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SOME PARADOXICAL SETS
WITH APPLICATIONS IN THE GEOMETRIC THEORY
OF REAL VARIABLE ')

by Miguel de GUZMAN

The purpose of this paper is to present a small excursion through a certain
area of the theory of real variable, describing some strange constructions,
paradoxical and beautiful in their own way, that have recently come to
illuminate some other important topics in related fields such as Fourier analysis.
We shall do it in an expository way, trying to avoid most of the technicalities. For
them we refer the reader to the works of the author published in 1975 and 1981.

1. MANEUVERING A NEEDLE

In 1917 Kakeya proposed a curious problem with the aspect of a puzzle. It
can be formulated in the following way. Let us consider a one-dimensional car,
like a straight needle of one meter of length, located on the plane. We can
maneuver the needle on its plane in a continuous way until placing it in the same
plane it occupies but in inverted position. In doing so the needle will sweep a
certain area. The question is: What is the minimal value of the areas of the figures
within which the needle can be continuously inverted?

A circle of radius 1/2 (area: /4 = 0.785398..) with center at the middle point
of the needle is such a figure in which the needle can rotate (Fig. 1).

FIGURE 1

') The present paper is an expanded version of a talk given at the Mathematics
Department of the Universidade Federal do Rio de Janeiro.
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But also the triangle of Figure 2 (area: l/ﬁ = 0.5773502... < w/4) is
another such figure of smaller area.

For a long time many people thought that the problem would be solved by
means of a sort of curvilinear triangle (see Fig. 3), a figure bounded by a
hypocycloid y with three cuspidal points inscribed in a circle of radius 3/4. This
curve has the property that for each point M in y the tangent at M to y intersects
Y in two other points A and B such that the length of AB is 1. The area of the
figure enclosed by it is ©/8 = 0.392699... and it is easy to see that a needle of
length 1 can turn around in any open set containing such a figure inside.

FIGURE 2 FIiGURE 3

2. STREETS IN ALL DIRECTIONS COVERING NULL AREA

Kakeya’s problem was in fact solved in 1919 by Besicovitch, but nobody, not
even Besicovitch himself, realized it. He was at that time in Perm, in a University
rather isolated from the rest of the mathematical world where the Kakeya
problem did not arrive. On the other hand the tool created by Besicovitch for the
solution of some other problem did not go very far from his place either.
Besicovitch constructed a plane set of null area containing segments of length 1
in all directions. As we shall see this gives the following solution to the Kakeya
problem: Given any arbitrarily small n > 0 one can construct a plane figure
with area smaller than 1 such that the needle can be continuously inverted inside
it.
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3. A TOURIST COLONY NOT TO BE RECOMMENDED

In 1927 Nikodym, in order to explore the geometric structure of the
measurable sets in the plane, showed how to construct, inside a square Q,aset N
that fills it (i.e. the measure of Q-N is zero) and so that for each point x of N there

is a straight line /(x) passing through it and not hitting any other point of N
(Fig. 4).

FIGURE 4

The architects of tourist colonies have not yet learned about this magnificent
business possibility, but the day somebody tells you about the marvels of a
colony in an island which offers a free view over the ocean from each one of its
apartments, beware!

Although it seems incredible one can still make it better. R. O. Davies in
1953 constructed a set N in Q filling Q and such that each x of N has infinitely

many directions in which one can see the ocean... inside any arbitrarily small
angle one may fix!

4. A SMALL TREE WITH MANY FRUITS

In 1928 Besicovitch was informed about the needle problem and published
its solution. In 1929 Perron simplified the somewhat laborious construction of
Besicovitch. It has been further simplified later on. The final product of the line of
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thought, that we shall call the Perron tree, has proved to be an extraordinarily
fruitful tool for the solution of certain deep problems of recent mathematical
analysis.

The result is as follows: Given an arbitrary ¢ > 0 and an arbitrary triangle
ABC of area that we denote by S(ABC), we can divide the triangle A BC into small
triangles T, T,, ..., T, as Figure 5 shows (i.e. dividing the basis a into a finite
number of equal intervals I,, I,, ..., I,) and one can translate appropriately the
small triangles T;, T, ..., T, parallelly to the basis a in such a way that the area of
the union of the translated triangles is less than €S(ABC). (See Fig. 6.)

