
d

Zi are boundaries of compact Ak- x-spaces and Nt are smooth manifolds. The

union is taken along codimension zero subsets of dM0 and Nt x Zf er N

x cone(Zi). We define

dM {dM0 - {jNt X Zf) u [jdNi x cone(Zf),

hence boundaries of Trspaces are Tfe-spaces. We call a space an A-space if it is an

Ak-space for some k. If in the above definition we also assume that each Z£ is a

P.L. sphere then we call the resulting T-space A-manifold. A-manifolds are P.L.

manifolds equipped with above special structure. T-spaces are more general than

A-manifolds, for example they don't have to be manifolds.

T-spaces are constructed so that they can be "topologically" resolved. If M is

an Arspace M0 u \jNt x cone(Zj), we can choose compact Ak_1 spaces Wt

with dWt ZWe can construct the obvious Ak_1 space Mk-1 M0 u (JNt
x Wt. There is the obvious map nk: Mk^l -> M which is identity on M0 and

takes Af x Wt to Ni x cone(Zi) by collapsing Nt x spine( onto Nt x point.
By iterating this process we get a resolution tower :

~ ^ ^ 712 ~ Ttk

M M0 — M1 — -> 1 -> M
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with M a smooth manifold. In fact by proving a generalized version of

Proposition 4.2 we can adjust Wt so that each Wt has a spine St consisting of

transversally intersecting Ak-1 spaces without boundaries, and then each map

nh collapses Nt x St to Nt x point. This makes n:M -+ M, where

Tc nk o o nl9 very much analogous to a multiblowup.

Theorem 5.1 ([AK6]). The interior of any compact A-space is

homeomorphic to a real algebraic set. Furthermore the natural stratification on this

algebraic set coincides with the stratification of the A-structure.

Theorem 5.3 tells that the class of A-spaces contain all compact P.L.

manifolds hence:

Corollary 5.2. The interior of any compact P.L. manifold is P.L.

homeomorphic to a real algebraic set.

The idea of the proof Theorem 5.1 goes as follows. First define (9Jf>0, a

bordism group for an algebraic set V It is the usual bordism group of maps of A-

spaces into V modulo the subgroup generated by maps X x N -> N -> V where

X is an A-space, N is a nonsingular algebraic set and the map is the projection
followed by an entire rational map N -» V Then inductively we prove a

generalized version of Theorem 2.8 : that is if M a V is an imbedding of a

compact A-space without boundary into a nonsingular algebraic set V such that
M represents 0 in (9*{V\ then M can be moved to an algebraic subset Z of V

x Rn by a small isotopy (for some n). This implies the proof of Theorem 5.1 (by
taking V R"). Because one point compactification of an interior of a compact
A-space is a compact A-space without boundary hence is homeomorphic to an
algebraic set by above (and use Proposition 3.1 (b)).

Roughly the proof of the above claim proceeds as follows. Let M
M0 u N x cone(E) c= V then the bordism condition on M implies that

[N] e r|*(F), so by Theorem 2.8 we can assume that IV is a nonsingular algebraic
subset of V x Rm for some m. Define BfiV x Rm, N) B(V x Rm x R, N x 0),
then this contains a natural nonsingular algebraic subset NfiV x Rm, N) B(N
x R, N x 0) which is diffeomorphic to N. By continuing in this fashion let

Bk(V x Rm, N) B(Bk_fVxRm,N) x R, Nk_fV xRm, N) x 0),

Nk(V x Rm, N) B(Nk^1(V x Rm, N) x R, Nk_ fiV x Rm, N) x 0).

Then we get a generalized algebraic multiblowup nk : Bk(V x Rm, N) -> V x Rm
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such that nk 1(N) is a union of codimension one submanifolds (JS{- in general

position and

nk x Rm —TV) (V x Rm — N) x Rk

Since M is an Afc-space, £ dW for some compact Ak_ x-space IF By proving a

generalized version of Proposition 4.2 we can assume that the spine of W is a

transversally intersecting codimension one Ak_ i subspaces (J Lf with dLt 0.
We then imbed the space Mfe_1 M0 u A x fP (blown up M) into
x Rm, A) such that

(i) Mk_1 is transversal to IJS; with Mk_1 n U St N x U Lb

(ii) nk(Mk_1) is isotopic to M by a small isotopy,

(iii) Mk_1 represents 0 in (9^{Bk{V x Rm, N)\

VxRm Bk{Vx Rm, N)

This is somewhat hard to prove (see [AK6]). Then by induction, with a small

isotopy Mk_ can be moved to an algebraic subset Z of Bk(V x Rm, N) x Rs for

some s. Hence Z still satisfies (i) and (ii), after composing nk with the obvious

projection. Then by using a version of Proposition 3.3 we blow down Z to

get an algebraic set homeomorphic to M.
The class of A-spaces does not contain all algebraic sets. For example the

Whitney umbrella x2 zy2 is not an Z-space.