T

FIGURE 5 FIGURE 6

5. How THE PERRON TREE SPROUTS

Following an idea of Rademacher (1962), the construction of the Perron tree
can be easily understood as follows. Let us divide first a triangle T, MNP, of area
S(T), into two triangles T;, T, with bases J,, J,, of the same length. If we wish to
move T, and T,, parallelly to NP so that the shifted triangles cover less area we
can do it by pushing T, towards T; as Figure 7 shows. The area covered by T; and
T", can be easily measured by elementary geometry and is (see Fig. 7, we take 1/2
<a<l)

«2S(T) + 2(1—o)2S(T)
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FIGURE 7

If the triangle MNP is divided into four parts, instead of two, as Figure 8
indicates, we can first subject the pair of triangles MNL, and ML, L, on the one
hand to the above indicated operation withana, 1/2 < a < 1,and, on the other
hand we can do the same, with the same a, to the other pair of adjacent triangles
ML,L;, ML,P. The result is indicated in Figure 8.
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FIGURE 8

It is easy to see that the area of the figure now covered by the so translated
triangles 1s less than

(*) a2S(T) + 2(1—a)2S(T)

If we now shift in a solidary way the figure formed by the union of the two
triangles T; and T’, towards the left until L, coincides with L), the new formed
figure covered by the four triangles can be considered (see Fig. 9) as consisting of
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a triangle HN P” similar to the first one M N P with a similarity ratio o plus four
peak triangles that overlap more than before. The area of this figure is therefore
less than (*).

L7 /II ah

o i
e i
//é o /7 a \

/ \
N L)L, Ly, LyL, P"

FIGURE 9

In the triangle HN P” we have the basis divided into equal portions NL), and
L5P" and so we can submit HNP” to the initial operation, i.e. shifting the right
hand triangle towards the left one with the same constant o that measures the
magnitude of this shift and shifting thereby solidarily the triangles T% and T,
that constitute the right hand portion of the triangle HNP”. The result is shown
in Figure 10.

2 ///
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A

FiGURE 10

1

The final result is a triangle similar to the initial one with similarity ration a.?,
its area therefore being a*S(T), plus four peaks that cover an area smaller than

2(1—a)%a2S(T) + 2(1—o)2S(T)
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1.e. the total area now covered is not greater than

oa*S(T) + 2(1—a)? (1 +a2)S(T)

It is now not difficult to realize that if we initiate our process with 2" equal
portions of the basis and we proceed in a similar way, at the end, i.e. after n
repetitions of the process consisting of (a) a shift of the right triangle of each pair
of adjacent triangles towards the left triangle (shift constant = «), and (b) gluing
together the resulting figures to compose a triangle similar to the original one
with one half the number of divisions on the basis, we obtain a figure with an area
not greater than

a2"S(T) + 2(1—a)® (1 + o2 +... + 62"~ 2)S(T)
< a?S(T) + 21— ) (1 + 02 +... + a2 24 )S(T)

- (0(2" + %) S(T) < (2" 4 2(1 —))S(T)

Therefore, given ¢ > 0, we first choose o, 1/2 < o < 1 such that 1 — «
< g/2and then nso that a*" < ¢/2. In this way we obtain a Perron tree. Its name
is justified by the fact that the final figure consists of a trunk (a triangle similar to
the initial one with similarity ration o”) plus many sharp branches that seem to
rest on it. Its area is less than &S(T). (See Fig. 11.)

FIGURE 11

The reader interested in more details can consult Guzman (1975).




8 M. DE GUZMAN

6. THE SOLUTION OF THE NEEDLE PROBLEM

The Perron tree gives a simple solution to the Kakeya problem. First we shall
show how a needle can go from a straight line to another one parallel to it
covering an arbitrarily small area. Let us observe Figure 12.

[
A/U B/U A/H

FIGURE 12

If the needle AB is on [ and we wish to translate it to I{, we draw through 4 a
straight line m intersecting [ and I’ whose direction can be as close to that of [ and
I' as we wish. From AB we move to A’B! covering area P, from A’B* to A B!
covering null area, from A"”B' to A"'B'! covering P,. Now P, + P, can be
made arbitrarily small if the slope of m over l and I' is small. From A’ B' we can
move to any other position 4’VB"Y on I’ covering again null area.

Let us now assume that the needle is on the side AB of the initial triangle
ABC. We can assume that ABC is an equilateral triangle and that its height is of
the same length as that of the needle. Let us see how we can move the needle to
AC sweeping an area smaller than n/3 with a positive 1 arbitrarily small.

We construct a Perron tree P starting from ABC with an € > 0 such that
eS(ABC) < m/6. Here, as before, S(ABC) denotes the area of the triangle ABC.
Let n be the number of small triangles T;, T, ..., T, in which we have to divide
ABC and let T, = T, T, ..., T, be their corresponding final positions in the
Perron tree. We shall move the needle inside P and inside n figures like that of
Figure 12 with an area J each one such that nJ < n/6. If the needle is on AB with
an extremity on A, it can move inside T, = T;, therefore inside P, until it comes
over the right hand side of T";. Now T has its left hand side pafallel to the right
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hand side of T';. Therefore it can move, using the above construction, covering an
area J. Within T, and so within P, it can move to the right hand side of T. From
there to the left hand side of T and so on until it comes to AC, covering area less
than n/3.

It is clear that with three equilateral triangles and three repetitions of this
process we can turn the needle around covering area smaller than n.

7. THE CONSTRUCTION OF THE BESOCOVITCH SET

The Besicovitch set is also easily built starting from the Perron tree by means
of the following auxiliary construction:

(**)  Given an arbitrary parallelogram ABCD and ¢ > 0, itis possible to
construct a finite number of closed parallelograms ©,, ®,, ..., ®, Sso that (see
Fig. 13): '

FIGURE 13

(a) Each one has one basis on AB and another one on CD.

(b) The area of their union is less than «. |

(c) For each segment joining a point of AB to another one of CD there exists
inside some ®; a segment parallel to it of the same length.

To see this, given ABCD and & > 0 we first take two strips @, and ®, as
indicated in Figure 14 such that S(w,) + S(®,) < £/4. We take now a point L of
UV so that LC is parallel to UT. Then we divide V' C into intervals with the same
length smaller than that of DV and we join L to the extreme points of these
intervals. A typical triangle of the ones so obtained is LMN. Let p be
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FIGURE 14

the number of such triangles. From LM N we construct a Perron tree with area
less than £/4p and the same is done with each of the p triangles we have. The
union of ®,, ®, and all the small triangles of the p Perron trees has an area less
than €/4 4+ p e/4p = ¢/2. One of these small triangles composing one of the
Perron trees has the situation indicated in Figure 15 (it has been enlarged to
make the figure more easily understandable). '

A H K B
D 174 R C
FIGURE 15

We wish to substitute the trapezoid HKRW by strips, what we can easily do
without augmenting the area in the way schematically indicated in Figure 15,
where four parallelograms have sufficed to cover the portion of ABCD covered
by HKRW.

So we obtain ,, ®, and a number of small strips covering together an area
smaller than /2. It is easy to see that for each segment joining A4 to a point of DC,
there is another one parallel to it of the same length inside one of the strips we
have obtained.
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If we now perform an analogous construction starting from the other side BC
of ABCD we obtain a finite number of strips satisfying all the properties
indicated (a), (b), (c).

The Besicovitch set is now very easily obtained as follows. We take a square
' MNPQ of side length 1 and apply to it the above auxiliary construction (**) with
e = 1/2. We obtain a number of strips o7, ©3, .., ©, , covering an area smaller
than 1/2 and such that for each segment determined by a point of MN and
another of PQ there is a segment of the same length and direction inside Q'
=0, U0;U .U,

Now we consider each of the parallelograms o} and apply to it the same
construction (**) with ¢ = 1/2%r,. Collecting all parallelograms corresponding
to each 03}, j=1,2,..,r;, we obtain a second family of parallelograms
®71, ©3, ..., ;. Their union @ = ] U ®3 U .. U ©; has area less than 1/2, is
contained in Q' and, again, for each segment joining a point of M N to another of
PQ there is another one of the same length and direction inside Q2. We proceed
with the parallelograms o7 as we did with the o}, now with ¢ = 1/23r,, and so
on. Thus we obtain

QL5 Q2>5Q3 - ..

of areas
S(QY < 172, S(Q?) < 1/22, 8(Q3) < 1/23, ...