Therefore to classify real algebraic sets we need a bigger class of resolvable spaces

(§6).

In order to show that P.L. manifolds admit Z-structures one has to appeal to

algebraic topological methods. This is done in [AT2], here is a brief summary of
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[AT2] : One first verifies that ^-structures on P L. manifolds obey the usual

structure axioms ([L]). For example they satisfy the product structure axiom i.e.

foranyP.L. manifold M an ^-structure (M x I)y on M x I is concordant to Mr
x I where My is an ^-structure on M. Using [W] we can define an r-
dimensional ^-thickening on X to be a simple homotopy equivalence X -> Wr

where W is an r-dimensional ^fc-manifold (with boundary). Let T[(X) to be the

set of all r-dimensional ^-thickenings on X with the equivalence relation:

/i) ~ f2) if there is an {r+ l)-dimensional Tfc-thickening (W, F) with
cW Wl u W2 and making the following diagram commute up to homotopy :

There are natural maps Trk(X) -+ Tk+ l(X) given by (W, f) 1— (W x /, / x id), so

using these maps we can take the direct limit Tk(X) lim Trk(X). It follows that
the functor X i-> Tk(X) is a representable functor (see [Sp]), hence by Brown

representability theorem there exists a classifying space BAk such that Tk(X)

\_X ; BAk]. There are natural indusions BAfc_l BAu> and let BA lim BÄfc.

There is a natural forgetful map BA A BPL. Then one shows that the usual

structure theorem holds : Namely that a compact P.L. manifold M has an A-
structure ifand only if the normal bundle map (thickening map) M - BPL lifts to

Ba. Let PL/A be the homotopy theoretical fibre of n, then :

Theorem 5.3 ([AT2]). BA ^ BPL is a trivial fibration, i.e. BA ~ BPL

x PL/A and PL/A is a product of Eilenberg-Mclain spaces K(Z/2Z, nfs.
The number p„ of K(Z/2Z, n) for each n in this product is given by

v. infinite but countable if n > 8

Corollary 5.4. Every compact P.L. manifold M has an A-structure and

the number of different A-structures (up to A-concordance) on M is given by

F
W

f 0 if n < 8

P„ 26 8

© H"{M ; k„(PL/A))

L'Enseignement mathém., t. XXIX, fasc. 3-4. 17
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Briefly the proof of Theorem 5.3 goes as follows : By a standard argument,
Ki(PL/Ak) coincides with the concordance classes of ^-structures on Sl (the
exotic Afe-spheres). Since k^PL/A) lim Ki(PL/Ak) it follows by definitions
that the inclusion n^PL/A) - r\f is an injection, where r\f is the cobordism

group of /-dimensional A-manifolds. Then we construct a Thorn space MA such

that n^MA) ä r\f (by using a transversality argument for A-manifolds). Then it
~ VM

turns out that the map r\f -> Ht(BA ; Z/2Z) given by {M -> BA} i— (v^ [M] is

an injection. We can put these maps into the following commutative diagram :

ntPL/A) -h

if I

Ht(PL/A ; Z) A Hi{PL/A ; Z/2Z) ^ H{BA : Z/2Z)

where h is the Hurewicz map, r is the reduction and g is induced by inclusion.
Since the other two maps are injections then / must be injection. In fact / is a

split injection since it is a map between Z/2Z-vector spaces. Hence h is a split
injection. This implies that all fc-invariants of PL/A is zero, i.e. PL/A is a

product of Eilenberg-Mclaine spaces ]^[K(Z/2Z, nf). Then by dualizing the split
injection g ° f we get a surjection

H\Ba-Z/2Z)^ Hom(TC,(PL//l); Z/2Z)

Let 8„. g Hni(BA ; Z/2Z) such that ^(8„.) is the generator of Z/2Z.

8 f]8„. defines a map £4 ]~JK(Z/2Z, nf) PL/A

Then the map n x 8 : BA - BPL x PL/A turns out to be the desired splitting.
The calculation of p„ can be done by using the geometric interpretation of

7i,(PL/A).
The set ^A{M) © Hn(M ; nn(PL/A)) measures the number of different

n

"topological resolutions" of M, up to concordance (i.e. A-structures). Therefore

often SfA(M) is infinite ; and 6fA(M8) has 226 elements for any closed 8-manifold
M8.

§6. On classification of Real Algebraic Sets

The resolution and complexification properties of real algebraic sets impose

many restrictions on the underlying topological spaces. To give a topological
characterization of algebraic sets one has to find all such properties, such that a
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