The sets ) are compact and have the property of containing a parallel
translation of each segment with one extremity on M N and the other on PQ. The
intersection

B=Q'nQ®n. . QA ..

is of null area gnd has this same property. We now proceed with the square
MNPQ in the same way in the other direction and obtain a compact set of
measure zero containing a segment of length one in each direction, i.e. the
Besicovitch set.

8. THE NIKODYM SET

The Nikodym set can be obtained from the Perron tree in a similar way
through the following auxiliary construction, also surprising in itself.
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v av

FIGURE 16

Let ABCD be an arbitrary parallelogram and CDEF another one
contained in it as Figure 16 shows. Let € be any arbitrary positive number. Then

one can construct a finite number of parallelograms o, ®,, ..., ®,, with a basis on

q’
CD and another one on AB such that the figure ®; U ®, U .. U ®, covers

CDEF while the part of it above EF has area less than ¢, that is:

®; Uo,u.. v, > CDEF

S((0, vo,u...u0,) N (ABCD—CDEF)) < ¢

This construction is a little more technical than that of the Besicovitch set
and will be omitted. For details we refer to Guzman (1975).

9. MATHEMATICAL FRIVOLITIES?
FROM THE PERRON TREE TO THE MEASURE OF THE DENSITY

What started as a puzzle has proved to have many important applications to
solve some interesting problems of recent analysis.

Let us assume that we have a mass distributed on the plane and that we wish
to measure the density of this distribution at each point. Let us also suppose that
the mass is not continuously distributed. One can perhaps say: “Will it not be
very artificial to consider a mass that is not continuously distributed?” It is true
that the old Scholastic used to affirm that “natura non facit saltus” (nature does
not proceed by jumps). However, the findings of modern physics permit us to
affirm with even stronger motivation “natura non facit nisi saltus” (nature
proceeds only by jumps). Therefore it is rather natural to consider a
discontinuous mass distribution.

For a long time one thought that in order to measure the density one could
take any system of reasonable sets that contract to the point at which one
measures the density, find the mean density over such sets and hope that, when
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the sets become smaller and smaller, the mean density approaches a number, the
density at the point. The Nikodym set shows in an easy way that one has to be
very careful at choosing reasonable sets. As Zygmund observed (see the end of
Nikodym’s paper in 1927), it follows from the Nikodym set that if we take
something apparently so reasonable as the system of all rectangles centered at
the corresponding points, the mean densities can diverge. This, however, does
not happen if the system is that of all circles or squares containing the points.
Considerations of this type have given rise to the modern theory of
differentiation of integrals.

10. ANOTHER FRUIT OF THE PERRON TREE.
A PROBLEM ON DOUBLE FOURIER SERIES

A famous problem in Fourier analysis, open for a long time, has been recently
solved in a rather simple way be the use of the Perron tree.

For a periodic function of two variables f(x, y) of period 1 in each variable
one can define its Fourier coefficients setting for m = 0, +1, +2,...,n = 0
+1I, 2, .-

b

= [0 [0 f(x, y)e™ 2 72 dx dy
and one can construct the corresponding Fourier series

Z amn emex e2mny )

m, n

One can consider the partial sums of this series in several ways, in order to
explore whether they converge or not to the original function. Thus, for example,
one can consider the “square” sums

or else the “rectangular” sums

SM, Nf(x, y) = Z Apan e?.rrimx eZm'ny

and examine whether in some sense S,/ — fasP — oo or Su.nf = fasM, N
— 00. One can also consider the “circular” sums

R . 3
S f(X, y) — Z a,, p2mimx eZmny
m2+n2<R2
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As a consequence of the construction of the Perron tree one can prove, for
example, that there are functions f € I?, 1 < p < 2,such that S¥ f(x, y) diverges
at almost each point (x, y). For this result we refer to the papers by C. Fefferman
in 1970 and 1971.

Our short excursion comes to confirm what happens so often in
Mathematics. Apparently idle and superfluous questions give rise to very
interesting and important portions of mathematics, useful in many respects. As
Littlewood used to say, a good mathematical game is worth many theorems.
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